Automatic Change Detection on Satellite Images using Principal Component Analysis, ISODATA and Fuzzy

Page 1

Volume11,No.6,November-December2022

InternationalJournalofAdvancedTrendsinComputerScienceandEngineering

AvailableOnlineathttp://www.warse.org/IJATCSE/static/pdf/file/ijatcse041162022.pdf https://doi.org/10.30534/ijatcse/2022/041162022

AutomaticChangeDetectiononSatelliteImagesusing

PrincipalComponentAnalysis,ISODATAandFuzzy

C-MeansMethods

BEKKOUCHEIbtissem1,FIZAZIHadria2

1 DepartmentofComputerSciences,UniversityofScienceandTechnologyofOran,Algeria, ibtissem.bekkouche@univ-usto.dz

2 DepartmentofComputerSciences,UniversityofScienceandTechnologyofOran,Algeria, hadria.fizazi@univ-usto.dz

ReceivedDate:October17,2022AcceptedDate:November23,2022 PublishedDate:December06,2022

ABSTRACT

Changedetectionistheprocessofcomparingtwoormore imagesandidentifyingthepartswhereachangehasoccurred. Differencedetectionprocessingbetweensimpledigital images,suchasphotographicimages,iseasytoimplement. Whereasforsatelliteimages,whichcomposeofseveral images’grayscaleandbands,thisrequiresamethodological approachtoimageprocessingappropriatetotheexploitation ofthesedatabecausethiswillallowtofollowtheevolution overtimeofaregionofinterestthroughchangedetection techniques,sotheseimagesareatoolofchoiceinthe managementofnaturalresources.So,inthispaper,we proposeahybridautomaticchangedetectionapproachfor multi-temporalsatelliteimages.Itisbasedonseveral algorithms:ISODATAforautomaticthresholding,Principal ComponentAnalysisastransformationtechnique,Fuzzy C-Meansasclassificationtechnique.Experimentswere performedandassessedbytheiroverallaccuracyandresults validatedtheeffectivenessandefficiencyoftheproposed approach,namedISOFAP.

Keywords: Changedetection,Fuzzyc-meansclustering, ISODATA,Principalcomponentanalysis.

1. INTRODUCTION

Changedetectionisadigitalprocessthatcanbeperformedby traditionalmethodsandusingremotesensingtechnologies. ThebasicthisprocessistomeasurethechangeontheEarth's surfacebyjointlyanalyzingtwoormoretwotemporally separatedimages,inordertolocateandquantify (automatically)thechangesexistingbetweentheseimages [1].Thisisaveryactivesubjectduetopreoccupationabout theconsequencesofglobalandlocalchangesintheearth.

Therearemanychangedetectiontechniquesintheliterature: AlgebraicmethodssuchasImagedifferencingandChange vectoranalysis,…;TransformationmethodssuchasTasseled CapTransformation,PrincipalComponentAnalysis…; ClassificationmethodsasArtificialNeuralNetworks, Comparisonafterclassification…;GeographicInformation

System(GIS)asIntegratedMethodofGISandRemote Sensing,GISApproach…;VisualanalysisusingVisual interpretation;HybridapproachinCombinationofmethods; AdvancedmodelslikeSpectralMixingModel,Li-Strahler ReflectanceModel…[2][3]

Inrecentyears,thistechniquehasbecomeoneofthemost interestingsubjectsintheextractionofinformationfrom satelliteimagesandseveralresearchershaveopted,Theselast years,forthehybridizationofmethodssuchas:in2020, NeelamRuhiletal,havesuggestedanunsupervisedchange detectionmethodbasedonwaveletfusionandtheKohonen Hybrid FCM-σ [4], in the same year, Mohan Singh et al, have proposedanimagefusionusingimagefusionusingimage normalizationandradiometriccalibrationandParticleSwamp OptimizationFuzzyC-Means(PSOFCM).Inthisarticle,an unsupervisedchangeobservationtechniquebasedonthe PSOFCM[5],andin2022,AbdelkrimMaariretal,have proposedanunsupervisedmethodofdetectingchangein satelliteimagesbyfollowingtwomainsteps:Thefirststep focusesondatareductionusingtheIndependentComponent Analysis(ICA)algorithmtoimprovetheefficiencyofthe classifier.ThesecondstageforprocessingusestheFuzzy C-Meansclassificationmethodtofindspecifiedclusters[3].

So,forourpaper,sincethereareseveralchangedetection techniques,themostinterestingattitudewouldbetotryto combinethesetechniquesanddevelopahybridmethod,sofor thatweused:ISODATAforautomaticthresholding,Principal ComponentAnalysis(PCA)astransformationtechnique, FuzzyC-Means(FCM)asclassificationtechnique.

Afterhavingtestedseveralthresholdingalgorithmssuchas: Binarythresholdingonthemean,OTSUthresholdingandEM algorithm[6],wechoseISODATA.Thisisthealgorithmthat isusedforautomaticthresholding,wehavechosenitbecause itiseasytoimplementmorethanitgivesgoodresults.

PrincipalComponentAnalysis(PCA)consistsof transformingvariables,interconnected,intonewvariables unsquaredfromeachotherfordimensionreduction.So,we chosebecauseithasbeenwidelyusedforchangedetection

BEKKOUCHEIbtissem etal., InternationalJournalofAdvancedTrendsinComputerScienceandEngineering,11(6),November-December2022,241-248 241
ISSN2278-3091

[7].Ithastheabilitytoprojectthemulti-dimensionaloriginal anditislesssusceptibletoimageoverlapping.

Wefoundthatthemostusedmethodsforchangedetection usedalottheK-means,sowetesteditonourdatabutwe chosetousetheimprovedFuzzyC-Means(FCM)version. FCMhasreducedcomplexityandgivesbestresultfor overlappingdatasetsandcomparativelybetterthank-means algorithm.

2.METHODSUSED

2.1.Isodata

Itisanimagesegmentationtechniquebyclusteringanditis animprovedversionofthek-meansalgorithm,whichwas firstintroducedbyVelascoin1980[8]asaclassicalgorithm whichmakesitpossibletocarryoutaverygood categorizationandwhichgivessignificantresults.[9]

Thethresholdingofanimagecanbedonebymanual thresholdingorbyautomaticthresholding.

Manualimagethresholdinginvolves4steps[9]:

1. Observingthehistogramoftheimage

2. Choiceofthresholdsinthevalleys

3. Definitionoftheclassesoftheregionsbycolorrange

4. Pixelclassification

ISODATAthresholdingisglobalthresholding,whereasingle thresholdisusedacrosstheentireimagetodivideitintotwo clusters.Itallowstofindthevalueofthesoughtthresholdin anautomaticwayfollowingitssteps[10]:

1. ChooseaninitialthresholdT,forexampleT=the averageintensity.

2. DividetheimageintotwogroupsG1andG2usingT.

3. CalculatetheaveragevaluesofeachregionR1andR2

4. Calculatethevalue =( 1+ 2)/2

5. Repeatsteps2to4untiltheTvaluedoesnotchange.

2.2.PrincipalComponentAnalysis

Principalcomponentanalysis(PCA)isamathematical techniqueusedfordataredundancyreductionbyJacksonand Bund,1983[12].Itisusefulwhenyouhaveobtaineddataona numberofvariables(perhapsalargenumberofvariables), andthereissomeredundancyinthesevariables.[12]

PCAisoneofthemostpopularmultivariateanalysis algorithmsforchangedetectionstudiesandcanbeperformed onoriginalornormalizeddata[7].Withthistechniquethe digitalimagesacquiredbyremotesensing,wecanreduceits dimensionalitysuchthatthemultispectralbandsarethe variablestobeintroduced.

TherearecertainstepstofollowtoimplementPCA[7]:

 Takeanoriginaldatasetandcalculatethemeanofthe dataset.  Subtractthemeanforeachdimension.

Calculatethecovariancematrix. 

Calculatetheeigenvectorandtheeigenvalueofthe covariancematrix.

Extractthediagonalofthematrixasavector.

Variancesortingindescendingorder.

Choosecomponentsandformafeaturevector.

Derivationofthenewdataset.

Attheend,thenumberofPCislessthanthenumberof variancesintheoriginalimage.InCDstudies,the consequenceofthislinearizationisthattheunchangedpixels orcommoninformationsharedbyapairofimagesare assumedtobeinanarrowandelongatedspace.Clusteralong aprincipalaxisequivalenttothefirstcomponent(PC1).On thecontrary,pixelscontainingachangewouldbemore uniqueintheirspectralappearanceandshouldliefarfromthis axis(PC2).[13][14]

2.3.FuzzyC-Means

FuzzyC-Means(FCM),isanunsupervisedfuzzy classificationalgorithm.IssuedfromtheC-meansalgorithm, developedbyDunnin1973[15]andimprovedbyBezdekin 1981[16],itintroducedthenotionoffuzzysetinthe definitionofclasses:eachpointinthedatasetbelongstoeach clusterwithacertaindegree,andallclustersarecharacterized bytheircenterofgravity[17].

ThegoalofFuzzyC-Meansclusteringistofindtheminimum ofthefollowingfunction: (1)

where m isanyrealnumbergreaterthan1, uij isthedegreeof membershipof xi inthecluster j.Asarule,foreachpixel,sum ofallmembershipvaluebelongingtoallclassesmustbe1. [3][14]

3.METHODOLOGY

TheFigure1showsandsummarizestheorganizationofthe processingstepsadoptedforthedetectionofchangeson satelliteimagesbyourISOFAPapproachandthisaccording tothebasicprocedureofanimagechangedetection processingsystem[18].

Thisschemeiscomposedofseveralimplementationphases:

1ststep: Thisisadatapreparationstepandwemust:

Dataacquisitionandpreparation: Thisisthestageof collectingandassemblingdata,whichcanbe satelliteimagesandfieldinvestigations.Thenwe cangotopre-processing,forexampleimagecutting ifnecessary. 

Geometriccorrection: theverificationofthe geometricaccuracyisessentialforthedetectionof changesbesidesabadgeoreferencedofmorethan onepixelwouldcauseabnormalresultsforanalyzes pixelbypixel.

BEKKOUCHEIbtissem
.,
242
etal
InternationalJournalofAdvancedTrendsinComputerScienceandEngineering,11(6),November-December2022,241-248

Datanormalization: Datamustbenormalized, especiallyforsatelliteimages,inordertoreducethe variabilitybetweenmulti-dateimagesoverthesame geographicalarea.

2ndstep: Thisisadigitalprocessingstepforthedetectionof changesandforthiswewill: 

Applythedifferenceimagemethod

Afterthat,theobtainedimageispartitionedintoH*H blocks,thenthecreationofeigenspacespaceusing PCAandprincipalcomponentsareachieved.

 ApplytheISODATAalgorithmforthresholdingonX.  AfterapplyingPCAandISODATA,createthefeature vectorspaceusingtheeigenspacespace.  Todeterminetheareasthathavechangedandnot changed,weusedtheFCMalgorithmtogeneratethe twoclasses(k=2)andassigneachfeaturevectorto theclassclosesttoeithermodifiedpixelsor unchangedpixels.

3thstep: Thisisageneralizationofthefinalproduct,whichis amapoflandcoverchangesatascaleequivalenttothatofthe inputdata.

4thstep: Onceamodelhasbeendeterminedand implemented,thelaststepistoanalyzeandinterpretthe resultstoestablishthequalityofthismodel.Therearevarious evaluationmeasuresthatcanbeusedandchosencarefully, sincethechoiceofmeasurecaninfluencehowperformanceis assessedandinterpreted.Forthiswehavechosentouse:

Visualinterpretation: theuseofthehumanvisual systemasaqualityjudgmenttoolisnottobe neglectedbutnecessarytoverifythequalityofthe imagesobtainedbytheclassification.Toevaluate thisapproach,wealsousedvisualanalysisaccording tothegroundtruthavailableinthearea.

ConfusionMatrix: Oneofthemostpopularwaysto measuretheperformanceofaclassificationmodel. Eachlinecorrespondstoanactualclassandeach columncorrespondstoanestimatedclassandit includesthefollowingvalues[19]:

o TruePositive,TP,whentheactualclassandthe estimatedclassarebothpositive

o TrueNegative,TN,whentheactualclassandthe estimatedclassarebothnegative

o FalsePositive,FP,whentheactualclassis negativebuttheestimatedclassispositive.This iscalledaType1error.

o FalseNegative,FN,whentherealclassis positivebuttheestimatedclassisnegative.This iscalledaType2error.

Itcanbeusedformorein-depthmeasurementstogeta betterassessmentofthequalityofthemodel.Amongthe classificationmeasuresusedareaccuracy,precision, errorandspecificity.[19]

Accuracyisthenumberofcorrectpredictionsmadeby themodel.

(2)

ThismeasureisusedwhenthenumberofTruePositives andTrueNegativesarethemostimportant. Error=1– Accuracy (3) Precisionisthenumberofcorrectelementsrenderedby themodel.

(4)

ThismetricisusedwhenthenumberofFalsePositives ishighest.

Specificityisthenumberofnegativeclassespredicted bythemodel.

(5)

BEKKOUCHEIbtissem etal., InternationalJournalofAdvancedTrendsinComputerScienceandEngineering,11(6),November-December2022,241-248 243
Figure1: GeneralschemeoftheproposedISOFAPmethod.

4.IMAGESUSED

Imagesdatabase: AsetofRGBimagesof650x650foundin adatabaseusedforthedetectionofchangesinsatellite imageryusingdeep-learning,producedbyHéloïse BAUDHUINandAntoineLAMBOT.[20]

Weappliedourapproachtotwoexamples,presentedin Figure2andFigure3,ofthisdatabase: (a) (b)

(b)

Figure3:Images2(a)beforechangeand(b)afterchange.

ImagesofBoumerdes: Figure4showsahigh-resolution satelliteimageofaLandsat5TMearthquakeandboth acquiredin2003,providedbytheCenterNationaldes TechniquesSpatialesd'ArzewandacquiredbyQuickBird.

Thecharacteristicsofthetwoimagesare:naturalcomposition imagewiththreechannels:TM1,TM2andTM3bandsand theirsizeinpixelsis1002x1002.Theycontaindifferent classeswhichare:asphalt,soil,vegetationandshade,andarea ofdamagetothepost-disasterimage.

(a)

(b)

Figure4:Images3(a)beforedisasterand(b)afterdisaster.

BEKKOUCHEIbtissem etal., InternationalJournalofAdvancedTrendsinComputerScienceandEngineering,11(6),November-December2022,241-248 244
Figure2: Images1(a)beforechangeand(b)afterchange (a)

5.EXPERIMENTRESULTSANSDISCUSSION

Thefirstthingforourwork,wedidastudyonaknown changedetectionmethodtounderstanditsconceptandwe chosePCA-FCM.Afterthestudyourproposalwastochange theclassificationalgorithmandreplaceitwithanother,so afterseveraltries,wechosetoworkwiththeFuzzyC-means (FCM)whichisanimprovedversionoftheK-means algorithm.ThenwedidothertestswithPCA-FCMbuteach timewehadtoinitializethethresholdmanuallywiththe variationofthethresholdparametersforeachimage.So,for thatwehaveintegratedanISODATAthresholdingalgorithm tohaveanautomaticthreshold.Intherestofthearticle,some resultsofourproposedmethod"ISOFAP"incomparisonwith PCA-K-means.

Toanalyzeandvalidatetheproposedapproachweusedthree differentdataimagesdescribedinsection4below.

ForthePCA-K-meansparameters,wevariedtheparameters asfollows:numberofclassesis2classes,suchasclass1for changedpixelsandclass2forunchangedones,numberof iterationsbetween70and100,numberofblocks:between2 and5,andThreshold:between10and80.

AndforISOFAPwevariedtheparameterslikethe PCA-K-meansexceptthethresholdbyISODATA.

Figure5showsthefirstperformancetest,wecreatedtwo examplesofsimpleartificialimagestodoourtests,butwe reducedthenumberofiterationsto20andthethresholdto10 becausetheyaresimpleimages.

Bythevisualinterpretation,wenoticethatPCA-K-meanshas someconfusionsandthatthedetectionisnotsocorrect. However,ISOFAPgaveusabetterresultthanPCA-K-means althoughtherearealsoconfusionsbutitisminimal.

Afterconfirmingthecorrectoperationofthetwoalgorithms onasimpleartificialimage,weusedtheimages1ofthe database(presentedinFigure2)andweappliedforthetwo methodsPCA-K-meansandISODATA.Forinitializationof thePCA-kmeansmethod,afterseveraltests,thethresholdwas manuallyinitializedto60,thenumberofiterationsto80and wevariedjustthenumberofblocks(h*h)betweenhequalto 2and5.Wenoticethathedetectedthechangesforhequal2.

ThesameimageappliedtoourmethodISOFAP,thenumber ofiterationsat75,thevariationalsointhenumberofblocks between2and5,andknowingthatISODATAhasinitialized thethresholdto43.fromtheresultswealsonoticethatath equalto2theresultisbetterthantheothers. (a) (b)

Figure5:(a)artificialimage,(b)artificialimagechanged,change mapresults(c)withPCA-K-meansand(d)withISOFAP.

Figure6:Visualinterpretationofthebestresultsby(a)ISOFAPand (b)PCA-K-meansonimages1.

BEKKOUCHEIbtissem etal., InternationalJournalofAdvancedTrendsinComputerScienceandEngineering,11(6),November-December2022,241-248 245
(a)(b) (c)(d)
Confusion Detectionerror

ThepreviousFigures6presentthebestresultsgivenby ISOFAPandPCA-K-meansappliedtoimages1.Fromour visualinterpretationforcomparingthebestresultsofthetwo methodstotheoriginalchangeimage,wenoticethatevenif ISOFAPhadconfusionsanddetectionerrorscausedbythe conflictbetweenthetwochangedandunchangedclasses,it therearesomedetailswerebetterdetectedcomparedto PCA-K-means.

Forimages2,wedidthesametestsasimages1.For PCA-Kmeans,afterseveraltestsweinitializedthethreshold at75,thenumberofiterationsat85andvariedthenumberof blocks.wenotethattheseresultsreinforcethechange detectionresultsonimages1becausethebestresultisgiven onthenumberofblocksequalto2.

ForISODATAthebestresultforimages2isthenumberof blocksat2becauseitgivesmoredetaileddetectionandfewer conflicts,suchasforthisimagethethresholdat20andthe numberofiterationsat93.

Thecomparisonbetweenthebestresultgivenbythetwo methodsapprovesthepreviousresultbecausewecansaythat thevisualinterpretation,presentedinFigure7,isthesameand thatISOFAPhasbetterdetectedthechangeevenifthereare conflictsanddetectionerrorsbuttheyarelessthan PCA-K-means.

Forthelasttests,wechosethebestparameters:numberof blocks(h*h)hat2,numberofiterationsat90andweapplied themtothesamepartoftheimages3(InFigure8).Wenotice thatthePCA-K-meansonlygaveustwoclasses:changedand unchanged,butISOFAPgaveathirdclassofpixelswiththe graycolor,fortheprogramitisconflictsandatthesametime wenoticethatitisnottotallyunchangedbutthechangeisnot great. (a)(b) (c)(d)

Figure8:(a)imagebefore,(b)artificialafter,changemapresults(c) withISOFAPand(d)withPCA-K-means.

FromthevisualinterpretationoftheresultsofourISOFAP approachonthethreegroupsofimages,wenoticethatthere aredetectionerrorsintheimages,whichcanbecausedby severalreasonsamongthemtheresolutionoftheimage becausesometimeswhentheimageisoflowerqualityposes conflictsbetweenthepixelsthereforegiveserrors.

BEKKOUCHEIbtissem etal., InternationalJournalofAdvancedTrendsinComputerScienceandEngineering,11(6),November-December2022,241-248 246
(a) (b)
Figure7:Visualinterpretationofthebestresultsby(a)ISOFAPand (b)PCA-K-meansonimages2.
Detectionerror
Confusion
Confusion Detectionerror

Table1: Evaluationmetricresultsforimages1byISOFAPandPCA-K-means

Method Accuracy Error Precision Specificity Executiontime

ISOFAP 0.8556 0.1444 0.8918 0.1082 65.283269s

PCA-K-means 0.7624 0.2376 0.6881 0.3119 57.882101s

Table2: Evaluationmetricresultsforimages2byISOFAPandPCA-K-means

Method Accuracy Error Precision Specificity Executiontime

ISOFAP 0.6256 0.3744 0.7488 0.2512 75.243269s

PCA-K-means 0.5824 0.4176 0.6181 0.3819 71.874101s

Table3: Evaluationmetricresultsforimages3byISOFAPandPCA-K-means

Method Accuracy Error Precision Specificity Executiontime

ISOFAP 0.7356 0.2644 0.7918 0.2082 55.267169s

PCA-K-means 0.6424 0.3576 0.5841 0.4159 47.817301s

Wefinishourstudybyapplyingtheconfusionmatrix,tothe originalimagesandtheimagesofthebestresults,forextract theinformationthatinterestsusandherearetheresults:

Afterthecomparisonbytheevaluationmetric(inTable1, Table2andTable3)andthevisualinterpretation,wenotice thatourproposedISOFAPapproachgivesgoodresultsto detectchangesandthevaluesofaccuracyandprecisionare highforthreedifferentdataimages,soweconcludethat ISOFAPisbetterthanPCA-K-meanswiththeexceptionof theexecutiontime,ittakeslongerthanPCA-K-means.

6.CONCLUSION

Inthiswork,wehaveaddressedoneoftheimageprocessing operatorswhichisthedetectionofchangesinsatelliteimages. Wehaveproposedahybridmethodbasedontwotechniques todothistreatment.

Ourapproachisbasedonamethodalreadyusedforthe detectionofchanges(PCA-K-means)andwehavetriedto improveit.WeusedISODATAtomakethethresholding automaticandkeptthePCAbecauseitisthemostusedfor changedetectionandtheleastsensitivetoimageoverlap, whilewechoseFCMbecauseithasreducedcomplexityandit isanimprovedversionofthek-meansalgorithm.

Afterthetestsandtheadditions,wearrivedatthe implementationofourISOFAPmethod,whichiscompared withthePCA-K-means,theresultsallowedustoconclude thatourmethodcandetectthechangeandthatitgivesbetter results.

REFERENCES

1. S.Achour. Détectiondechangementenimagerie satellitairemulti-temporellepourlesuivietla surveillancedel'environnement,Ph.D.dissertation, Dept.Elect.Eng.,DjillaliLiabèsUniv,SidiBelAbbes, Algeria,2022.

2. D.LuandP.Mausel,E.Brondizio,andE.Moran. Changedetectiontechniques,Changedetection techniques,InternationalJournalofRemoteSensing,vol. 25,pp.2365-2401,2004.

3. A.MaarirandE.S.Azougaghe,andB.Bouikhalene. AutomaticChangeDetectionBasedonthe IndependentComponentAnalysisandFuzzy C-MeansMethods,In:InternationalConferenceon BusinessIntelligence,Springer,Cham,pp.178–187, 2022.

4. N.RuhilandM.Singh,D.Mitra,A.Singh,andK.K. Singh. DetectionofchangesfromSatelliteImages UsingFusedDifferenceImagesandHybridKohonen FuzzyC-MeansSigm,Elsevier,ProcediaComputer Science,vol.167,pp.431-439,2020.

5. M.Singh,K.D.Tyagi,A.Singh,andK.K.Singh. DetectionofchangesinLandsatImagesusingHybrid PSO-FCM,Elsevier,ProcediaComputerScience, vol.167,pp.423-430,2020.

6. B.Cayla. Traitementd’images (partie3:Seuillage d’image), availableat https://www.datacorner.fr/image-processing-3/

7. M.SaravananandM.A.SanthoshSivan. Efficient& analysisofPCAbasedimagechangedetection algorithms,InternationalJournalofAdvanced

BEKKOUCHEIbtissem etal.,
247
InternationalJournalofAdvancedTrendsinComputerScienceandEngineering,11(6),November-December2022,241-248

TechnologyinEngineeringandScience,vol.5,pp. 235-243,2017.

8. F.R.D.Velasco. ThresholdingusingtheISODATA Clusteringalgorithm,IEEETransactiononsystem, ManandCybernetics,vol.10,pp.771-774,1980.

9. T.Baakek. Segmentationetclassificationintélligente desimagescérébrales,Ph.D.dissertation,Dept. ElectricalandElectronicEng.,AbouBekrBelkaidUniv, Tlemcen,Algeria,2015.

10. J.Neira,CourseProgram, Lesson1:Thresholding, UniversityofZaragoza.

11. B.B.JacksonandB.Bund. MultivariateDataAnalysis: AnIntroduction,McGraw-Hill,1983.

12. R.D.Jeanson. Détectiondechangementsur l’occupationdusolàl’aidedelaméthodeACPetla logiquefloue,Memory,AntananarivoUniv.,R.D. Madagascar, 2015.

13. S.Panthan,andP.Thakre. FuzzyClusteringTechnique andPCABasedUnsupervisedChangeDetection MethodinMultitemporalSARImages,Vandana Publications,InternationalJournalofEngineeringand ManagementResearch,vol.7,pp.345-348,2016.

14. M.H.Kesikoglu,U.H.Atasever,andC.Ozkana. Unsupervisedchangedetectioninsatelliteimages usingfuzzyC-meansclusteringandprincipal componentanalysis,InternationalArchivesofthe Photogrammetry,RemoteSensingandSpatial InformationSciences,Vol.7,P;W2,2013.

15. J.C.Dunn. AFuzzyRelativeoftheISODATAProcess andItsUseinDetectingCompactWell-Separated Clusters,Taylor&Francis,Journalofcybernetics,vol3, pp.32-57,1973.

16. J.C.Bezdek,R.Ehrlich,andW.Full, FCM:The fuzzy c-meansclusteringalgorithm,Elsevier, Computers&Geosciences,vol.10,pp.191-203,1984.

17. Z.Wang,N.Zhao,W.Wang,R.Tang,andS.Li. AFault DiagnosisApproachforGasTurbineExhaustGas TemperatureBasedonFuzzyC-MeansClustering andSupportVectorMachine,Hindawi,Mathematical problemsinEngieering,vol.2015,2015.

18. T.T.H.Pham. Détectiondeschangementsde l'occupationdesterresdelazonelittorale:casdu districtdeTiênHai(Viêt-nam),M.S.thesis, SherbrookeUniv.,Montréal,Canada,2005.

19. A.A.AlAnalyst. ApprentissageSuperviséet classification,availableat https://fr.linedata.com/apprentissage-supervise-et-classif ication

20. H.BaudhuinandA.Lambot; LamboiseNet, Master ThesisaboutChangeDetectioninSatelliteImageryusing DeepLearning,availableat https://www.datacorner.fr/image-processing-3/

BEKKOUCHEIbtissem
248
etal., InternationalJournalofAdvancedTrendsinComputerScienceandEngineering,11(6),November-December2022,241-248

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Automatic Change Detection on Satellite Images using Principal Component Analysis, ISODATA and Fuzzy by The World Academy of Research in Science and Engineering - Issuu