Sag/Swell Compensation by using BES DVR in Industrial Drives Applications

Page 1

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017

p-ISSN: 2395-0072

www.irjet.net

Sag/Swell Compensation by using BES DVR in Industrial Drives Applications R.VENKATA NARESH1, S.V.SATYANARAYANA2, P.V.RAMANJANEYULU3 1Assistant

Professor, Dept.of Electrical Engineering, Rise Krishna Sai Prakasam Group of Institutions, A.P, INDIA Assistant Professor, Dept.of Electrical Engineering, Rise Krishna Sai Prakasam Group of Institutions, A.P, INDIA 3Assistant Professor, Dept.of Electrical Engineering, Rise Krishna Sai Prakasam Group of Institutions, A.P, INDIA

2

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - Power quality is one of the major concerns in the present power system environment. The situations like-voltage dip/sag, swells, harmonic content and so on, and its major effect on greatly susceptible loads are well known. To face these situations, custom power devices are utilized. Sensitive load has a severe impact on itself due to voltage sag and swell. Dynamic Voltage Restorer (DVR) is a power custom device used in power distribution network. The Dynamic Voltage Restorer (DVR) is fast, flexible and efficient solution to voltage sag problem. The important parts of the DVR comprise of voltage source inverter (VSI), booster transformers, filter and a dc energy source. The principle of the DVR is utilized to inject the voltage in series and in synchronism with the standard voltages with a goal to compensate voltage influences. In this paper, different voltage injection schemes for dynamic voltage restorers (DVRs) are analyzed with particular focus on a new method used to minimize the rating of the voltage source converter (VSC) used in DVR. A new control technique is proposed to control the capacitor-supported DVR. The control of a DVR is demonstrated with a reduced-rating VSC. The reference load voltage is estimated using the unit vectors. The synchronous reference frame theory is used for the conversion of voltages from rotating vectors to the stationary frame. The compensation of the voltage sag, swell, and harmonics is demonstrated using a reduced-rating DVR. Key Words: Dynamic voltage restorer (DVR), power quality, unit vector, voltage harmonics, voltage sag, voltage swell.

1.INTRODUCTION Power distribution systems, ideally, should provide their customers with an uninterrupted flow of energy at smooth sinusoidal voltage at the contracted magnitude level and frequency however, in practice, power systems, especially the distribution systems, have numerous nonlinear loads, which significantly affect the quality of power supplies. As a result of the nonlinear loads, the purity of the waveform of supplies is lost. This ends up producing many power quality problems. Apart from nonlinear loads, some system events, both usual (e.g. capacitor switching, motor starting) and unusual (e.g. faults) could also inflict power quality problems. Power quality phenomenon or Š 2017, IRJET

|

Impact Factor value: 5.181

|

power quality disturbance can be defined as the deviation of the voltage and the current from its ideal waveform. Faults at either the transmission or distribution level may cause voltage sag or swell in the entire system or a large part of it. Also, under heavy load conditions, a significant voltage drop may occur in the system. Voltage sag and swell can cause sensitive equipment to fail, shutdown and create a large current unbalance. These effects can incur a lot of expensive from the customer and cause equipment damage. The voltage dip magnitude is ranged from 10% to 90% of nominal voltage and with duration from half a cycle to 1 min and swell is defined as an increase in rms voltage or current at the power frequency for durations from 0.5 cycles to 1 min. Typical magnitudes are between 1.1 and 1.8 p.u. There are many different methods to mitigate voltage sags and swells, but the use of a custom power device is considered to be the most efficient method, e.g. FACTS for transmission systems which improve the power transfer capabilities and stability margins. The term custom power pertains to the use of power electronics controller in a distribution system, especially, to deal with various power quality problems. Custom power assures customers to get pre-specified quality and reliability of supply. This prespecified quality may contain a combination of specifications of the following: low phase unbalance, no power interruptions, low flicker at the load voltage, and low harmonic distortion in load voltage, magnitude and duration of over voltages and under voltages within specified limits, acceptance of fluctuations, and poor factor loads without significant effect on the terminal voltage . There are different types of Custom Power devices used in electrical network to improve power quality problems. Each of the devices has its own benefits and limitations. A few of these reasons are as follows. The SVC pre-dates the DVR, but the DVR is still preferred because the SVC has no ability to control active power flow. Another reason include that the DVR has a higher energy capacity compared to the SMES and UPS devices. Furthermore, the DVR is smaller in size and cost is less compared to the DSTATCOM and other custom power devices. Based on these reasons, it is no surprise that the DVR is widely considered as an effective custom power device in mitigating voltage sags. In addition to voltage sags and swells compensation, DVR can also add other features such as harmonics and Power Factor correction. ISO 9001:2008 Certified Journal

|

Page 1309


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Sag/Swell Compensation by using BES DVR in Industrial Drives Applications by IRJET Journal - Issuu