Risk and Controls for Artificial Intelligence and Machine Learning Systems. May 27, 2024

Page 1


Risksandcontrolsfor artificialintelligenceand machinelearningsystems

Report

Version1.0

May27,2024

D-16-432

Projectleads:LiinaKamm(CyberneticaAS)

HendrikPillmann(RIA)

Authors:DanBogdanov

PaulaEtti

LiinaKamm

AndreOstrak

TanelPern

FedorStomakhin

MariaToomsalu

Sandhra-MirellaValdma

AntoVeldre

CyberneticaAS,Mäealuse2/1,12618Tallinn,Estonia.

E-mail: info@cyber.ee ,Website: https://www.cyber.ee,Phone: +3726397991

Co-fundedbytheEuropeanUnion.Viewsandopinionsexpressedarehoweverthoseofthe author(s)onlyanddonotnecessarilyreflectthoseoftheEuropeanUnionortheEuropeanCybersecurityCompetenceCentre.NeithertheEuropeanUnionnortheEuropeanCybersecurity CompetenceCentrecanbeheldresponsibleforthem.

©EstonianInformationSystemAuthority,2024

6.1 Informationsecuritycontrols

8.1 DescribeyourAIsystem

8.1.1 Howtogoevenfurther?

8.2 Findadeploymentmodelsuitingyoursystem

8.3 Identifyapplicablelegalnorms

8.3.1

8.3.2 DM2:systemusinganexternally-trainedAImodel

8.3.4 Howtogoevenfurther?

8.4 Evaluatethreatstousers,society,andenvironment.

8.4.1 DM1:systemusingAIasaservice

8.4.3

8.4.4

8.5.4 Howtogoevenfurther?

8.6 AIsysteminasingleslide

1Introduction

1.1Purpose

TheEstoniansocietyhasadopteddigitalservicesforimprovingworkefficiency.Ourdigital stateisrenownedforitslowadministrativeoverhead.Transactionsbetweenstateagenciestake placeovertheX-Roaddataexchangelayer.Boththepublicandtheprivatesectorhaveadopted digitalidentitysolutions.ForEstonia,adigitalsocietyisanobjectofconstantdevelopment.

Rapidadvancesincomputingpowerhavetakenthedevelopmentofartificialintelligencetechnologytoaqualitativelynewlevel.Artificialintelligencesystemscapableofgeneratingtext, images,sounds,music,andvideobasedonanaturallanguagedescriptionhavemadethetechnologyaccessibletoawidepopulation,leadingtoanincreasingbeliefthatinformationtechnologywillenablethedevelopmentofanewgenerationofsystemscapableofperformingsuch tasksbetterthanhumans.

ArtificialintelligencesystemsarebeingdevelopedinEstoniaandtherestoftheworldbyboth publicandprivatesectorinstitutions.Thepurposeofthisreportistosupporttheimplementationofthistechnologybyprovidingguidanceinensuringcybersecurity,fulfillingoflegalrequirements,andsocietalsafety.

Thereportiswrittenforabroadaudience.Itwillbemostusefulforsmallandmedium-size organisationsandprivateindividualswhomaynothavelegal,informationsecurity,orartificial intelligenceexpertsontheirstaff.Theseuserswillbeabletoutilisethequick-referenceguide attheendofthereportforAIsystemriskassessmentandchoiceofmeasures.Ourgoalisfor everyonetouseAIlawfully,safely,andwithoutharmingthesocietyandenvironment.

Morematureorganisationsemployingqualitymanagementsystemsandmorelabour-intensive riskmanagementprocesseswillbeprovidedwithguidanceontheapplicationofartificialintelligence.Theywillbegivenrecommendationsonwhichstandardsandreportstofollowtoensure anadequatelevelofmaturity.

1.2Definitionsandabbreviations

AGI Artificialgeneralintelligence. AI Artificialintelligence. AIsystem Artificialintelligencesystem. AIHLEG

EUHigh-LevelExpertGrouponAI.

API Applicationprogramminginterface.

ASI

Artificialsuperintelligence. BERT

BidirectionalEncoderRepresentationfromTransformers.

CaaS

Computeasaservice.

CNN

Convolutionalneuralnetwork.Amodelarchitectureusedinimagerecognition.

CPU Centralprocessingunit.

CUDA

ComputeUnifiedDeviceArchitecture,atoolkitdevelopedbytheNvidiaCorporationforacceleratedgeneral-purposecomputing.

DPO

Directpreferenceoptimisation.Fine-tuningmethod.

FLOP

Floating-pointoperation.Computationalresourcesrequiredformodeltrainingismeasured infloating-pointoperations.

GAN

Generativeadversarialnetwork.Modelarchitectureusedinimagesynthesis.

GPT

Generativepretrainedtransformer.AImodelarchitecture.

GPU Graphicsprocessingunit.

IaaS Infrastructureasaservice.

AItechnology

IPO

LLM

Thestudyanddevelopmentofartificialintelligence.

Identitypreferenceoptimisation.Fine-tuningmethod.

Largelanguagemodel.Artificialintelligencemodelusedfornaturallanguageprocessing, distinguishedbythelargenumberofparametersinvolved.

LSTM

Longshort-termmemory.Modelarchitecturewidelyusedinlanguagemodelsbeforethe adoptionoftransformers.

ML Machinelearning.

MoE

MixtureofExperts.Modelarchitecture.

NPU

Neuralprocessingunit.Artificialintelligenceacceleratormainlyusedinphones.

OWASP

OpenWorldwideApplicationSecurityProject.Webcommunityaggregatingandproducing webapplicationandsoftwaresecurityresources.

PaaS Platformasaservice.

RAG

Retrieval-augmentedgeneration.Methodusedforthedeploymentofartificialintelligence applicationswherethelanguagemodelsinheritsadditionalcontextfromadatabaseoranotherexternalsourcebasedonauserpromptforimprovingresponsequality.

RLHF

Reinforcementlearningwithhumanfeedback.Fine-tuningtechnologyutilisingreinforcementlearning.

RNN

Recurrentneuralnetwork.Modelarchitecturewidelyusedinlanguagemodelsbeforethe adoptionoftransformersandLSTM.

SaaS

Softwareasaservice.

SFT

Supervisedfine-tuning.AImodeltrainingmethodthat,unlikepre-training,issupervisedand isusedforthefurtherguidanceofthemodel’swork.

TPU

Tensorprocessingunit.AIacceleratordevelopedbyGoogle.Corporation

VAE

Variationalautoencoder.Modelarchitectureusedinimagesynthesis.

XAI

ExplainableAI.Collectionofmethodsfortheexplanation,interpretation,andvalidationof theworkofAImodelsandtheresultsofthiswork

1.3Structureofthereport

WebeginourreportwithanoverviewofthehistoryofAIandmainAItechnologies(Section 2 ). Wewillthenmoveontotheirapplications,presentingexamplesofareasoflifeinwhichadditionalvalueishopedtobegainedfromAI.Thefielditselfhasbeendevelopingrapidlyduring thewritingofthisreport;hence,wewillalsoincludeanoverviewofcurrenttrends.

Countriesallacrosstheworldhavebeguntolegallyregulateartificialintelligence.Section 3 providesareviewofthecurrentstateofthislegislation.Section 4 focusesonthearchitecture ofAIsystemsandpresentsthreegeneralmodelsforthedeploymentofAIapplications.These threedeploymentmodelsformagoodbasisfororganisationsfortheapplicationoftheirrisk assessmentmethodologies.

Alongsidelegalconsiderations,applicationsofAItechnologymustalsotakeintoaccountcybersecurityandsocietalsafetyrequirements.Guidelinesforrelevantriskassessmentmeasures arepresentedinSection 5 .Theexistenceofrisks,meanwhile,alsonecessitatestheapplication ofmitigatingmeasures.ThesearereviewedinSection 6 .

Section 7 summarisestherecommendationsforthepromotionoftheapplicationofAIsystems inEstoniadevelopedinthecourseofthisstudy.

Thelastpartofthereportisthemostpracticalandismainlytargetedatthoselookingforquick solutionsforanalysingtherisksofAIsystems.Thispartpresentsspecificandeasy-to-follow guidanceforidentifyinganddealingwiththemainrisksinthecreationordevelopmentofanAI system.RelevantguidelineswithsupportingfigurescanbefoundinSection 8 .

2OverviewandusecasesofAI applications

2.1Historyofartificialintelligencetechnology

Artificialintelligence(AI)isunderstoodhereinasanysystemcapableofperformingtasksseeminglyemployinghuman-levelintelligence.Figure 1 presentsanoverviewofimportantmilestones inthehistoryofAI.AIasafieldgrewoutofcybernetics,thegoalofwhichwasthestudyof feedbacksystems,includingbiological,technological,andsocialsystems.Althoughtheidea andstructureofartificialneuronswasalreadyproposedinthe1940s,thehistoryofartificial intelligenceistracedtoasummerseminarheldatDartmouthin1956wherethetermwasfirst proposed.

Theparticipantsoftheseminarreachedtheconclusionthatmachinescanbemadetoperform alltaskstiedtohumanintelligence.Indeed,theyconsideredcomputerstobecapableofindependentlearning,languageuse,andcreativity.Eventhoughnobigbreakthroughsweremade duringthetwo-monthseminar,overthenext20years,itsparticipantsfiguredamongthemain promotersofAItechnology.TheAIsystemsdevelopedinthisperiodwerecapableofsolving mathematicalproblems,playingcheckers,andtranslatingtextsfromonelanguagetoanother.

Figure1.HistoryofAIdevelopment

1958sawthebirthofthehigh-levelLispprogramminglanguagethatbecamethemainlanguage ofAIsoftwareforthenextthreedecades.Theseeminglymajoradvancesandsolutionsdevelopedinthisperiodfellrathershortinreality,though.Translationprogramsemployedliteral translationandremainedthusunabletorelatethemeaningofphrases.Programsforproving mathematicaltheoremsorplayingcheckerswereonlycapableofreviewingalimitednumberof statesandfailedtosolvemorecomplexproblems.

Problem-solvingwasdemonstratedinsmallplay-environmentscalledmicroworlds.Perhaps themostfamousofthemicroworldswerevirtualblocksworldsthattheusercouldmanipulate

usingEnglish-languagecommands,e.g.viatheSHRDLUlanguageparser.Eventhoughgenetic algorithmsandthebasicprinciplesofartificialneuralnetworkswerealreadyproposedinthe late1960s,littleprogresswasmadewiththesealgorithmsduetotheirlowlevelofoptimisation andinsufficientcomputationalpower.

ThehopesraisedbytheemergenceofthefirstAIsystemsledmanyresearcherstomake promisesthatcouldnotbefulfilled.ThisledtodisappointmentamongthebackersofAIresearchandadeclineinAIresearchanddevelopmentinthe1970s.BoththeUKandtheUS significantlycutAIfundingforuniversities,andtheUSDefenseAdvancedResearchProjects Agency(DARPA)stoppedfundingAIprojectsaltogether.Thiserafrom1974to1980iscalled thefirstAIwinter.

Inspiteofthefundingcuts,thedevelopmentofAIstillcontinued,butinsteadofsolvinglarge andcomplexproblemsthefocusnowturnedtosystemsconcentratingknowledgeprovidedby expertsindifferentfieldsandusingthisforthesolutionofnarrowerproblems.Suchso-called expertsystemswereusedine.g.medicineandanalyticalchemistry.Expertsystemswerealso successfullystudiedbyEstonianresearchers(includingEnnTõuguandLeoVõhandu).

Thesuccessofexpertsystemsledtorenewedpublicinterestinartificialintelligenceintheearly 1980s.Oneofthefirstcommercialrules-basedsystemswasR1,asystemthatassistedclients inconfiguringcomputersinaccordancewiththeirrequirements.In1981,theso-calledFifth GenerationComputerSystemsprojectwasannouncedinJapan.Theprojectinvolvedadecadelongplanforthedevelopmentofintelligentcomputers.Thisalsocreatedrenewedinterestin artificialintelligenceintheUSandtheUK.

ThenewAIboompeakedinthesecondhalfofthe1980s.LargeAmericancorporationscreated workinggroupsfocusingonAIsystems.Thefocusonceagainturnedtoartificialneuralnetworks andtheirtrainingusingbackpropagationalgorithms.Mathematicalandstatisticaloptimisation methods,aswellasspecialisedlanguagesandsoftwarewereincreasinglyemployedforthe developmentofAIalgorithms.Thebest-knownAI-specificlanguagesweretheallpartsofthe Lispfamilyofprogramminglanguages.Specialcomputers–Lispmachines–weredevelopedto runprogramswrittenintheselanguagesmoreefficiently.

Inspiteofthelargeadvancesmade,1987markedthebeginningofasecondAIwinter.The maintenanceandupdatingofspecialisedartificialintelligenceswascomplicated;theywere alsounabletoindependentlyhandlepreviouslyunfamiliarinputs,leadingtothemquicklybecomingobsolete.IBMandAppleproducedeverhigher-performancegeneral-purposedesktop computers.Special-purposemachines(includingLispmachines)losttheirusefulness.Thefifth generationcomputerprojectfailedtoyieldthehoped-forresults.Thus,1991shouldhaveseen thecompletionofartificialintelligencecapableofholdingeverydayconversationswiththeuser; itwouldtakedecadesbeforethisgoalwasfinallyreached.Disappointedinthelimitedcapabilitiesofexpertsystems,DARPAagaindrasticallyreducedfundingforAIsystemsresearch.

SubsequentdevelopmentofAItechnologywasincreasinglyfoundedonexactmathematical methodsdevelopedinthepast.Thefocusonceagainmovedtorigorouslogicandsolutions weresoughtfromcontroltheory,asubfieldofcybernetics.Atthesametime,researchersalso begantoutiliseprobabilitymodelsandfuzzylogicenablingthemtodescriberelationshipsand conditionalprobabilitiesoffeaturesand,unlikepurelogic,expresslackofknowledgeanduncertaintyinforecasts.

The1990ssawtheriseofdataminingandmachinelearningalgorithms.Systemswerenolonger describedonlybyprogrammersandexperts:thecomputersbecamecapableofindependent learningthroughtheanalysisoflargedatasets.AItechnologyandprobabilitymethodsweretied

togetherbyBayesiannetworksallowingtheconditionalprobabilitieslinkingdifferentvariables tobeexpressedintheformofdirectedgraphs.AnewparadigmemergedinAIthatsawartificial intelligencesasagentsreceivingsignalsfromtheenvironmentandattemptingtooptimisetheir behaviourfortheachievementofcertaingoals.ThegreatestachievementofAItechnologyin the1990scouldbeconsideredtobethevictorybythechess-playingsystemDeepBlueover thereigningchessworldchampionGarryKasparovonMay11th,1997.Bythispoint,AIsystems alsobegantobeutilisedineverydayservices,especiallyweb-basedsolutions.Naturallanguage processingwasthusemployedbytheGooglePageRanksearchalgorithm,alsocreatedin1997. Thealgorithmrankedthepagesdisplayedafteruserqueries;thisisconsideredoneofthecritical piecesoffunctionalitysettingGoogleapartfromotherexistingsearchengines.

Naturallanguageprocessingwasalsoemployedinspeechsynthesismodels,suchasDECtalk, usedashisspeechsynthesiserbyStephenHawking,aswellastheslightlymorecomplexBell LabsTTS(Text-to-Speechsystem),capableofsynthesisingspeechinseveraldifferentlanguages.Fornearly20years,startingfromtheearly1990s,machinetranslationasafieldwas dominatedbystatisticalmodelsdevelopedatIBM.Meanwhile,hiddenMarkovmodelsbecame predominantinspeechrecognition.Themainapproachtofacerecognitioninthe1990sconsistedintheuseofeigenfacealgorithmsemployinglinearalgebraicmethodsfortheanalysisof facialfeatures.

Inspiteoftheadvancesmadebyartificialintelligencesystems,thetermAIwasstillfrowned uponattheendofthe1990s.Researchersavoidedtheterm,preferringtospeakofstatistical methods,machinelearning,andcontroltheoryinstead.TheendofthesecondAIwinteris notclearlydefined,butitisgenerallyagreedtohaveendedby2005whentheStanford-built self-drivingcarStanleycoveredthe212kmDARPAGrandChallengetrailintheNevadadesert inlessthansevenhours.Thiswasamajorstepforward,consideringthatduringtheprevious year’sten-houreventnoneofthecompetingvehicleswereabletocovermorethan12km.Two yearslater,DARPArepeatedthecompetitioninacitysetting.Thewinnerofthischallengewas theCarnegieMellonUniversityBossrobotwhichcovered96kminlessthansixhoursinthese conditions.

In2011,IBMdemonstratedtheirquestion-answeringsystemWatsonontheUSTV-showJeopardy!(AlsopopularinEstoniaunderthenameKuldvillak).Intwoconsecutiveshows,Watson competedagainsttwohumanplayers(oneofwhomwasKenJennings,regardedasoneofthe bestJeopardy!playersinhistory)winningbothgamesbyagoodmargin.Watson’ssuccess wasfoundedonideasderivedfromavarietyoflanguagemodelsandlargecomputingpower, enablingthesystemtobetrainedonlargedatasets.Erroranalysiswascontinuouslycarried outthroughoutthetraining,andtheprogramwasconstantlyimproved.Nevertheless,Watson’s performancewasnotcompletelyflawless.Forinstance,duringtheFinalJeopardy!roundofthe firstshow,Watsongavetheanswer’Toronto’toaquestionaboutUScities.

Oneofthegreatestbreakthroughsoftheartificialintelligenceeracamein2012whenthe AlexNetconvolutionalneuralnetworkwontheImageNetLargeScaleVisualRecognitionChallenge(ILSVRC)byalargemargin.AlexNetwasnotthefirstconvolutionalneuralnetwork;the architecturewasfirstproposedbyYannLeCunbackin1989.Thebreakthroughwascatalyzed bytrainingalgorithmsoptimisedforspecialisedgraphicsprocessingunitsenablingthetrainingoflargeranddeeperneuralnetworksthaneverbefore.TheImageNetdatabasecontained 15millionimagesfrommorethan22000categories.InthefollowingImageNetcontests,all winningideaswerebasedonconvolutionalneuralnetworksandAlexNet’sresultwasimproved multipletimes.Today,theImageNetchallengeisconsideredtohavebeensolved.

AftertheAlexNetbreakthrough,neuralnetworkshavebeensubjecttoactivedevelopment.

Alongsideconvolutionalneuralnetworks,significantattentionwasalsogarneredbylargelanguagemodels,recurrentneuralnetworks,longshort-termmemorymodels.This,inturn,ledto therapiddevelopmentofspeechrecognitionandsynthesisandtranslationmodels.Artificial intelligencewaswidelyadoptedinmedicine,industry,andfinance.Recurrentnetworksbegan toseeuseintimeseriesanalysis,robotics,andgames.Notably,theAlphaGosystemreceived greatattentionafterdefeatingaprofessionalhumanplayeratGoin2015.

Asatthetimeofthisreport,themainpublicattentionisdirectedtogenerativeAImodelscapableofcommunicatinginhumanlanguage,answeringquestions,seeminglylogicalreasoning, generatingimagesandmusic,andassistingprogrammersinwritingcode.Whiletheconcept ofgenerativemachinelearningmodelsishardlynew,themainachievementsrelatedtodeep generativeneuralnetworksdatetothepreviousdecade.Generativeadversarialmodelsand variationalautoencoderswereintroducedin2014,bothofwhichareimportanttoolsforimagesynthesis.Generativeadversarialmodelsallowedsynthesisinghigh-resolutionimagesof humanfacesforthefirsttime.

In2015,itwasdemonstratedthatthemethodsofstatisticalphysicscanbeusedfortraining generativediffusionmodels.Perhapsthebiggeststepforward,however,cameintheformof attentionmechanismtransformers,thebasicarchitectureofwhichwasproposedbyGooglein 2017.Transformersareatthecoreofanumberofwell-knowngenerativelanguagemodels, suchasGPTandBERT,aswellastheGitHubCopilotcodecompletiontool.

Transformersenabletheconstructionofparallelisablemodelswithlongcontextwindowsthat canbetrainedunsupervisedonlargedatasets.Unsupervisedmodelscanalsoberetrained forspecifictasksthroughtransferlearning.Thisisavitalfeature,foratime-andresourceconsuminguniversalmodelonlyhastobetrainedonceinsuchcase.Thismodelcanthenlater beeasilyadaptedtoaspecificproblemusingamuchsmallerdatasetandfarfewerresources.

Imagesynthesis,ormorespecifically,text-to-imagemodelsalsousetransformers,buttheir architectureisgenerallymorecomplex.DALL-E3andStableDiffusionuseanautoencoderfor encodingimages;theencodeddataareusedfortrainingdiffusionmodels,inturnmadeupof convolutionalneuralnetworks.

2.2Artificialintelligencealgorithmsandtaxonomies

Theterm’artificialintelligence’isverybroadandencompassesmethodswithlargedifferences incomplexity,explanatorypoweranddepth,aswellasareasofuseandtrainingalgorithms.On ahigherlevel,artificialintelligencealgorithmsaredividedintorule-basedsystems,traditional machinelearningalgorithms,andneuralnetworks.

2.2.1Rule-basedsystems

Rule-basedsystemsarethesimplestartificialintelligencesystems.Ingeneral,thesesystems consistofrulescreatedbyhumanexpertsthatthecomputercanthenfollowtosolveproblems seeminglyrequiringhumanintellect.Forexample,rule-basedsystemsaregoodatsolvingcertaintypesoflogicalthinkingexercisesandpuzzles(e.g.so-calledEinstein’spuzzlesandzebra puzzles).

2.2.2Machinelearning

Machinelearningmeansthatthecomputerlearnstosolveataskbasedonexistingdata(which couldincludemachine-readablerepresentationsofsensors,previousevents,etc.).Machine learningutilisesmathematicaloptimisationmethodswhichtheprogramusesforfindingamaximallyaccuratesolutiontotheinitialproblem.Thisallowsthesystemtosolvetaskswherethe solutionalgorithmisdifficultforahumantodescribeusingpreciseinstructions.

Machinelearningmethodscanbecategorisedinvariousways.Forexample,fromtheperspectiveofapplicationsandtrainingdata,machinelearningcanbedividedintosupervisedand unsupervisedmachinelearningandreinforcementlearning.

2.2.2.1Supervisedandunsupervisedmachinelearning,reinforcementlearning

In supervisedmachinelearning ,thegoalofthetrainingalgorithmistocreateamodelcapableof predictingvaluesorvectors,alsoknownaslabels,basedontheinputreceived.Inunsupervised learning,themodelbeingtrainedispresentedwithtrainingdatawhichincludesbothinputs andthecorrespondinglabels.Themodelcancontinuouslycompareitspredictionswithcorrect labelsandusethecomparisonresultsforimprovingitspredictioncapacity.Supervisedmachine learningisusedinalmostallfieldswheremachinelearningisutilised,suchasmedicalresearch, image,text,andvoicerecognitionorprocessing,andthetrainingofsearchenginesandspam filters.

Supervisedmachinelearningtasksaredividedintoclassificationandregressiontasks.Thegoal ofclassificationmodelsistopredictwhichofthetwoormoreclassesagivenrecordbelongs to.Regressionmodelstrytoprovideamaximallyaccuratepredictionofthenumericalvalue correspondingtotherecord.

In unsupervisedmachinelearning ,labelscorrespondingtotherecordseitherdonotexistor themodelcannotseethem.Thegoalofthealgorithminsuchcasesistoidentifyrelationships orstructurewithinthedatawithouttheaidoftraininglabels.Unsupervisedalgorithmspermitthedimensionalreductionofthebasedata(principalcomponentanalysis)orgroupingof similarrecords(clustering).Unsupervisedmachinelearningmethodsareusede.g.ingenetics fortheidentificationofsub-populations,aswellasfortraininggenerativemodels,suchasautoencoders.Unsupervisedmethodsareoftenalsousedpriortotheemploymentofsupervised machinelearning.

Anotherclassofmethodsalongsidesupervisedandunsupervisedmachinelearningalgorithms isreinforcementlearning.Inthecaseofreinforcementlearning,noteverysingleinputwillbe pairedtoanoutput.Thealgorithmwillinsteadlearntoselectactionsbasedontheenvironment sothattherewardfortheseactionsismaximised.Forexample,reinforcementlearningcanbe usedforspeechprocessingorteachingthecomputertoplaygames.Reinforcementlearning wasthususedfore.g.trainingAlphaGo.

Transferlearning isamachinelearningtechniquewhereininformationacquiredfortheperformanceofonetaskisalsousedforperformingothertasks.Forexample,trainedgeneral-purpose languagemodelscanbeusedfortheperformanceofdifferentlinguistictaskswithoutanyadditionalfine-tuningofthemodel(seeSection 2.2.4.1).

2.2.2.2Machinelearningalgorithms

Linearregression (Figure 2 )isoneofthesimplestsupervisedmachinelearningmodels.Asa statisticalmodel,ithasactuallybeenusedforcenturies.Themodelisusedfortheprediction ofarealnumberoutputvaluefrominputdata.Asperthename,linearregressionisusedfor modellingalinearrelationshipbetweenaninputandanoutput.Thetrainedmodelisthuseasily explainable,asiteasytosurmisefromthemodelitselfhowachangeintheinputvaluewill influencetheprediction.

Logisticregression (Figure 2 )isverysimilarinnaturetolinearregression;inspiteofitsname, however,itismainlyusedforclassificationanalysis.Inthecaseofbinarylogisticregression, thepredictionalgorithmfirstemploysalinearfunction,theoutputofwhichcanbeinterpreted asthelogarithmoftheprobabilityofalabel.Theoutputisthenpassedtoasigmoidfunction thattransformstheoutputvaluetoaprobabilityintherange [0, 1].Logisticregressioncanalso easilybeadaptedtosituationswheretherearemorethantwooutputclasses.

Supportvectormachines aresupervisedmachinelearningmethodsinitiallydevelopedforclassificationtasks.Thesimplestsupportvectormachineisalinearclassifiertaskedwithfindinghyper-levelsdemarcatingrecordsofdifferentclasses.Linearclassifierspresumethatdata classesarelinearlyseparable,whichis,however,generallynotthecase.Thishasledtothe developmentofanumberofadaptationsovertimewhichenablesupportvectormachinestobe trainedfornon-linearclassification,regressionanalysis,exceptionfinding,anddimensionality reduction.

Supportvectormachinesareusedinimageandtextclassification,butalsoine.g.biology.The mainweaknessofsupportvectormachinesistheirdifficultexplainabilityandhighercomputationalcomplexityintraining.

Decisiontrees (Figure 3 )aresupervisedhierarchicaldatastructure-basedmodelsutilisedfor regressionandclassificationanalysisasaseriesofrecursivedecisions.Thetreeconsistsof testnodesandendnodesorleaves.Inthetestnodes,theinputissubjectedtotestswhich areusedforchoosingthenextbranches.Leavesreturntheoutputcorrespondingtotheinput basedonthetestsperformed.

Decision-makingcanbeenvisionedasaseriesofyes/noquestionswereeachnewquestion dependsonapreviousoneandthefinalpredictedvaluedependsoneachsingleanswer.Decisiontreesareeasilyexplainableandintuitivelyunderstandablemodelswhichhasmadethem historicallyextremelypopular.

ThenaiveBayesmethod isaclassificationalgorithmutilisingtheBayestheoremforthepre-

Figure2.Linearandlogisticregression

dictionofthemostprobablelabelsbasedonaninput.Thismethodpresumesthattheinput featuresusedfortrainingthemodelareindependentofeachother.Nevertheless,thenaive Bayesmethodhasbeenhistoricallypopularduetoitssufficientpower,aswellassimpleexplainabilityandtrainability.Unlikemanyothermachineslearningalgorithms,thesolutionofthe naiveBayesmethoddoesnothavetobefoundiniterativesteps,astheformulaforassessing thehighestprobabilitycanbepresentedinanexplicitform.

The k-nearestneighbouralgorithm (Figure 4 )isasupervisedalgorithmthatcanbeusedfor solvingbothregressionandclassificationtasks.Asperthemethod’sname,predictionsare madebasedon k nearestneighbourswhere k isapositiveinteger.Inthecaseofclassification tasks,thealgorithmdetermineswhichclasshasthehighestrepresentationamongthe k nearest neighbours.Inthecaseofregression,thepredictedvalueistheaverageofthevaluesof k nearestneighbours.Thepredictionscanbemodifiedbyassigningweightstotheneighbours basedontheirdistancefromtheoriginalrecord.Distancesbetweendifferentpointscanbe measuredusingdifferentmetricsbasedontheinitialproblem.

Thenearest-neighbourmethodispopular,asthereisnoneedforpre-training:predictionsare madebasedonthetrainingdata.Themodelisalsoeasilyexplainable.Themaindrawbackof themodelisseeninthefactthatthemethodisalocalone,i.e.predictionsarebasedonafew individualrecordswhiletherestofthetrainingdatasetisignored.

Figure3.Decisiontreeforacarpurchase
Figure4.The k-nearestneighbouralgorithmanalysesthenearestneighboursoftheunidentified record

Principalcomponentanalysis isanunsupervisedalgorithmthatallowstranslatingdatatoa moreeasilyexplainablecoordinatesystemusinglineartransformations.Principalcomponent analysisisoftenutilisedthedimensionalreductionofthedataset.Thisisespeciallyusefulin situationswheremanyfeaturesfoundinthedatasetarestronglycorrelatedtoeachother.First principalcomponentsarevectorsthatmaximallyrepresentthevarianceofthedatauponmapping.Mappingthedataontothefirstprincipalcomponentsalsoenablestheclusteringofthe datatobestudiedvisually.

The k-meansmethod or k-meansclusteringmethodisanunsupervisedmachinelearningalgorithmthatdividesthedatarecordsinto k differentclusterswhere k isapositiveinteger.The k-meansmethodshouldnotbeconfusedforthe k-nearestneighbourmethodwhichisasupervisedmethodology.Whereas,inthecaseofthe k-nearestneighbourmethod,predictionscan bemadebyonlylookingatthenearestpointstotherecord.The k-meansmethodlooksforan optimumclusteringforallpointswhichmakestrainingmuchmoredifficultandtheinterpretation oftheoutputrequiresidentifyingalltherecordsthatwereclusteredtogether.Clusterscanbe usedforidentifyingrelationshipswithinthedataset.Clusteringyieldsthecentreofeachcluster whichcanbeusedine.g.,signalprocessingasarepresentativeclusterpoint.Themethodcan alsobeusedforautomaticfeaturelearningwhichallowsinputdatatobetranslatedtoaform suitableforothermachinelearningmethods.

HiddenMarkovmodels (Figure 5 )arestatisticalalgorithmsmodellingMarkovprocesses,i.e., seriesofpossibleeventswheretheprobabilityofeachfollowingeventonlydependsonthe stateoftheprocessafterthepreviousevent.Markovprocessstatesarenotobservableina hiddenMarkovmodel.Theonlythingsthatareobservablearetheeventsdirectlyinfluencedby thehiddenstates/events.Thegoalistousetheobservableeventstostudythehiddenstates andevent.

Figure5.ExampleofahiddenMarkovmodelofactivitiesfordifferentweatherconditions

Ensemblemethods (Figure 6 )aretechniquescombiningdifferentmachineslearningmodels. Combinedmodelsareoftenbetterandmorestablethanindividualmodelsbythemselves.Var-

iousmethodsexistforthecombinationofmodels:bootstrapaggregatingorbagging,stacking, boosting.Thebest-knownensemblemethods,suchasdecisionforestsandgradient-boosted treescombinedifferentdecisiontrees.Diffusionmodelshavealsobeenusedforthegeneration ofneuralnetworkparameters[1].Ensemblelearningisalsoknownasmeta-learning.

2.2.3Artificialneuralnetworks

Artificialneuralnetworksaremachinelearningmodelsthatattempttoimitatetheoperationof thehumanbrain.Neuralnetworksconsistoflayersofnodes,thebehaviourofwhichshouldbe similartotheneuronsfoundinthebrain.Eventhoughthefirstneuralnetworkswerebuiltas earlyasinthe1950s,theyonlysawrealsuccessaboutadecadeagowiththecreationofthe firstconvolutionalneuralnetworkscapableofachievingbetterresultsinimageprocessingand facerecognitionthananyotherexistingalgorithm.

Increasesincomputingpowerandreductionsinrelatedcostshavecreatedtheconditionsfor traininglargeandcomplexneuralnetworkswhichhasledtoakindofraceinbothresearch andimplementationofsuchsystems.Today,modelsbasedonneuralnetworksarecapable ofsolvingtasksthatwereconsideredimpossibleamerefewyearsago.Neuralnetworksare generallydifficulttoexplainandthetrainedmodelsareseenasblackboxes.Asaresult,more easilyexplainablemachinelearningmodelsofsimilarpredictivecapacityareoftenpreferredto neuralnetworks.Thestudyoftheexplainabilityofneuralnetworksisanactivefieldofresearch.

2.2.3.1Neuralnetworkarchitectures

Fullyconnectedneuralnetworks (Figure 7 )areoneofthefirstneuralnetworkarchitectures everdeveloped.Afullyconnectednetworkismadeupofaseriesoffullyconnectedlayers whichinturnconsistoflinearnodes,theoutputsofwhicharesubjectedtonon-linearactivation functions.

Convolutionalneuralnetworks areneuralnetworkscomprisingoneorseveralhiddenconvolutionallayers.Whereasfullyconnectedlayerscompriselinearnodesorweightscorresponding toeachinputvalue,aconvolutionallayerismadeupofsmallkernels/filtersmakingthelayers

Figure6.Ensemblemethodscombinedifferentmachinelearningmodels

Figure7.Artificialneuralnetworksconsistofdifferentlayersandnodes.

smallerandenablingthemtobeusedforthecreationofdeeper(i.e.involvingmorelayers) neuralnetworks.

Thebest-knownapplicationofconvolutionalneuralnetworksisartificialvision.Inthecaseof facerecognition,aconvolutionalnetworkcanidentifydifferentfeatureslayerbylayer,beginning withlinesandangles,followedbyeyesandthemouth,andendingwiththecompletehuman face.Convolutionalnetworkshadarealbreakthroughin2012.withAlexNetwhichbeatother contestantsintheImageNetLargeScaleVisualRecognitionChallengebyahugemargin.From thenon,convolutionalnetworkshavebeenthemaintoolofartificialvision.Convolutionalnetworksarealsosuccessfullyusedintextprocessingand,toalesserextent,otherspecialtytasks.

Bothfullyconnectedandconvolutionalneuralnetworksareexamplesoffeed-forwardnetworks wheretheoutputofahiddenlayeristheinputforthenextlayer,i.e.informationonlyflowsina singledirectionthroughthenetworklayers.Incaseinformationcanalsoflowinacyclicmanner withintheneuralnetwork,i.e.alayer’soutputisfedbackintothenetworkandcaninfluence laterinputstothesamelayer,thiskindofneuralnetworkiscalledarecurrentneuralnetworks. Recurrentneuralnetworksaremainlyusedfortheanalysisofdataseries,astheycankeep trackoftheprecedinginputswithinthesameserieswhenprocessingatraininginput.Recurrent neuralnetworksarewidelyusedin,e.g.,languagemodels,textgeneration,speechrecognition, artificialvision,videolabelling.

Thetrainingofrecurrentneuralnetworkscanberenderedunstablebythe’explosion’or’vanishing’ofgradientsduringbackpropagation.Tomitigatethisproblem,longshort-termmemory (LSTM)neuralnetworkshavebeenadoptedasasubsetofrecurrentnetworks.Atthecoreof LSTMarecellswithinput,output,andforgetgatescontrollingtheflowofinformationthrough thecellinordertopreventgradientexplosionorvanishingduringbackpropagation.

Transformers aredeeplearningmodelsusingattentionmechanismsfortheanalysisofsequentialdata.Transformerscameintothelimelightin2017whenitwasshownthat,whenapplied tonaturallanguageprocessing,theyarecapableofidentifyingthecontextcorrespondingto atokenbasedontheprecedingsequencewithouttheiterativeanalysisofthissequence.An inputofacertainlengthisanalyzedasawholeandanattentionmechanismisusedtoidentify thesignalsmostrelevanttoeachtokenintheprecedingsequenceoftokens.Thisenablesthe modelstobetrainedinparallel,thusreducingcomputingcostscomparedtoe.g.LSTMs. UnlikeLSTMs,inthecaseoflonginputs,transformerslackthecapacitytokeeptrackofthe

entireprecedingseriesandcanonlytrackacertainsegmentoftheserieswhichcanprove problematicinanalyzinglongtexts.Transformersgenerallyconsistsofanencoderandadecoder,thefirstofwhichanalyzestheinputantthesecondgeneratestheoutputstep-by-step. Thecoderanddecodercanbeusedbothsimultaneouslyandseparately.Forinstance,GPTis apurelydecoder-basedandBERTapurelyencoder-basedmodels;thereare,however,models suchasT5thatemploybothanencoderandadecoder.

Transformersareusedinthetrainingofbothsupervisedandunsupervised,aswellashybrid models.Largelanguagemodels,suchasBERTandGPT,arefirsttrainedunsupervisedona largesetoftexts.Themodelwillthenbetrainedonasmaller,labelleddatasetforaspecific task.Transformer-basedmodelshaveachievedalmostcompletedominanceamonglanguage modelintherecentyears.Inotherfields,however,nosimilarsuccesshasbeenobserved.For instance,inartificialvision,convolutionalneuralnetworksarestillpreferredtotransformers, evenifattentionmechanismsarealreadyemployedinthese.

An autoencoder isanunsupervisedneuralnetworkcomprisingbothanencoderandadecoder. Inputisreceivedbytheencoderandtransformedtoanotherform,whilethedecoderattempts toreconstructtheoriginalinputfromthetransformedinput.Thetrainedencodercanthenbe usedfordimensionalreductionoftheinputdataandthedecoder,forthegenerationofnew data.Inmostcases,thegenerativecapacityofanautoencoderislimited,astheproximityof thedecoder’sinputsdoesnotguaranteethesimilarityofoutputs.

Variationalautoencoders (VAE)havebeenproposedforuseindatageneration,e.g.image synthesis.VAEsdifferfromordinaryautoencodersinthattheencodermapsaninputtoadistribution,ratherthanasinglepoint,e.g.,byoutputtinganormaldistributionmeanvalueand covariancematrix,whereasthedecoderwillbegivenarandomvectorfromthisdistributionas aninputwhichitwillthentryanduseforreconstructingtheencoder’soriginalinput.Unlike autoencoders,trainedVAEdecoderswillusuallygeneratesimilaroutputsforproximateinputs.

A generativeadversarialnetwork (GAN)isagenerativemodelwheretwoneuralnetworks–a generativeandadiscriminativeone–contestwitheachotherfortrainingthemodel.Bothneural networksaretrainedsimultaneously.Thegenerativemodelreceivesaninputfromasimpledistributionandattemptstousethistogenerateanoutputfromacomplexdescriptivedistribution, whereasthediscriminativemodelattemptstodistinguishtheoutputsofthegenerativemodel fromrealdata,thedistributionofwhichthegenerativemodelisattemptingtoimitate.GANscan beusedin,e.g.,imagesynthesiswherethegenerativemodelisgeneratingimagesofhumans whilethediscriminativemodelisattemptingtodistinguishtherealimagesfromthegenerated ones.Generativeadversarialnetworksarealsousedinspeechandtextsynthesis.

Diffusionmodels aregenerativemodelsbasedonMarkovprocesses.Diffusionmodelsare somewhatsimilartoautoencoders,inthattheycompriseaforwardprocesswherenoiseis addedtorealdatastep-by-step,andareverseprocessattemptingtorecreatetheoriginalinput throughthegradualremovalofthenoise.Ingeneral,noiseusedfortrainingdiffusionmodels isgeneratedusinganormaldistribution;aftertheadditionofasufficientamountofnoisethe originalinputwilldisappearcompletelyandtheoutputwillonlyconsistofrandomnoise.

Ifalotofnoiseisaddedtotheinputatonceitwillbeextremelydifficulttopredicttheoriginal input,butitturnsoutthatwhennoiseisaddedinsufficientlysmallincrements,themostrecent additionofnoisecanbepredictedandremovedusing,e.g.,aneuralnetworkfortheprediction.Thetrainedmodelcanbesequentiallyappliedtoacompletelyrandominputandusedto generateanoutputsimilartorealdata.

Theefficiencyofsuchtrainingstemsfromtheknowledgethatifnoiseisgeneratedfromanormal

distributionandaddedsequentially,thenalloftheaddednoisealsooriginatesfromanormal distribution.Thesumofnoisefromseveralincrementscanthusbesimultaneouslyaddedto theoriginalinputduringtraining,andtheneuralnetworkcanbeaskedtopredictonlythesmall amountofnoiseaddedinthelateststep.

Diffusionmodelsoriginatefromstatisticalphysics.In2015,itwasdemonstratedthattheycan alsobeusedforimagesynthesis.Subsequentstudyofthesemodelshasgivenrisetothe realisationthatdiffusionmodelsaremorepowerfulandstableyetlessresource-intensivethan, forexample,generativeadversarialnetworksthatwerepreviouslythebestimage-generating models.Today,diffusionmodelsandtransformersarethemaincomponentsoftext-to-image models,suchasDALL-E3andStableDiffusion.

2.2.4Largelanguagemodels

Largelanguagemodels(LLMs)aregenerallytransformer-basedtextsynthesismodels,distinguishedbythelargenumberofparametersandamountoftrainingdataused.Non-transformer basedlanguagemodelsalsoexist.Variousarchitectures,suchasRetNet[2 ],RWKV[3 ],and Mamba[4 ]havebeendevelopedthatcanalsobeusedforthecreationoflanguagemodels,offeringsolutionsfortheweaksidesoftransformerarchitecture.Alargepartofrecentinnovation inmachinelearningandartificialintelligencehasbeenrelatedtothedevelopmentofLLMsand theadoptionofproducts(suchasChatGPT)builtonLLMs.

Accordingtoonehypothesis,shouldartificialgeneralintelligence(AGI)provepossibleatall,it canonlybedevelopedonthebasisofmultimodallargelanguagemodels[5 ].DemisHassabis fromtheAIdeveloperDeepMindhasopinedthat’multimodalfoundationalmodelsaregoingto bekeycomponentofAGI’1 .ConceptionsanddefinitionsofAGIvary,however,andsomeclaim thenecessaryleveloftechnologyhasalreadybeenreached[6 ].

2.2.4.1Training

Aswithallotherartificialintelligencemodels,themodelarchitectureneedstobetrainedafter beingestablished.ThetrainingofLLMsusuallyinvolvesseveralsteps,noneofwhichare,however,strictlyrequired.ThetrainingprocessofLLMsandthechoicesmadeintheprocessare closelytiedtothedeploymentmodelsoftheAIapplicationsfoundedupontheLLM.

Pre-training isthefirst,unsupervisedstageoftrainingwherethemodelisfedtextsequences containingmaskedelementsandisinstructedtopredicttheseelements.Theselectionofthe maskedelementsisautomatic.Pre-trainingisthemostcompute-intensiveprocessinvolving hugeamounts( ∼trilliontokens)ofunlabelled,low-qualitydata,usuallyacquiredthroughweb crawling.Pre-trainingyieldsapre-trainedmodelthatcangenerateacontinuationtoaninput basedonwhatithaslearnedfromthetrainingdata.Thiscontinuationmaynotnecessarily beuseful:whenthepre-trainedmodelisaskedaquestionitcangenerateananswertothe question,oritmaygenerateacontinuationorfollow-upquestions.

Supervisedfine-tuning (SFT)isthesecondstageoftrainingmeanttotunethemodelfora specificpurpose.Forinstance,inthecaseofchatbots,itisspecificallypreferredthatthesystem generateanswers,nototherkindsofoutputs.Trainingdatausedforfine-tuningareoften, althoughnotalways,assembledandlabelledbyhumans.Theirqualityishigherandquantity

1 TheGuardian:’GooglesaysnewAImodelGeminioutperformsChatGPTinmosttests’. https: //www.theguardian.com/technology/2023/dec/06/google-new-ai-model-gemini-bard-upgrade Visited December11th,2023

muchlower( ∼tensofthousandssamplepairs)comparedtopre-trainingdata.

Reinforcementlearningwithhumanfeedback (RLHF)isthethird,reinforcement-basedphase oftrainingwherethemodelistunedtohumanpreferences.Arewardmodeliscreatedforthis purpose,whichisthenappliedtothefine-tunedmodelfortheevaluationofitsoutputs.The rewardmodelistrainedusingadatasetcreatedwithhumanassistancewhereeachqueryis mappedto1ormore (good answer,bad answer) pairswherethegoalistomaximiseforeach pairthedifferencebetweentherewardmodel’sevaluationofthegoodandbadanswers.After therewardmodelhaslearnedtodistinguishthedesirableanswersfromtheundesirableones, itwillbeemployedtoadditionallyfine-tunethemodelthathasalreadyundergoneSFTduring reinforcementlearning.

Directpreferenceoptimisation and identitypreferenceoptimisation (DPO,IPO)arealternative approachestofine-tuningwhere,similarlytoRLHF,adatasetofhumanpreferencesisused forpreferencelearning.ThetwoapproachesaredistinguishedbythefactthatunlikeRLHF, DPOandIPOdonotrequiretheemploymentofarewardmodelbecausetheLLMitselfcan fulfiltheroleoftherewardmodel[7 8 ],usingthedifferencebetweentheevaluationsofgood andbadanswersasthelossfunction.Whereasamodelthathasonlybeenpre-trainedcangive irrelevantordangerousanswers,SFTandRLHF/DPO/IPOaspartsofthetrainingprocessenable usinghumansupervisiontotrainthemodeltomakeitmoresecureandmorecompatiblewith userandbusinessrequirements.

2.2.4.2Inferenceandcontextlearning

Aprompt isauserinputtokenusedbyagenerativeimageorlanguagemodelforthegeneration ofanoutput.Thisprocessiscalled inference .Apromptisusuallymadeupofanatural-language text.ThepromptsusedbyLLM-basedchatbotsarecombinedwithapre-promptcontaining additionalinformationonthecontextoftheconversation,theuser,andthelanguagemodel. Amongotherthings,thisiscrucialforensuringthatthechatbot’soutputisbasedonitsrole asachatbotrespondingtoquestions,ratherthangeneratingacontinuationtotheuserinput. Apre-promptcanalsobeusedforprovidinginformationabouttheoutsideworld,suchasthe date,time,username,contentsofadocumentortextfile,andotherfeaturesoftheuserorthe environment.

Modelsareunabletodistinguishapromptfromapre-prompt,afactexploitedbynumerous promptinjectiontechniques.Asthepre-promptiseasyfortheusertoacquirethroughawellcraftedprompt,itshouldnotcontaininformationthattheusershouldnothaveaccessto.Inthe caseoftransformerarchitecture,thepromptalongwiththepre-promptmustfitintothemodel’s contextwindow whichismeasuredintokensandcontainsthe(pre-)informationnecessaryfor generatinganoutput.Another,morecomplexformofthisapproachisretrieval-augmentedgeneration(RAG)whereinthelanguagemodelscreatesadatabasequerybasedontheuserprompt andAPIinformationfoundinthepre-prompt,andusestheresultsofthisqueryforgenerating aresponse.Thisalsosolvesoftheproblemoftheuser-provideddatabeingtoolargetoinsert intothecontextwindowusingaprompt.Modelarchitectureswithunlimitedpromptlengthalso exist,e.g.Mamba[4 ]andRWKV[3 ].

Whereassimplerlanguagemodelsrequireretrainingorfine-tuningforeachnewtask,thelanguageknowledgeandgeneralisationcapacityofLLMsmeanthat,inmanycases,articulating thetaskandaddingafewexamplestothepromptisallittakes[9 ].Giventhatinformation relatedtothetaskisfedintothemodel’scontextwindow,thisapproachiscalled in-context learning .

In-contextlearningisdividedintonumeroussub-methods:few-shotlearningwheretheprompt issupplementedseveralexamplesalongsidetheinstructions,one-shotlearningwhereasingle exampleisprovided,andzero-shotlearningwherethequeryismadewithoutprovidingany examples.Themoreparametersthelanguagemodelcontains,thefewerexampleshavetobe normallyaddedtothepromptforthesuccessfulcompletionofthetask.

2.3Applicationsofartificialintelligence

Imagesynthesis meanstheautomaticgenerationofanimagewithpredeterminedfeatures,e.g. basedonaverbaldescription(oranotherimageandaverbaldescription).Imagesynthesissubfieldsinclude,inanorderofincreasinggranularity,inpainting,outpainting,styletransfer,deep learning-basednoiseremoval,videosynthesis,andrefinement.Thesedays,imagesynthesis generallyemploysgenerativeadversarialnetworks[10 ]and,increasingly,diffusionmodels[11, 12 ].

Thepurposeof artificialvision istheartificialextractionofinformationfromimages.Thiscomprisesclasssegmentationandinstancesegmentation,labelling,andobjectrecognition.Artificialvisiongenerallyutilisesconvolutionalneuralnetwork(CNN)andtransformer-baseddeep learningmodels[13 14 ].Commonusecasesincludethemonitoringofcattleandagricultural equipment,monitoringofroadconditionsandthesurroundingsbyself-drivingcarsordelivery bots,facerecognition,andaugmentedreality.

Thepurposeof speechsynthesis istogeneratehuman-understandablespeechfromagiven text.Primitivespeechsynthesismodelsoperatedbysequentiallylinkingpre-recordedphonemes orwords,buttoday,transformer-basedneuralnetworksaregenerallyusedforthistask[15 , 16 ]. Speechsynthesisisusedinchatbots,automatedmessagedelivery,screenreaders,computer gamelocalisation,anddubbing.Subfieldsofspeechsynthesisincludespeechstyletransfer, i.e.,imitationofthetoneandpatternsofsamplespeech.

Incontrasttospeechsynthesis,thepurposeof speechrecognition istheextractionofinformationfromhumanspeech.Speechrecognitionincludesspeechtranscription,inthecaseoff whichtextualinformationisextractedfromthespeech.Whereaspastspeechrecognitionmodelsemployedstatisticalmethods,today’ssystemsaremainlybuiltuponneuralnetworksbased onCNNsandtransformers[17 ].Speechrecognitionisusedinsmarthomesandhands-free devicesforvoiceinstructionsanddictation.

Naturallanguageprocessing isabroadfieldcomprisingthegenerationandclassification,as wellastheinterpretationoftexts.Textgenerationgenerallymeanspredictingthenexttoken, withprevioustokensprovidingthecontextfortheprediction.Textclassificationandinterpretationareusedinsemanticsearchwherecandidatephrasesfoundinadocumentortextexcerpt arecomparednotbasedonkeywordmatchingbutsemanticproximity.Deeplearningnetworks comprisingrecurrentneuralnetworks(RNN)andlongshort-termmemory(LSTM)werepreviouslyusedinspeechsynthesis.Amajorbreakthroughinthefieldcamewiththeemergenceof largelanguagemodels(LLMs),thearchitectureofwhichisgenerallytransformer-based[18 , 19 , 20 ].LLMsareusedin,e.g.,copywriting,chatbots,neuralmachinetranslation,emotionanalysis, andcodegeneration.

Generaldataprocessingandanalysis. Machinelearningmethodsarealsousedindataanalysisinotherapplications.Theseincludevariousclassification,clusteranalysis,anddiscreteor continuousfeaturepredictiontasks,suchaspredictingstockpricemovements,processingof brainsignalscollectedbyabrain-computerinterface,orclusteranalysisbasedonclients’consumptionhabits.Dependingonthenatureofthetask,bothdeeplearningneuralnetworksand

statisticalmachinelearningmethodscanbeused.

2.4Areasofuseofartificialintelligence

Thetechnologiesdiscussedabovehavefounduseinmanywalksoflife:e-governance,the privatesector,educationandresearch,healthcare,andunspecifiedpersonaluses.Wewillnext takealookatsomeofthesefieldsandapplications.

E-stateande-governance. TheAIstrategiespublishedbytheEstonianMinistryofEconomic AffairsandCommunicationsforeseewidespreadadoptionofAIinthepublicsector.Thenatural languageprocessing-basedvirtualassistantBürokrattenablescommunicationwithpublicsectorservicesviaachatwindow.TheEstonianParliament’sdigitalstenographerHansusesspeech recognitiontotranscribespeechesmadeintheplenaryhall.Severalministrieshaveusedthe Textatextanalysistoolkitforauditingtheirdocumentation.Ilme,aserviceprovidedtheNational ArchivesofEstonia,allowsusingartificialvisiontofindpeoplesimilartouser-uploadedimages inhistoricalphotos.

Education. Artificialintelligencehasnumeroususesineducation,e.g.considertheEducation technologycompasspublishedbytheEstonianEducationandYouthBoard(HARNO) 2 .Theeducationalnon-profitKhanAcademyusesachatbotbasedonGPT-4forthepersonalisationof studies.TheDuolingolanguagelearningapplicationcontainsasimilarGPT-4-basedinteractivechatbotsolution;naturallanguageprocessingmethodsarealsoemployedbytheLingvist languagelearningapplication.

Research. Artificialintelligenceandmachinelearninghavebeenusedbyresearchersforboth discoveringnewknowledgeandfindingandsystematisingexistinginformation 3 .TheSemanticSearchsearchportalusesnaturallanguageprocessingandartificialvisionforsummarising, indexing,andsearchingscientificpublications,whereastheAlphaFoldAIsystemdevelopedby Alphabethasmadeitpossibletopredicttheshapesofproteinswithpreviouslyunknownstructures.Modelsbasedonmachinelearningandartificialintelligencehavebeenadoptedinparticle physicsfordataanalysisandsimulationdesign,andinbiomedicine,forthedevelopmentofnew pharmaceuticals.

Healthcare. Artificialintelligencehasbeensuccessfullyemployedinpersonalmedicine,clinical research,aswellasdrugdevelopment4 .Machinelearning-basedbigdataanalysismethods allowusingthepatient’sgenedataforprovidingbettertreatment.Artificialvisionishelpfulinthe interpretationofmedicalimagesanddiagnosingthepatient.Naturallanguageprocessingand textanalysismethodsenablefindingandorganisingpatientdata.Machinelearningmethodsare usedindrugdevelopment,e.g.inmolecularsimulations,predictionoftherapeuticproperties, aswellasthegenerationofmolecularstructuresandsynthesispaths.

Privatesector. Machinelearning-basedaudioprocessing,noiseremoval,andaudioandvideo streampackingtechniques(Skype)areutilisedintelecommunications.Artificialvisionisused ine.g.robotics(Milrem,Cleveron),agriculture,identityverification(Veriff).Chatbotsbasedon naturallanguageprocessingareincreasinglycommonincustomersupport.

2 EducationandYouthBoard.Educationtechnologycompass. https://kompass.harno.ee/tehisintellekt VisitedAugust10th,2023

3 OECD,ArtificialIntelligenceinScience. https://www.oecd.org/publications/ artificial-intelligence-in-science-a8d820bd-en.htm VisitedAugust10th,2023

4 NationalInstituteforHealthDevelopment.Artificialintelligenceasthefoundationforpersonalmedicineinoncology. https://www.tai.ee/et/personaalmeditsiini-uudiskirjad/ tehisintellekt-kui-personaalmeditsiini-alus-onkoloogias VisitedAugust11th,2023

Personaluse. AI-basedpersonalassistants,suchasGoogleAssistant,AmazonAlexa,andSiri werecommonevenbeforetheemergenceofLLMsanddiffusion-basedimagesynthesismodels.TheproliferationandincreasedaccessibilityoffLLMsanddiffusion-basedimagesynthesis modelshasledtoanevolutionaryleapinthisarea,includingthewidespreadadoptionofthe AIaaS(artificialintelligenceasaservice)businessmodel.Modelsdevelopedforpresonaluse andpluginsandapplicationsbuiltuponthesecananalyzecode(GitHubCopilot),readdocumentsorwebpagesandextractnecessaryinformation(BingChat),generatetextsfrombirthdayinvitationstomarketingmaterials(ChatGPT).

Imagesynthesismodelscanbeusedbyindividualsforcreatingillustrationsinthedesiredstyle, generateinteriordesignideas,increasetheresolutionofimagesorphotos(StableDiffusion, Midjourney),andevenidentifycertainspeciesofmushroomsinthewoods.

2.5Explainabilityinmachinelearning

Theemergenceofdeeplearningmethodsandincreasesinthecomplexityofmachinelearning modelshavegivenrisetoquestionsregardingtheexplainabilityofthemodels.Explainabilityof amodelmeanstheabilitytoprovideahuman-understandableexplanationoftherelationship betweenthemodel’soutputandinput.EUdataprotectionregulationsconsiderthetransparency oftheusedartificialintelligencetechnologyvitalforsituationswhereautomateddecisionsare madeusingmachinelearningmodels[21].Thiscanbeachievedthroughtheexplainabilityof themodel.

ExplainableAI(XAI)hasbeenproposedasasolutionfacilitatingmovementtowardsmoretransparentartificialintelligenceandthusavoidinglimitationsontheadoptionofAIincriticalareas [22 ].Asatthetimeofthisreport,thereisasofyetnoglobalconsensusregardingthedesirable thresholdofalgorithmicexplainability[23 ].

ExplainabilityiscloselytiedtotheissuesoftransparencyandtrustworthinessofAIsystems. Thesystematicdefinitionofexplainabilityrequirementsisthusavitalstepinthedevelopment oftransparentandtrustworthyartificialintelligencesystems[24 ].TheOECDhasfound[25 ] that,inordertoensuretransparencyandexplainability,AIactorsshouldprovidemeaningful information,appropriatetothecontext,andconsistentwiththestateofart:

• tofosterageneralunderstandingofAIsystems;

• tomakestakeholdersawareoftheirinteractionswithAIsystems;

• toenablethoseaffectedbyanAIsystemtounderstandtheoutcomeand

• toenablethoseadverselyaffectedbyanAIsystemtochallengeitsoutcomebasedonplain andeasy-to-understandinformationonthefactors,andthelogicthatservedasthebasis fortheresult.

Real-worldinterpretationsoftheexplainabilityrequirementshavealsobeenstudied[24 ].These studieshaveledtothefindingthattheexplainabilityofAIis, interalia ,fosteredbytheestablishmentofsystematicdefinitionsandtheformalisationandquantificationofexplanationsand performanceindicators[22 ].Fourcomponentsofexplainabilityhavebeenproposed[24 ]:

• addressees–towhomtoexplain?

• aspects–whattoexplain?

• context–inwhatkindofsituationtoexplain?

• explainers–whoexplains?

Anexplainablemodelismoretrustworthy,itiseasiertodevelop,test,andaudit;itisalsoeasier todetectanybiasesandexplainabnormalbehaviour.Explainabilityisvitalinmedicinewhere, e.g.,animagemodeldesignedtodetecttumoursismoretrustworthy,ifthepredictionisaccompaniedbyanexplanationofwhichfeaturesoftheimage(contrast,shape)ledtothedetection ofthepresence(orabsence)ofatumour.Likewise,someonereceivinganegativeresponseto theirloanapplicationfromabankmightbeinterestedtolearnwhattheyneedtodoforthebank togivethemaloan(aso-calledcounterfactualexplanation).Aprofanityfilterhighlightingthe inputwordscontributingthemosttotheclassificationofamessageasobscenewillbeeasier todevelopandtestthanonethatdoesnot.

Explainabilityisnotalwaysrequired.Wheretherisksarelowandtheproblemitselfhasalready beenstudiedindepth,itcanprovesuperfluous.Asarule,thereisalsoatrade-offbetween thecapabilitiesandexplainabilityofthemodel[26 ].Whereas,inthecaseofalinearregression model,therelationshipbetweentheoutputandtheinputcanbegleamedfrommerelylooking attheregressioncoefficients,morecomplexandmorepowerfulmodels,suchasdeepneural networks,areakindofa’blackbox’[27 ]forhumanswherethemodel’spredictionordecision principlesarenolongeridentifiableonthebasisofthemodel’sstructureandparameters.

Explainabilitycanbedividedintointrinsicandpost-hocexplainability.Inthecaseofintrinsic explainability(alsoknownastransparency),themodel’scomplexityislimitedinordertoprevent itfrombecomingablackboxandtomaintaintheexplainabilityofitsparametersovertheentire modelfromthestart.Modelswithasimplestructure,suchasdecisiontreesandsimpleregressionmodels,areconsideredself-explainable.Wherethetaskathandcallsfortheemployment ofamorecomplexmodel,post-hocmethodsareusedforincreasingitstransparency.

Post-hocmethodsaregenerallymodel-agnostic–theydonotdependonthearchitectureofthe model,nordotheypresumethepossessionofanoverviewofitsinternalcomponents.Post-hoc explanationstreatallmodels,includingthosethatareself-explainableduetotheirsimplicity,as blackboxes.So-calledlocalpost-hocexplainabilitymethodsdemonstratehowmuchandin whichdirectionsmallindividualchangesininputfeatureswillshiftthemodel’soutput,orwhat arethesmallestnecessarychangesininputfeaturesrequiredforthemodeltopredictanother class.Globalpost-hocexplainabilitymethodsallowunderstandingtheintermediarylayersof analready-trainedmodel:thus,OpenAIhascreatedMicroscope 5 ,acollectionofvisualisations, thancanbeusedtoacquireanoverviewoftheintermediarylayersofdifferentimagemodels, theneuronscontainedtherein,andtheirproperties.Italsoallowsstudyingwhichpictureswithin theinputdatasetactivatetheneuroninquestionthemost.

2.6Globaltrends

2.6.1Fasterandlarger

Increasingmodelsizes. Justascomputingpower,thesizeofneuralnetworkshasalsoundergoneanexponentialgrowth.In1989,YannLeCun’steamusedaconvolutionalneuralnetwork toidentifynumbersinimages.Thenetworkconsistedoftwoconvolutionalandonefullyconnectedlayer,foratotaloffewerthantenthousandtrainableparameters.TheAlexNetmodel introducedin2012comprisedoffiveconvolutionalandthreefullyconnectedlayer,withasmany as61millionparameters.

Withthespreadoftransformerarchitecture,thenumberoftrainableparameterskeptincreasing (Figure 8 ):TheBERT-baseandGPT-1languagemodels(2018)alreadycontained ∼110million, 5 OpenAIMicroscope https://microscope.openai.com VisitedDecember10th,2023

Figure8.Growthinthenumberofmodelparametershasbeenexponential.

GPT-2(2019)–1,5billion,andGPT-3(2020)–175billiontrainableparameters.Thenumber ofparametersusedinGPT-4hasnotbeenpublicisedbutithasbeenspeculatedthatitisa so-called’mixtureofexperts’(MoE)modelwith ∼1.76trillionparameters.Theincreaseinthe numberofparametersalsomeansincreaseddemandsforcomputingpowerandmemoryrequiredforbothtrainingamodelandtheapplicationofatrainedmodel(inference).Efficient trainingofamodelalsorequiresever-largeramountsoftrainingdata.

Withtheincreaseinthenumberofparameters,languagemodelshavebeguntoexhibitemergentabilities,generallyunderstoodascapabilitiesthatexistinmodelswithlargernumbersof parametersbutlackinginsmallerones[28 ].Forinstance,largerlanguagemodelsarecapableof summarisingandtranslatingtexts,generatingcode,findingpatternsinatextandunderstandinghumour,whilesmallermodelsarelimitedtoansweringtosimplerquestionsorgenerating seeminglygrammaticallycorrecttext.Somehavealsoattemptedtoexplainsuchostensibly emergentabilitieswiththebettermemorisationcapacityandimprovedsteerabilityviaprompts characteristictolargermodels[29 ].Untiltheadoptionofmodelweightquantisationandmodel pruning,suchfeatureswerethoughttoappearinalanguagemodelfrom ∼7billionparameters, eventhoughcertainemergentpropertieshadbeenobservedinthe1.5billionparameterGPT-2. Today,however,ithasbecomeclearthatsmallerorcompressedmodelsmayalsopossesssuch abilitiestoacertainextent.

Alanguagemodelwithahighernumberofparametersrequiresalargertrainingdatasetforthe efficientutilisationoftheseparameters.LargerEnglish-languagetrainingsetscomprisetrillions oftokens,whereasthesizeofEstoniandatasetsdoesnotexceedseveralbillions.Thismeans thatalanguagemodeltrainedbasedontheEstonianlanguagewillgenerallybesmallerand lesscapable.TheshareofEstonianinmulti-languagedatasetsisverysmall,meaningthata modeltrainedontheEstonianlanguagemaynotalwaysbecapableofmasteringthelanguage. Onestrategyformitigatingthisdisparityisfine-tuningmodelstrainedonanEnglish-language datasetusingEstonian-languagedata.

Increasinghardwarerequirements. ComputerGPUsusetheSIMD(singleinstruction,multiple data)architecturewhichallowsthesameoperationtobeperformedsimultaneouslyonseveral piecesofdata.Thisallowssignificantlyspeedinguprenderingworkflowsandothergraphicsrelatedtaskswhereacertainoperationneedstoberepeatedoneachbufferelement.This featuredidnotgounnoticedfortheresearchersofdeeplearningneuralnetworkswhoproposed

theideain2009thatmatrixoperationsfrequentlyusedinneuralnetworkscouldbespedup usinggraphicsprocessingunits[30 ].

Foreachnewtokenbeinggenerated,transformer-basedlargelanguagemodelsmustaccessall theweightsandattentionvectors (q,k,v) employedbythemodelandmovethemfromRAMto GPUregisters.Asufficientlylargenumberofsufficientlylargeweightmatriceswillresultinincreasedloadingtimes.Thismakesmemorycapacityandthroughputcomparableinimportance toplainFLOPS 6 .

Unlikefine-tuning,in-contextlearningdoesnotrequirethecomputationallyexpensiveupdatingofmodelweightsalongsideinference(prediction).Thein-contextlearningfunctionalityof certainLLMscanalsobeimplementedonahigh-performancepersonalcomputer 7 .Quantisation[31]–reductionintheaccuracyandmemoryrequirementsofmodelparameters–isused tofacilitatefittingthemodelweightsinthePC’sGPUmemory.E.g.16-bitfloatingpointnumbersareusedinplaceof32-bitones;themostpowerfulquantisationmethodsre-encodethe parameterssothatasingleparameterwillonlyrequireabitmorethan2bitsofmemory[32 ]. Onthedownside,themodel’sabilitiesmaysufferfromquantisation.

Theexpansionoffieldsemployingparallelprocessing(machinelearning,simulations,scientific modelling,cryptocurrencymining)hasincreaseddemandforbothhardwareandfirmwaresuitableforthetask.NvidiahasthusdevelopedtheCUDAplatformcomprisingbothhardwarecomponentsandasoftwareframeworkfortheutilisationofGPUsinparallelprocessingtasks.Apple haddevelopedtheOpenCLparallelprocessingstandardthat,unlikeCUDA,wasnotbasedon aspecifictypeofhardwarebuttoday,they,too,haveswitchedtotheirownhardware-specific framework,calledMetal.

ClassicserverarchitecturesarenolongeradequateforofferingAIasacloudservice.Extremely largevolumesofdataalsomeanthatspecialiseddatacentresorcloudservicesareusedfordata storageandprocessing.Whenscalingaservice,cloudinfrastructureandspecialisedhardware arerecommendedforbothinferenceandtraining.Meanwhile,specialisedhardwarenolonger meansonlyGPUs–italsocoverssolutionsevenmorespecifictoneuralnetworks,suchasthe tensorprocessingunit(TPU)developedbyGoogle,ortheneuralprocessingunit(NPU)usedin smartphonesandInternet-of-Things(IoT)devices.

2.6.2Fromgeneral-purposetospecial-purpose

Fromfoundationmodelstoapplications. FoundationmodelsareoftenmentionedinthecontextofLLMs.Thesearegeneral-purposemodelsthatcanbeusedforperformingmanydifferenttasks.Chatbotsareoneofthemostbasicapplicationsoffoundationmodels,asthey onlyrequirecommandofnaturallanguageandgeneralknowledgethatcanbederivedfrom modelweightsanddonotrequireaseparatedatabaseinterface.Non-deterministicmodeloutputisalsoacceptableinchatbots.Indomain-specificapplications,thegeneralisationability andknowledgeofthefoundationmodelmaynotalwaysbeadequateforthetask.Specialised solutionsandmodelshavethereforebeendevelopedalongsideandbasedonlargefoundation models.Theseareespeciallygoodatprocessingmedicalandlegaltext,summarisinglarge

6 FLOPS(floatingpointoperationspersecond)isameasureofcomputerperformance.

7 llama.cppisanopen-sourceapplicationthatfacilitatesrunninginferenceonLLaMA,LLaMA2,andotherlanguage modelsusingquantisation.

documents 8 ,programminglanguagesandpatterns 9 ,imagerecognition 10 ,andcanevaluatethe likelihoodofanimageortextbeingcreatedbyagenerativemodel11 .

SimplersolutionshavealsoemergedthatconnecttoanexistingAImodelusingitsAPI,e.g., forinteractingwithandsummarisingdocumentsintheformofPDFfiles.Thebusinessrisk involvedinsuch’thin’solutionsisthattheprovidersofAPIsandmodelscaneasilyimplement suchfunctionalityintheirownproducts,justlikeOpenAIhasdonewiththeanalysisofPDFfiles inChatGPT 12 .

Fromthesynthesisofasingletypeofcontenttothecreationofheterogenouscontent. When amodelinteractswithdifferentinputoroutputmodalitiesitcanbeclassedasmultimodal.In otherwords,evenasimpleimageclassifiercouldbeconsideredmultimodalinthatitreceivesan imagesasaninputandoutputsatextlabel.Inreality,thetermismainlyusedformodelswhere inputswithdifferentmodalitiesaremappedtothesameembedding,suchasOpenAICLIP 13 andGPT-4V 14 .Multimodaltext-to-videomodelsalsoexistthatgenerateanimagesequence correspondingtotheprompt,eitherrelyingonreferenceimages[33 ]orwithout[34 35 ].

Whereasmultimodalinputshavebeensimpletoprocessthusfar,generatinganoutputcomprisingdifferentmodalitiesismoredifficult.Themostcommon(andeasiest)solutionsofaristhe combinationoftheoutputsandinputsofmultiplemodels.Thus,ChatGPTcomprisesanimage generationfunctionalitywheretextualinstructionsgeneratedusingtheGPT-4languagemodel basedonauserpromptarefedtotheDALL-E3imagesynthesismodelwhichwillthenreturn thegeneratedimagestotheusers.TheInvideoAIservice 15 (alongsideseveralothersimilar services)composesvideosbasedoninputtext:itgeneratesascriptbasedonauserprompt andsearchesthedatabaseforclipswhicharethenassembledintoavideo,afterwhichitalso generatesasoundtrack.

OneoptionforcombiningAIservicesisanAIagent(insomecasesagenerativeagent)capable ofinterfacingwithdifferentservices,e.g.makingInternetqueriesforperformingthetaskit hasbeengiven.AIagentsarecharacterisedbyacontinuousfeedbackcyclebetweenmaking queries(interfacingwiththeoutsideenvironment)andupdatingtheirinternalstate.Forthis reason,itisvitalforAIagentstobecapableofplanningtheirnextstepswhilealsokeeping trackoftheresultsoftheprevioussteps,theirinternalstate,andthebroadercontentsand purposeofthetask[36 ].Aself-drivingcarcanbeconsideredanAIagent.

Thesedays,AIagentsgenerallymeansolutionsbasedonlargelanguagemodelsthatfacilitate automatisingmulti-stepactionsrequiringthedivisionoftasksintosubtasks,additionalplanning, andconstantfeedbackbasedonnaturallanguageinstructions.Someofthecurrentlypopular (asofwritingthisreport)frameworksforcreatingandmanagingAIagentsincludeAutoGPT, BabyAGI,andAiAgent.App.

8 Claude2: https://www.anthropic.com/index/claude-2

9 GitHubCopilotX: https://github.com/features/preview/copilot-x

10 Gpt-4Vision: https://openai.com/research/gpt-4v-system-card

11 StableSignature: https://ai.meta.com/blog/stable-signature-watermarking-generative-ai/

12 ChatGPTPlusmemberscanuploadandanalyzefilesinthelatestbeta. https://www.theverge.com/2023/ 10/29/23937497/chatgpt-plus-new-beta-all-tools-update-pdf-data-analysis VisitedFebruary25th, 2024

13 CLIP:Connectingtextandimages. https://openai.com/research/clip

14 GPT-4V(ision)systemcard. https://openai.com/research/gpt-4v-system-card

15 InvideoAI. https://invideo.io/

2.6.3Fromclosedtoopen

Modelsforprovidingaccesstoclosedmodels. ThelargerAImodelsgot,themoreexpensive theirtraining,management,anddeploymentbecame.Themorepowerfultheygot,thegreater therisksofexploitingtheirgenerativecapabilitiesbecame.OpenAIwasfoundedin2015asa non-profitwiththegoalofresearchingartificialintelligenceandamainfocusondeeplearning neuralnetworks 16 .Intheearlydays,theorganisationputastressonopennessandcreating valueforthewholesociety.

On8April2019,afewmonthsaftertheannouncementandunveilingoftheGPT-2language model,thedecisionwasmadetosplitthecompanyintoa’limitedprofit’company(OpenAILP) andanon-profit(theexistingOpenAINonprofit),withtheboardofthelatterremainingthegoverningbodyofthetwonewpartnerorganisations 17 .Thisstepwaspurportedlytakenbecause ofthehighmaintenanceexpensesofmodernAIsystems:trainingthesesystemsiscomputeintensive,maintenanceofthebigdatainfrastructureusedforthetrainingiscostly,andanNGO’s opportunitiesforraisingcapitalarefarexceededbythoseofcompanies.Thiswasfollowedby apartnershipwithMicrosoftwhoinvestedonebillionUSdollarsintothecompany,andanother 10billiondollarsin2023.

GPT-2wasOpenAI’slastcompletelyopenlanguagemodels.In2020,OpenAIreleasedGPT-3, buttheparametersofthetrainedmodelwerenotmadeaccessibletothepublic–accessto themodelwaslimitedtotheOpenAIAPI18 andGPT-3itselflicensedtoMicrosoft19 underthe cooperationagreementsignedearlier.ThedecisiontocreateanAPIwasmotivatedbysecurity requirements,aswellasfinancialconsiderations.AsthemaintaineroftheAPI,OpenAIretains therighttorestrictaccesstothemodeltoexploiters;theAPIwasalsothefirstcommercial productofOpenAILPthathelpedfundfurtherresearchandmaintaintheexpensiveserverinfrastructure.

Emergenceofpublicmodels. In2023,Metaannounceditsownseriesoflanguagemodels, LLaMA 20 ,surprisingtheworldbymakingthemodelscompletelypubliclyaccessible,evenfor commercialuse.ThelicenceoftheLLaMA2modelseriesreleasedafewmonthslaterexcluded companieswithmorethan700millionannualusersinordertoprotectMetafromitsbiggest competitors.Thesameyearalsosawthereleaseofthesourcecodeandparametersofstability.ai’sgenerativeimagemodel,StableDiffusion 21 .Theemergenceofmodelsfarsurpassing GPT-2intheircapabilities,suchasLLaMA2,hasunleashedanavalancheofsmallerbut,in someways,morepowerfulAImodelsfine-tunedforspecificareasofuse.Theperformance ofthesemodelsisonlymarginallyinferiortofoundationmodelswithamuchhighernumberof parameters.Mistral-7B 22 andSSD-1B 23 aregreatexamplesofsuchmodels.

Hobbyists,smallenterprises,andresearchinstitutionscanhardlyaffordtheinformationinfras-

16 OpenAI. https://openai.com/blog/introducing-openai VisitedOctober20th,2023

17 OpenAILP. https://openai.com/blog/openai-lp VisitedOctober23rd,2023

18 OpenAIAPI. https://openai.com/blog/openai-api VisitedOctober23rd,2023

19 OpenAIlicensesGPT-3technologytoMicrosoft. https://openai.com/blog/ openai-licenses-gpt-3-technology-to-microsoft VisitedOctober23rd,2023

20 IntroducingLLaMA:Afoundational,65-billion-parameterlargelanguagemodel. https://ai.meta.com/blog/ large-language-model-llama-meta-ai/ VisitedOctober24th,2023

21 StableDiffusionPublicRelease. https://stability.ai/blog/stable-diffusion-public-release VisitedOctober24th,2023

22 MistralAI. https://mistral.ai/ VisitedOctober24th,2023

23 AnnouncingSSD-1B:ALeapinEfficientT2IGeneration. https://blog.segmind.com/ introducing-segmind-ssd-1b/ VisitedOctober24th,2023 Risksandcontrolsforartificialintelligenceandmachinelearningsystems

tructureortrainingbudgetsofthelikesofOpenAI,Google,orMeta,whichhascausedashiftin focusfromthenumberofparameterstotheirefficientuse,thequalityoftrainingdata,andalternativemodelarchitectures.AsdemonstratedbyGoogle’sleaked’WeHaveNoMoat’24 memo, theirsuccesshasbeenacauseforconcernforlargecorporations.Theemergenceofmoreefficientandcheaperfine-tuningmethods,suchasLoRA[37 ],hasallowedhobbyiststokeepup withlargetechnologycompaniesinspiteofthegapininvestmentcapacity.

Motivatedby,ononehand,thetechnologyindustry’sdesiretouseAIonportabledevicesand, ontheotherhand,thelimitedresourcesofsmallenterprisesandtheopensourcecommunity,a numberof’smalllanguagemodels’(SLMs)withfewerparametershavenowemerged,suchas Microsoft’sPhi-1.5[38 ]andPhi-2,Google’sGeminiNano 25 andGemma[39 ],aswellasMistral 7B[40 ]andtheQwen1.5familyofSLMs[41]whichareonlyslightlyinferiorinperformanceto muchlargermodels.

2.6.3.1Developmentsindeploymentmodels

AnAImodelinitselfisnotsufficientforperformingbusinesstasks.Themodelmusthaveaccess toinputdataandmustbecapableofproducingproperlyformatted,high-qualityoutputdata. DeploymentmodelsrefertothestructureofAIapps,interfacesbetweentheAImodelandother componentsoftheapp,andtheflowsofdatabetweenthesecomponents(includingusers’ personaldata).

Thefirst,moreprimitiveAImodels(e.g.linearregression,perceptrons,rules-basedexpertsystems)werenotcompute-intensive,makingtheinformationinfrastructureforrunningthemodel lesscriticalthandatastorageinfrastructure.AIapplicationdeploymentmodelsonlybecame relevantwiththewidespreadadoptionofAIinthe2010s,accompaniedbygrowingdatasets, proliferationofneuralnetworks,andtheresultingneedtoacceleratetrainingandinferenceusingGPUsthatwerenotalwaysreadilyphysicallyaccessibletothetrainersorusersofAImodels. Alongsidedatastorageandnetworking,cloudinfrastructureprovidersbegantoofferhardware andcloudcomputingenvironmentsforAImodels(e.g.GoogleColab,AmazonSageMaker),but theuserswerestillresponsibleforthedevelopment,training,anduseoftheirmodels.

Thegeneral-purposenatureofsubsequentlargetextandimagesynthesismodelsmeantthat forcertaintasks,themodelnolongerneededtobetrainedfromthegroundup.Thisgaveriseto AIaaSorAIasaservice,allowingcompaniesandindividualstouselargeAImodelsevenwithout investmentsintohardware,training,andotherinformationinfrastructure.

TheemergenceofChatGPTandAIAPIshastriggeredadelugeofthin’APIwrapperaps’using thegeneralisationabilityofChatGPToranotherAItextsynthesissolutionforsolvingdomainspecifictasks.Someoftheseapplicationsprovidelittlebesidesaconvenientuserexperience andacarefullycraftedpre-prompt;meanwhile,thereproducibilityofsuchsolutionscreatessignificantbusinessrisksforthecreatorsofwrapperapps.ThisriskmaterialisedattheOpenAIDev DaywhereOpenAIintroduceda’customGPT’serviceallowinguserstobuildspecial-purpose chatbotswithoutwritingasinglelineofcode 26

ThebusinessnicheofAIserviceprovidersisnotgenerallyfoundedoninnovativemodelarchitecture,astheseareusuallypublic,buttheinformationinfrastructurebuiltaroundthemodel,

24 Google:”WeHaveNoMoat,AndNeitherDoesOpenAI”. https://www.semianalysis.com/p/ google-we-have-no-moat-and-neither VisitedOctober26th,2023

25 GoogleBlog:IntroducingGemini https://blog.google/technology/ai/google-gemini-ai/ VisitedDecember14th,2023

26 IntroducingGPTs. https://openai.com/blog/introducing-gpts VisitedNovember20th,2023

theuserexperienceprovidedbythesolution,andthequantityandqualityofdomain-specific trainingdata.TheX(formerTwitter)AIserviceGrokhasreal-timeaccesstothedatabaseof userpostsandMicrosoft’sCopilotXcodingassistantwouldnotbenearasefficientwithoutthe constantlyupdatedGitHubrepository.ChatGPT,meanwhile,allowstheusertogivefeedback toallchatbot’sanswerswhichhasenabledOpenAItocollectlargeamountsofvaluabledataon users’interactionswiththechatbottofacilitatethefurtherimprovementofthequalityoftheir languagemodels.

Trainingdataqualitymanagementisvitalasitallowssignificantlyreducingtheamountofdata requiredforthetrainingofanequivalentmodel[42 ],butalsobecausetheproportionofsynthetic contentontheInternethasrisensharplyasoflateand,accordingtoexperts,mightreach90 percentby2026[43 ].

2.6.4Fromunregulatedtoregulated

2.6.4.1AIethics

Theethicsofcomputerscienceisamultifaceted,comprisingbothmoralandethicalconsiderationsrelatedtothedevelopment,deployment,anduseofcomputingtechnologies,suchasAI. Itisvitaltoensurethatthesetechnologiesaredevelopedandusedinwaysthatmirrorhuman valuesandpromotesocialwellness[44 ].Ethicalprinciplesaredynamic,meaningthattheycan changeintime,adaptingtodevelopmentsinscienceandthesociety[45 ].

TheemploymentofAItechnologiesisontherise–by2027,themarketcapitalisationofthe fieldisexpectedtoreach407billiondollars[46 ].Estoniancompaniesarealsoincreasingly usingAItechnologies–asatQ1of2023,themarkethasseena2%increasecomparedto2021. AccordingtoStatisticsEstonia,AItechnologiesaremostfrequentlyusedinEstoniabyfinance andinsurance,informationandcommunication,andenergysectorenterprises[47 ].

Eventhoughartificialintelligencetechnologiesdemonstrateenormouspotential,theuseofAI alsogivesrisetonumerousquestionsandfears.Forexample,asurveycarriedoutinEnglandin2023showedthatpeoplearethemostworriedaboutself-drivingcarsandautonomous weapons.TheyalsofearthatifAIisusedforprofessionaldecision-making,theartificialintelligencemayproveunabletoaccountforindividualreal-worldcircumstancesanddecision-making maysufferfromalackoftransparencyandresponsibility[48 ].

In2018–2021,ascandalbrokeoutinTheNetherlandswhenitwasfoundthatthenationaltax officehadusedaflawedriskanalysisalgorithmindecision-making,resultinginthousandsof childsupportreceiversbeingbaselesslyaccusedoffraud[49 ].Thisledtotensofthousandsof families,oftenfromlowerincomebracketsorethnicminorities,fallingintopoverty.Someofthe victimsperformedsuicideandoverathousandchildrenwhereplacedintofosterfamilies[50 ].

Professionaldecisionsofthiskindmayalsoincludecourtrulings.Thisraisesthequestion whetherarulingmadebyanartificialintelligenceisequivalentinqualitytoonemadebyahuman judge,whetherthesysteminquestionhasbeentrainedonhigh-qualitydata,andwhethercare hasbeentakentoruleoutdiscriminationonanygrounds,suchasgender,race,orincome.ResearchershavepointedoutthatAImodelsbasedoninformationderivedfromolderinputdata aremorelikelytofollowmoreconservativepracticesandmaynotbecapableofadaptingto significantpoliticalchangesovertime[51].IthasalsobefoundthattheuseofAIformaking courtrulingsmayproveathreattotheintegrityofdatawhich,duetotheirverynature,would requirethehighestlevelofsecurity[52 ].

IthasbeenfoundthatLLMsmaytendtoreinforceincorrectlegalassumptionsandbeliefswhich inturngivesrisetosignificantconcernsoverthereliabilityoftheresultsinalegalcontext[53 , 54 ].ThetransparencyandaccuracyoftheAImodelalsobecomecriticalinthecontextof trials[55 ].

Ethicalissuesemerginginthedevelopment,deployment,anduseofAIarethesubjectofAI ethicswhichisconsideredoneofthesubdomainsofappliedethics.ThegoalofAIethicsis todeterminehowanartificialintelligencesystemcanincreaseordecreasehumanwell-being throughchangesinqualityoflifeorautonomyandindependence.DifferentAIethicsframeworks aregenerallybuiltaroundfundamentalrights[45 ].

OnApril8th,2019,theEUHigh-LevelExpertGrouponAI(hereinafterAIHLEG)presentedits ethicsguidelinesfortrustworthyAI[45 , 56 ]withthegoalofprovidingguidanceforpromoting andsupportingethicalandrobustartificialintelligence.Lessattentionispaidtothelegalaspectsofthesystem.ThedocumentpresentsapreliminaryframeworkfortrustworthyAIwhile alsodiscussingissuesrelatedtotheimplementationandevaluationofAIsystems[45 ].

2.6.4.2AIregulationintheEU

InApril2021,theEuropeanCommissionproposedthefirstlegalframeworkregulatingAI[57 ]. Theproposalwasbuiltaroundarisk-basedapproach,assertingthatartificialintelligencesystemsshouldbeanalyzedandclassifiedbasedonthethreattheyposetousers[58 ].NegotiationsovertheAIActendedonDecember8th,2023.Inearly2024,theAIActisexpectedtobe publishedintheOfficialJournaloftheEuropeanUnion. Neithershouldoneoverlooktheexistinglegalframework.Morespecifically,theGeneralData ProtectionRegulation(GDPR)of2016[59 ]stressestheimportanceoftheprotectionofnaturalpersonsintheautomatedprocessingofpersonaldata 27 .Inadditiontothetheabove,the development,implementation,anduseofartificialintelligencemustalsoaccountforotherrequirements,suchasintellectualpropertyrights.Formoredetailsonthelegalaspectsofartificial intelligence,seeSection 3 ofthereport.

27 GDPRregulatestheautomatedprocessingofpersonaldata,includingprofiling,andconfersonthedatasubject therighttoopposeindividualdecisionsbasedonsuchprocessing(seeGDPRarticles2,21,and22,andrecitals15 and71).

3Legalaspects

3.1Internationallegalinitiatives

3.1.1Regulation

ExperiencefromrecentyearsindicatesthatAIregulationisrapidlydevelopingallovertheworld. TheexamplespresentedbelowpertaintojustsomeofthestatesregulatingAIsystems.

OnOctober30th,2023,thePresidentoftheUnitedStatesJoeBidenissuedanexecutiveorder toensurethattheUSmaintainsaleadingpositionintheworldinAIsystems.TheExecutive OrderestablishesnewstandardsforAIsafetyandsecurity,protectsAmericans’privacy,advancesequityandcivilrights,standsupforconsumersandworkers,promotesinnovationand competition,advancesAmericanleadershiparoundtheworld,andmore[60 ].

TheUKParliamenthaspublishedabilltoregulatetheuseofAItechnologiesintheworkplaceand makeprovisionaboutworkers’andtradeunionrightsinrelationtotheuseofartificialintelligence technologies.ThefirstreadingofthebilltookplaceonMay17th,2023[61, 62 ].InSeptember 2023,theUKgovernmentpublishedawhitepaperonapro-innovationapproachtoAIregulation. Thisframeworkisunderpinnedbyfiveprinciples[63 ]:

1. safety,securityandrobustness;

2. transparencyandexplainability;

3. fairness;

4. accountabilityandgovernance;

5. contestabilityandredress.

DiscussionsovertheregulationofartificialintelligencearealsounderwayinAustralia[64 ].In 2022,theAustraliangovernmentpublishedaconsultationontherulesforartificialintelligence andautomateddecision-making.TheconsultationwasdrivenbytheAustraliangovernment’s digitaleconomystrategylayingoutanambitiousvisionAustraliabecomingoneofthe10best digitaleconomiesandsocietiesby2030[65 66 ].AccordingtothenewdraftlawofsearchenginespresentedonSeptember8th,2023,theAustraliangovernmentrequiresInternetsearch serviceproviderstoreviewandregularlyupdatetheirartificialintelligencetoolsinordertoensurethatclass1Amaterials(e.g.,materialsrelatedtothesexualabuseofchildren,supportof terrorism,andextremeviolence)arenotreturnedinsearchresults.Thedraftactalsomandates thatusersmustbeabletoidentifywhetheranimageaccessiblethroughasearchengineisa deepfake[67 , 68 , 69 ].

InSeptember2023,CanadapublishedavoluntarycodeofconductontheresponsibledevelopmentandmanagementofgenerativeAIsystems[70 ].WorkisalsoonthewayontheArtificial IntelligenceandDataAct(AIDA)thatwouldsetthefoundationfortheresponsibledesign,developmentanddeploymentofAIsystemsthatimpactthelivesofCanadians[70 ].Theactwould ensurethatAIsystemsdeployedinCanadaaresafeandnon-discriminatoryandwouldhold businessesaccountableforhowtheydevelopandusethesetechnologies.Inadditiontothe above,onOctober12th,2023,theCanadiangovernmentannouncedapublicconsultationon theeffectsofgenerativeartificialintelligenceoncopyright[71].

Alongsidetheabove-listedstates,legalinitiativesrelatedtoAIsystemshavealsobeenundertakeninIsrael,Japan,China,Chile,Mexico,Peru,Singapore,andotherplaces[72 ].EUlegal

actsonartificialintelligencesystemsarecoveredinSection 3.3 ofthereport.

3.1.2Standards

TurningourattentionnexttoapproachestoAIfoundininternationalsoftlaw,variousnon-binding recommendationsandguidelineshavebeenpublishedtopromotethedevelopmentandadoptionofethical,responsible,andtrustworthyAI.Thesearegenerallyfoundedonprincipleslike privacy,explainability,impartiality,security,andbeinghuman-centered.

OneofsuchstandardsisISO/IEC22989establishingterminologyforAIanddescribingconcepts inthefieldofAI[73 ].CommonterminologyensuresbetterunderstandingofAIsystemsand isvitaltocooperation,regulation,adoptionofresponsibleAIsystems,andinformationsharing[74 ].TheISO/IEC23053standarddescribesartificialintelligencesystemsusingmachine learning[75 ].Thestandarddescribesthecomponentsofamachinelearningsystemandtheir functionsintheAIecosystem[74 ].

Next,theISO/IEC5259standardestablishesaframeworkforensuringdataqualityinanalytics andmachinelearning[76 77 ].ISO/IEC4213describestherequirementsforevaluatingclassificationperformanceinmachinelearning[78 ].Variousotherstandardsandframeworksalso exist,suchastheBSIvalidationframeworkBS30440:2023fortheuseofartificialintelligence withinhealthcare[79 ],theIEEEethicaldesignstandard[80 ],GoogleAIprinciples[81]andresponsibleAIpractices[82 ]andtheMicrosoftresponsibleAIstandard[83 ].

Adherencetostandardswillcontributetothesafety,quality,andreliabilityofproductsorservices;theycanalsohelpenhanceandimprovethecompany’ssystemsandprocesses.Standardsapplicabletothedifferentlifecyclesofartificialintelligencesystemsarecoveredinthe ENISAgoodcybersecuritypracticesforAIsystems[84 ].

3.2EUtrustworthyAIinitiative

OnApril8th,2019,theEUhigh-levelexpertgrouponartificialintelligence(AIHLEG)presented itsethicsguidelinesfortrustworthyAI[85 ]coveringanoverallframeworkforandimplementation andevaluationoftrustworthyartificialintelligence[86 ].Accordingtotheethicsguidelines,the lifecycleofatrustworthyAIsystemshouldbe[86 ]:

1. lawful–respectingallapplicablelawsandregulations;

2. ethical–respectingethicalprinciplesandvalues;and

3. robust–bothfromatechnicalperspectivewhiletakingintoaccountitssocialenvironment.

SectionIoftheguidelinessetsoutthethreemainethicalprinciplesfoundedonfundamental rights.First,thedevelopmentofAIsystemsmustrespecthumanautonomy,ensurethefairnessandexplainabilityofthesystem,andpreventharm.Thesecondprinciplerequirespaying particularattentiontosituationsinvolvingmorevulnerablegroups(suchaschildren,persons withdisabilities)andsituationswhicharecharacterisedbyasymmetriesofpowerorinformation.Finally,attentionisdrawntotherisksposedbyAIsystemsandtheadoptionofmeasures tomitigatetheserisks[86 ].

SectionIIoftheethicsguidelinespresentsanoverviewofhowtocreateatrustworthyAIsystem, andproposessevencriteriaorsuchasystem.

1. Aboveall,itisrecommendedtoensurethatthedevelopment,deploymentanduseofAIsystemsmeetsthesevenkeyrequirementsfortrustworthyAI: ’(1)humanagencyandoversight,

(2)technicalrobustnessandsafety,(3)privacyanddatagovernance,(4)transparency,(5) diversity,non-discriminationandfairness,(6)environmentalandsocietalwell-beingand(7) accountability.’ [86 ].

2. Usingbothtechnicalandnon-technicalmethodstoensuretheimplementationofthose requirementsisrecommended.

3. Researchandinnovationshouldbefosteredtoincreasetheamountofknowledgeavailable aboutAIsystems–amongotherthings,orthetrainingofnewAIethicsexperts.

4. ClearinformationshouldbeprovidedonthecapabilitiesandlimitsoftheAIsystemtoenable settingrealisticexpectations.

5. Systemsshouldbedevelopedtobeexplainabletofacilitatetheirauditabilitywhichmay proveparticularlyvitalincriticalsituations.

6. StakeholdersshouldbeinvolvedthroughouttheAIsystem’slifecycle,andpeopleshouldbe trainedtoincreasetheirawarenessoftrustworthyAI.

7. Ithastobetakenintoaccountthattensionsmightarisebetweenthedifferentprinciples andrequirementsfortrustworthyAI.Itisrecommendedtocontinuouslydocumentallconsiderations,trade-offs,anddecisions[86 ].

SectionIIIoftheethicsguidelinesprovidesanassessmentlistforoperationalisingtrustworthy AI,tobeadaptedbasedonthepurposeoftheAIsystem.Complianceshouldbeassessed, stakeholdersinvolved,andresultscontinuouslyimprovedthroughouttheentirelifecycleofan AIsystem[86 ].ThetrustworthinessofanAIsystemdependsonallofitsfeatures;unfortunately, theexhaustiveunderstandingofcompromisesbetweenthesefeaturesstillremainsanimportant unsolvedproblem[87 ].

Thefinalsectionoftheethicsguidelineselaboratesuponsomeoftheissuesaddressedinthe document,offeringexamplesofbeneficialopportunitiesthatshouldbepursued,anddiscussing criticalconcernsraisedbyAIsystemsthatshouldbecarefullyconsidered[86 ].TheEUhighlevelexpertgrouphasalsopublishedpolicyandinvestmentrecommendationsfortrustworthy artificialintelligenceexplaininghowtrustworthyAIshouldbedeveloped,deployed,promoted, andexpandedinEuropewhilemaximisingitsbenefitsandminimisingandpreventingpossible risks[88 89 ].OnJuly17th,2020,theAIHLEGadditionallypublishedtheirassessmentlistfor trustworthyAI(ALTAI)[90 ].TheALTAIisatoolthatfacilitatesevaluatingtheextenttowhich anAIsystemmeetstherequirementsfortrustworthyAI.Theseguidelinesarealsoavailablein aweb-basedtoolversion[91].

Theyalsopublishedadocumentonsectoralconsiderationsregardingpolicyandinvestment recommendations,analyzingthepotentialapplicationofrecommendationspreviouslypublished bytheAIHLEGinthreespecificsectors:(1)thepublicsector,(2)healthcare,(3)manufacturing andInternetofThings(IoT)[92 ].

Onthe19thofFebruaryin2020,theEuropeanCommissionpublishedareportonthesafetyand liabilityimplicationsofartificialintelligence,theInternetofThingsandrobotics[93 ].Allproducts andservicesmustoperatesafely,reliablyandconsistently,andanydamagemustberemedied –thesearethegoalsoflegalframeworksforsafetyandliability.AccordingtotheCommission, aclearsafetyandliabilityframeworkisparticularlyimportantwhennewtechnologiesemerge, bothwithaviewtoensureconsumerprotectionandlegalcertaintyforbusinesses[93 ].

Onthesameday,theECalsopublishedawhitepaperonartificialintelligence[94 ]discussing aspectsrelatedtothemostimportantoutputsofdataeconomy–artificialintelligence,acollectionoftechnologiesthatcombinedata,algorithmsandcomputingpower.Thewhitepaper

notesthattheuseofdigitaltechnologiesisbasedontrustanddiscusseshowactionneedsto besteppedupatmultiplelevelsinordertosupporttheuptakeofAI[94 ].

3.3EUproposalforanArtificialIntelligenceAct

AnumberoflegalproposalsrelatedtoAIhavebeenproposedintheEUwiththegoalofensuring thatartificialintelligencesystemsusedintheEUaresafe,transparent,ethical,impartial,and human-controllable[95 ].

InApril2021,theEuropeanCommissionpresentedaproposalforaregulationlayingdownharmonisedrulesonartificialintelligence(ArtificialIntelligenceAct)[57 ].Accordingtotheexplanatorymemorandum,theactwouldsetdownharmonisedrequirementsfollowingaproportionate risk-basedapproachtothedevelopment,placingonthemarket,anduseofAIsystemsinthe EU[57 ].OnDecember8th,2023,apoliticalagreementwasreachedonthefinaltextofthe act[96 97 ],followedbytechnicaldiscussionsonfinalisingthetext.Particularattentionwas paidtothequestionofathresholdforhigh-impactgeneral-purposeAI(GPAI)models,which wasdecidedtobeestablishedbasedonthecumulativeamountofcomputingpowerusedfor thetraining(10^25).HarmonisedstandardsfortheregulationofGPAImodelswillbedeveloped inthefuture[98 ].

OnJanuary26th,2024,theBelgianPresidencyoftheCounciloftheEUofficiallysharedthe finalcompromisetextoftheAIActwithmemberstates’representatives[99 ].OnFebruary2nd, 2024,theAIActwasadoptedbytheCommitteeofPermanentRepresentatives(COREPER).The compromisewasbasedonamulti-levelapproachcomprisinghorizontaltransparencyrulesfor allmodelsandadditionalrequirementsforAIsystemsposingapotentialsystemicrisk[98 ].

TheAIActproposal[57 ]servesfourmainobjectives.

1. ThefirstgoalistoensurethatAIsystemsplacedontheEUmarketandusedaresafeand meetexistinglawsandEUvalues.

2. Next,itshouldensurelegalcertaintytofacilitateinvestmentandinnovationinAI.

3. Third,itshouldenhancegovernanceandeffectiveenforcementofexistinglawonfundamentalrightsandsafetyrequirementsapplicabletoAIsystems.

4. Finally,itshouldfacilitatethedevelopmentofasinglemarketforlawful,safeandtrustworthy AIapplications.

Accordingtotheproposal,artificialintelligencesystemswouldbedividedintofourriskcategoriesinordertoestablishrequirementsconsistentwiththerisksinvolved(seeTable 3 ).In thecourseofthenegotiations,thetextoftheAIActwasamendedwithprovisionsconcerning non-systemicandsystemicrisksrelatedtogeneral-purposeAIsystems[99 ].

InthefinalcompromisetextoftheAIAct[99 ],anAIsystemisdefinedasamachine-based systemdesignedtooperatewithvaryinglevelsofautonomyandthatmayexhibitadaptiveness afterdeploymentandthat,forexplicitorimplicitobjectives,infers,fromtheinputitreceives, howtogenerateoutputssuchaspredictions,content,recommendations,ordecisionsthatcan influencephysicalorvirtualenvironments(SeeArticle3(1))1 .

1 Hereinafter,requirementsforAIsystemsarediscussedintheformtheyarefoundinthefinalcompromisetextof theAIAct,insofarastheofficialadoptedversionoftheregulationwasyettobepublishedintheOfficialJournalof theEUatthetimeofpreparingthisreport.Itmustbekeptinmindthatthespecificarticles,points,orrecitalsofthe compromisetextcitedheremaydifferfromthetextoftheAIActpublishedintheOfficialJournal,asthenumbering inthecompromisetexthasnotbeencorrected.–AccessibleontheInternet: https://data.consilium.europa. eu/doc/document/ST-5662-2024-INIT/en/pdf LastvisitedFebruary24th,2024

Thecitedcompromisetext[99 ]statesthatthepurposeoftheregulationistopromotetheuptakeofhuman-centeredandtrustworthyartificialintelligencewhilepromotinginnovationand ensuringahighlevelofprotectionofhealth,safety,fundamentalrights,democracy,ruleoflaw, andtheenvironmentagainstharmfuleffectsofartificialintelligencesystems.Theregulation setsoutharmonisedrequirementsforplacingonthemarket,puttingintouse,anduseofAIsystemsintheEU.Itprohibitscertainusesofartificialintelligence,laysdownspecificrequirements forhigh-riskAIsystems,andtheobligationsoftheoperatorsofsuchsystems.Italsosetsout harmonizedtransparencystandardsforcertainAIsystems,andrequirementsfortheplacingon themarketofgeneral-purposeAImodels.Theregulationalsolaysoutrulesformarketsurveillanceandmonitoringandmeasuresforsupportinginnovation,withamainfocusonsmalland mediumenterprises,includingstarts-ups.

3.3.1PersonsfallingwithinthescopeoftheAIAct

ThefollowingpersonsfallwithinthescopeoftheAIAct:

1. providersplacingAIsystemsonthemarketintheEUorusingthemintheirservicesorplacingonthemarketageneral-purposeAImodel,irrespectiveofwhethertheyareestablished orlocatedwithintheEUorinathirdcountry;

2. deployersofAIsystemsoperatingorestablishedwithintheEU;

3. providersanddeployersofAIsystemsoperatingorlocatedinathirdcountry,totheextent thattheoutputoftheirAIsystemisusedwithintheEU;

4. importersordistributorsofAIsystems;

5. productmanufacturerswhoareplacingonthemarketorputtingintouseAIsystemsalong withtheirproductundertheirnameortrademark;

6. authorisedrepresentativesofprovidersestablishedoutsidetheEUand

7. affectedpersonslocatedwithintheEU.

Article3oftheAIActsetsoutanumberofnewterms,includingthedefinitionsofdeepfakesand AIliteracy,aswellastraining,validation,testing,andinputdata.AIliteracyiseventhesubject ofaseparatearticle(Article4b)thatobligatestheprovidersanddeployersofAIsystemstotake measuresto,e.g.,ensureasufficientlevelofAIliteracyoftheirstaffandotherpersonsdealing withtheoperationanduseofAIsystems.

Below,wehavepresentedsomeofthemoreimportantrequirementsforAIstakeholdersfound inthefinalcompromisetextoftheAIAct[99 ].

3.3.2ExclusionsfromthescopeoftheAIAct

TheregulationdoesnotapplytodeployerswhoarenaturalpersonsusingAIsystemsinthe courseofapurelypersonalnon-professionalactivity.Italsodoesnotapplyto,e.g.,AIsystems usedsolelyformilitary,defenceornationalsecuritypurposes.Excludedfromthescopeof theAIActarealsoAIsystemsandmodels,includingtheoutputsofsuchmodels,specifically developedandputintoserviceforthesolepurposeofscientificresearchanddevelopment.It alsodoesnotapplytoscientificresearch,testinganddevelopmentactivityonAIsystemsor modelspriortobeingplacedonthemarketorputintoservice,withoutprejudicetothetesting ofAIsystemsinreal-lifeconditions.Finally,thescopeoftheregulationdoesnotincludeAI systemsreleasedunderfreeandopensourcelicences,withoutprejudicetosystemsplacedon themarketorputintoservicease.g.,high-riskAIsystems.

3.3.3Prohibitedartificialintelligencepracticesanduses

TheregulationprohibitsanumberofAIpractices(seeArticle5fordetails).TheseincludeprohibitionsonusesofAIsystemsthatpurposefullymanipulatewithapersonwiththeobjectiveto distorttheirbehaviourandappreciablyimpairtheperson’sabilitytomakeaninformeddecision. TheregulationalsoprohibitsAIsystemsexploitinganyofthevulnerabilitiesofapersonora specificgroupofpersonsduetotheirage,disabilityoraspecificsocialoreconomicsituation. Anotherprohibitionisrelatedtotheuseofbiometriccategorisationsystemsthatcategorisenaturalpersonsbasedontheirbiometricdatatodeduceorinfertheirrace,politicalopinions,trade unionmembership,religiousorphilosophicalbeliefs,sexlifeorsexualorientation.AIsystems arealsonotallowedtobeusedfortheclassificationofnaturalpersonsbasedontheirsocial behaviourorpersonalitycharacteristicsalongwithasocialscoreleadingtothedetrimentalor unfavourabletreatmentoftheperson.

3.3.4Criteriaforhigh-riskAIsystems

CriteriafortheclassificationofAIsystemsashigh-riskarelaidoutinArticle6oftheregulation proposal.Forexample,anAIsystemisalwaysconsideredahigh-risksystemifitisintended fortheprofilingofnaturalpersons.AproviderwhoconsidersthatanAIsystemreferredto inAnnexIIIisnothigh-riskmustdocumentitsassessmentbeforethatsystemisplacedon themarketorputintoservice.Suchproviderissubjecttotheregistrationobligationsetoutin Article51(1a)anduponrequestofnationalcompetentauthorities,theprovidermustprovidethe documentationoftheassessment.Nolaterthan18monthsaftertheentryintoforceoftheAI Act,theEuropeanCommissionmustprovideguidelinesspecifyingthepracticalimplementation ofArticle6completedbyacomprehensivelistofpracticalexamplesofhighriskandnon-high riskusecasesonAIsystems.

Article9setsoutrequirementsforriskmanagementsystemsforhigh-riskAIsystems.According topoint2inthearticle,theriskmanagementsystemisunderstoodasacontinuousiterative processplannedandrunthroughouttheentirelifecycleofahigh-riskAIsystem,requiringregular systematicreviewandupdating.Itcomprisesthefollowingsteps:

a) identificationandanalysisoftheknownandthereasonablyforeseeablerisksthatthehighriskAIsystemcanposetothehealth,safetyorfundamentalrightswhenthehigh-riskAI systemisusedinaccordancewithitsintendedpurpose;

b) estimationandevaluationoftherisksthatmayemergewhenthehigh-riskAIsystemisused inaccordancewithitsintendedpurposeandunderconditionsofreasonablyforeseeable misuse;

c) evaluationofotherpossiblyarisingrisksbasedontheanalysisofdatagatheredfromthe post-marketmonitoringsystem(seeArticle61)and

d) adoptionofappropriateriskmanagementmeasures.

High-riskAIsystemsmustmeettherequirementssetoutintheAIAct(seeChapter2),taking intoconsiderationthepurposeofsuchsystems,aswellasthelevelofAIandrelatedtechnologies.Morespecifically,theriskmanagementmeasuresmustbesuchthatrelevantresidual riskassociatedwitheachhazardaswellastheoverallresidualriskisjudgedtobeacceptable (Article9(4)).

High-riskAIsystemsmustalsobetestedforthepurposesofidentifyingthemostappropriateriskmanagementmeasures(Article9(5)).Testingproceduresmayincludetestinginreal

worldconditions(Article9(6);seealsoArticle54a).Considerationmustalsobegivenpotential impactstopersonsundertheageof18andothervulnerablegroupsofpeople(Article9(8)).

High-riskAIsystemswhichmakeuseoftechniquesinvolvingthetrainingofmodelswithdata mustbedevelopedonthebasisoftraining,validationandtestingdatasetsthatmeetthequality criteriasetoutintheAIAct(Article10(1)).Training,validationandtestingdatasetsmustalsobe subjecttoappropriatedatagovernanceandmanagementpracticesappropriatefortheintended purposeoftheAIsystem,e.g.,todetect,preventandmitigatepossiblebiases(Article10(2)(fa)).

Training,validationandtestingdatasetsmustberelevant,sufficientlyrepresentative,and,to thebestextentpossible,freeoferrorsandcompleteinviewoftheintendedpurpose,aswell aspossessingtheappropriatestatisticalproperties(Article10(3)).

Theprocessingofspecialcategoriesofpersonaldataforthepurposesofensuringbiasdetectionandcorrectioninhigh-riskAIsystemissubjecttostrictregulation.ItmustmeetallEUdata protectionregulationsandforsuchprocessingtooccur,criteriasetoutinpoints(a)–(f)ofArticle 10(5)mustbefulfilled.First,itmustbeexplainedwhythebiasdetectionandcorrectioncannot beeffectivelyfulfilledbyprocessingotherdata,includingsyntheticoranonymiseddata.

Specialcategoriesofdatamustbeprocessedusingstate-of-the-artsecurityandprivacy-preserving measures,includingpseudonymisation,orprivacyenhancingtechnologies.Measuresmustbe takentoensurethesecurityofthedata,includingincludingstrictcontrolsanddocumentation oftheaccesstoavoidmisuseandensureonlyauthorisedpersonshaveaccesstothosepersonaldatawithappropriateconfidentialityobligations.Suchdataarenottobetransmitted, transferredorotherwiseaccessedbyotherparties.Thedatamustbedeletedoncethebias hasbeencorrectedorthepersonaldatahasreachedtheendofitsretentionperiod,whatever comesfirst.

Thetechnicaldocumentationofahigh-riskAIsystemmustbedrawnupbeforethesystemis placedonthemarketorputintoserviceandhastobekeptup-todate.Thedocumentationmust contain,ataminimum,theelementssetoutinAnnexIV(Article11(1)).High-riskAIsystemsmust technicallyallowfortheautomaticrecordingofevents(logs)overthedurationofthelifetimeof thesystem(Article12(1)).

High-riskAIsystemsmustbedesignedanddevelopedinsuchawaytoensurethattheiroperationissufficientlytransparenttoenabledeployerstointerpretthesystem’soutputanduse itappropriately(Article13(1)).High-riskAIsystemsmustbeaccompaniedbyinstructionsfor useinanappropriatedigitalformatorotherwisethatincludeconcise,complete,correctand clearinformationthatisrelevant,accessibleandcomprehensibletousers(Article13(2)).Said instructionsmustcorrespondtotheminimalrequirementssetoutinArticle13(3)oftheregulation.

High-riskAIsystemsmustbeequippedwithmeanstoensurethattheycanbeeffectivelyoverseenbyhumansduringtheperiodinwhichtheAIsystemisinuse(seehumanoversightrequirementsandprinciplessetoutinArticle14).Forexample,humansneedtobeabletointervenein theoperationofahigh-riskAIsystemorinterrupttheoperationofthesystemthrougha’stop’ buttonorasimilarprocedure(Article14(4)(e)).

High-riskAIsystemsmustbedesignedanddevelopedinsuchawaythattheyachieveanappropriatelevelofaccuracy,robustness,andcybersecurity,andperformconsistentlyinthose respectsthroughouttheirlifecycle(Article15(1)).Suchsystemsneedtoberesilientasregards toattemptsbyunauthorisedthirdpartiestoaltertheiruse,outputsorperformance(Article 15(4)).

Article21oftheregulationmandatesthatprovidersofhigh-riskAIsystemswhichhavereason toconsiderthatahigh-riskAIsystemwhichtheyhaveplacedonthemarketorputintoservice isnotinconformitywiththeAIActmustimmediatelytakethenecessarycorrectiveactions,e.g., tobringthatsystemintoconformityortodisableit.Theprovidermustalsoinformdistributors and,ifapplicable,deployers,authorisedrepresentatives,andimportersofthesystem.

3.3.5RequirementsforparticipantsintheAIvaluechain

TheAIActalsosetsoutavarietyofrequirementsforotherAIsystemstakeholders,suchasdeployers,authorisedrepresentativesofnon-EUproviders,importers,andmarketers.Itisthereforeimportanttoassessanyspecificperson’sroleintheAIvaluechaininaccordancewiththe AIActtoidentifythespecificrequirementstheyneedtofollow.

TheAIActisanewadditiontotheEUlaw;thenewnormsandthoseimplementingthesenorms thusneedsometimetoadapttothenewsituation.Thiswillhopefullybefacilitatedbythe EuropeanAIOffice–thecentreofAIexpertiseacrosstheEU.TheAIOfficeplaysacentralrole intheimplementationoftheAIAct,supportingthedevelopmentanduseoftrustworthyAIand internationalcooperation[100 ].

3.4AILiabilityDirectiveproposal

InordertomitigateAI-relatedrisks,theAIActproposalwasfollowedbyaproposalforadirective onAIliabilityinSeptember2022[101],theaimofwhichistoensurethatpersonsharmedby AIsystemshavereasonablemeansavailableforprotectingtheirrights.Thedirectivewould harmonisenationalnormsfornon-contractualliability.Itisalsomeanttoincreaselegalcertainty forbusinessesdevelopingorusingartificialintelligence.

Oneofthemeasuresforeseenbythedirectiveistoexpediatecourtproceedingsforvictimswho havebeenharmedbyanAIsystem.Thevictimswillbeabletoclaimcompensationbothindividuallyorcollectively,asappropriate.Ifaviolationhastakenplaceandapotentialcausallink existstoanAIsystem,arebuttablepresumptionofcausalitywillbeapplied.Morespecifically, apresumptionofcausalitycanonlybeappliedwhenitcanbeconsideredlikelythatthegiven faulthasinfluencedtherelevantAIsystemoutputorlackthereof,whichcanbeassessedonthe basisoftheoverallcircumstancesofthecase.Atthesametime,theclaimantstillhastoprove thattheAIsystem(i.e.itsoutputorfailuretoproduceone)gaverisetothedamage[101].

Theproposeddirectivewillalsoprovidebetteropportunitiesforensuringlegalprotection.For instance,acourtmayorderthedisclosureofrelevantevidencetoavictimtodeterminethe causeofthedamageandidentifywhichpersonisliableforcompensatingthedamage.

3.5Productsafety

Regulation(EU)2023/988oftheEuropeanParliamentandoftheCouncilofMay10th,2023 ongeneralproductsafety[102 ]laysdownessentialrulesonthesafetyofconsumerproducts placedormadeavailableonthemarket(Regulation(EU)2023/988,Article1(2)).Recital5of theregulationnotesthat ’[d]angerousproductscanhaveverynegativeconsequencesforconsumersandcitizens.Allconsumers,includingthemostvulnerable,suchaschildren,olderpersonsorpersonswithdisabilities,havetherighttosafeproducts.Consumersshouldhaveat theirdisposalsufficientmeanstoenforcethatrightandMemberStatesshouldhaveadequate instrumentsandmeasuresattheirdisposaltoenforcethisRegulation’.

OnSeptember28th,2022,theEuropeanCommissionpublishedaproposalforenactingadirectiveonliabilityfordefectiveproducts[103 ].Theobjectiveofthisdirectiveistolaydownthe rulesgoverningtheliabilityofeconomicoperatorsfordamagecausedbydefectiveproducts andtheconditionsunderwhichnaturalpersonshavearighttocompensation.Thedirective alsoforeseessolidaryliability.Accordingtothedirective,economicoperatorsareliablefor defectiveproductsfor10yearsfollowingplacingtheproductonthemarket.

Theexplanatorymemorandumfortheproposeddirectiveexplainsthatoneofitsobjectivesis alsotoensureliabilityfordefectsinartificialintelligencesystemswhichhavecausedphysical harm,propertydamage,ordataloss.InsuchsituationstheuserwillhavetherighttoseekcompensationfromtheprovideroftheAIsystemoranymanufacturerintegratinganAIsysteminto anotherproduct.Thescopeoftheproposalalsoincludessoftwareproviders,businessesthat makesubstantialmodificationstoproducts,authorisedrepresentatives,andfulfilmentservice providers,givinginjuredpersonsabetterchanceofbeingcompensatedfordamagesuffered 2 .

3.6Intellectualproperty

Thepurposeofintellectualpropertylawistoprotectthecreationsofthemind.Generativeartificialintelligencehaschangedthesociety’sunderstandingofcreativityandpropertyrights, raisingquestionsregardinghumaninputandintellectualproperty[104 ].Atthetimeofpreparingthisreport,theinteractionsbetweenintellectualpropertyrightsandartificialintelligence havebecomeoneofthemainareasofdevelopmentofintellectualpropertylaw,mainlythanks todevelopmentsrelatedtoAI,initialrelevantcaselaw,andpoliticalinitiativesundertakenby internationalorganisationandlegislators[105 ].

Inrecentyears,legalscholarshaveincreasinglyturnedtheirattentiontoissuesrelatedtoartificialintelligenceandintellectualproperty.Thiscanbedividedintotwomaincategories.

1. Legalprotectionforautomatedcreation–e.g.arethereanycircumstancesunderwhichAIgeneratedworkscouldbesubjecttocopyrightorinventionstheyhavecreatedbepatented?

2. Intellectualpropertyviolations–e.g.howtoefficientlyprotecttheholdersofintellectual propertyrightsfromthedevelopersofartificialintelligencesystemswhouseworksprotectedunderintellectualpropertylawfortrainingtheirAIsystemswithouttherightsholder’s knowledgeand/orconsent?

GenerativeAIcapableofwritingcohesivetexts,creatingartorarchitecturaldesignshasgiven risetoallmannersofquestionsregardingthenatureofintellectualpropertyandhasbecomea causeforlegaldisputes.ExamplesexistofbothcasesofauthorstakinglegalactionagainstAI developerswhohaveusedprohibiteddataorworksfordevelopingtheirAIsystems(e.g.used copyrightedtexts,images,etc.withoutpermission)[106 107 ],aswellascasesofintellectual propertyrightsbeingclaimedforAI-generatedworks[108 ].

CurrentintellectualpropertylawgenerallygivesnoconsiderationstocreatorslikeAIsystems. Theregimeinplacetodaywascreatedtopromotehumancreationandinnovation.Fromtheperspectiveoftheintellectualpropertysystem,AI’sautonomyraisesfundamentalquestionsabout allformsofintellectualpropertyrights[109 ].Meanwhile,stronginteractionsandcorrelationcan beobservedbetweenAIsystemsandintellectualpropertylaw[110 ].Inmostcases,thefollowingtwoprinciplesareconsideredcritical:theoriginalityofthework,thedichotomyofideaand expression,andrenderingtheaboveinahuman-perceptibleform[111].

Thus,inaccordancewithSection4(2)oftheEstonianCopyrightAct,worksmean ’anyoriginal

2 Seeexplanatorymemorandumfortheproposeddirective,Section1.2andChapter2.

resultsintheliterary,artisticorscientificdomainwhichareexpressedinanobjectiveformand canbeperceivedandreproducedinthisformeitherdirectlyorbymeansoftechnicaldevices. Aworkisoriginalifitistheauthor’sownintellectualcreation.’ Oneoftheproposedsolutionsto theseissuesistheadoptionofahybridownershipmodel(AiLE)[111].Otherhave,meanwhile, foundthattheadditionofnewlayerstotheexistingintellectualpropertyrightssystemisnota goodsolutionforbalancingthesocialimpactoftechnologicalprogress[112 ],andthatthecreationsofAIarenotprotectable[113 ].TheEuropeanParliamentfindsitimportanttodistinguish betweenAI-assistedhumancreationsandcreationsautonomouslygeneratedbyAI[114 ].

TimewilltellwhatthefuturewillbringforintellectualpropertyrightsasAIsystemscontinueto develop.Itisclear,however,thatthereisanabundanceofdifferentopinionsregardingintellectualpropertyrightsandtherearecurrentlynosimplesolutionsonoffer.Itcannotevenbe ruledoutthatnowisnottherighttimetomakesuchdecisions,thatdevelopmentsrelatedto AIsystemsrequirecarefulconsiderationandacertainlevelofmaturityfromthesocietybefore anychangesaremadetofunctionallegalsystems.

3.7Legalrequirementsforcybersecurity

Justlikewithotherinformationsystems,thesecurityofartificialintelligencesystemsstarts fromensuringconfidentiality,availability,andintegrity.Dependingontheirroles,contexts,and operationalcapability,AIstakeholdersshouldapplysystematicriskmanagementineverystage oftheAIsystem’slifecycleinordertohandleriskstoprivacy,digitalsecurityandsafety,andto preventalgorithmicbias[25 ].

InaccordancewithOECDrecommendations,AIsystemsshouldremainsecure,reliable,andsafe throughouttheirentirelifecycle.Thisappliestobothroutineandplanneduseaswellasabuse andunfavourableconditions.EnsuringthemonitorabilityoftheAIsystemiscriticalforensuring theabove.Itappliesequallytothedataordatasetsused,variousprocessesanddecisions,and allowsperformingcontext-specificanalysesoftheoperationofanAIsystem,e.g.itsoutputs orreactionstoqueries[25 ].

ENISAliststhefollowingtypesofthreatstoICTinfrastructures[84 ]:

• adversarialthreats–theseareresultsofmaliciousintentions(e.g.denialofserviceattacks, non-authorisedaccess,masqueradingofidentity);

• accidentalthreats–thesearecausedaccidentally,e.g.throughhumanerror,orthrough legitimatecomponents.Usually,theyoccurduringtheconfigurationoroperationofdevices orinformationsystems,ortheexecutionofprocesses;

• environmentalthreats–theseincludenaturaldisasters(floods,earthquakes),human-caused disasters(fire,explosions),andfailuresofsupportinginfrastructures(poweroutage,communicationloss);

• vulnerabilities–existingweaknessesofAIsystemsthatmightbeexploitedbyanadversary. VariouslegalactshavebeenenactedinEuropetoreacttosuchthreats.TheSecondCybersecurityDirective(NIS2)[21]andtheCybersecurityAct[115 ]areconsideredtobethetwomost importantlegalactsoncybersecurityinEurope.AnotherkeylegalactistheGeneralDataProtectionRegulation(GDPR)[59 ].Saidlegalactsstresstheimportanceofsupplychainsecurity, privacy,andprotectionofpersonaldata,allofwhicharealsocentralthelifecycleofartificial intelligencesystems[84 ].

TheNIS2DirectiveenteredintoforceonJanuary16th,2023andalsocoversartificialintelligence systems.Morespecifically,thedirectiveseekstopromotetheuseofAIfor,e.g.,thediscovery

andpreventionofcyberattacks,andtheplanningofrelevantresources 3 .Essentialandimportantentitiesarerecommendedtoadoptbasiccyberhygienepracticesand,whereappropriate, integrateartificialintelligenceormachine-learningtechnologiestoenhancesecurity 4 .NIS2also requiresAIusetocomplywithEUdataprotectionlaw,includingincludingthedataprotection principlesofdataaccuracy,dataminimisation,fairnessandtransparency,anddatasecurity, suchasstate-of-the-artcryptography.TherequirementsofintegratedanddefaultdataprotectionlaiddownintheGDPRmustalsobefollowed[21].AnoverviewofNIS2canbefoundon thewebsiteofCentreforCybersecurityBelgium[116 ].

AproposalforaregulationoftheEuropeanParliamentandoftheCouncilononhorizontalcybersecurityrequirementsforproductswithdigitalelements(alsoknownastheCyberResilience ActortheCRA)introducesaEuropeancybersecuritycertificationframeworkforproductsand services[117 ].Thenecessityforsuchregulationisexplainedwiththelowlevelofcybersecurity ofproducts,servicesandaninsufficientunderstandingandaccesstoinformationbyuserson thesecurityoftheseproductsandservices.Article8oftheCRAlaysdownrequirementsfor high-riskAIsystems.

CybersecurityalsooccupiesacentralplaceintheAIActproposal[118 ].Forinstance,itplaysan importantroleinensuringtheresilienceofartificialintelligencesystemstoattemptstochange theiruse,behaviourorperformance,orputtheirsecurityfeaturesatriskbymaliciousthird partiesseekingtoexploitthesystem’svulnerabilities.Adversariesmaythustarget,e.g.,training data(datapoisoning),thetrainedmodels(adversarialattacksorre-identificationattacks),or exploitthevulnerabilitiesoftheAIsystem’sdigitalassetsortheunderlyingITinfrastructure. Adequateandefficientmeasuresaccountingforthecurrentleveloftechnologymustbetaken toensurerisk-appropriatecybersecurity.

3.8Dataprotectionandprivacy

Dataandprivacyenhancementconsiderationsmustbetakenintoaccountwhereverpersonal dataareprocessedinanystageoftheAIsystem’slifecycle(e.g.,intrainingorapplication).The mainlegalactregulatingtheprocessingofpersonaldataintheEUistheGeneralDataProtectionRegulation[59 ].OnJuly4th,2023,theEuropeanCommissionpublishedaproposalfora regulationlayingdownadditionalproceduralrulesrelatingtotheenforcementoftheGDPR[119 ]. Specialruleshavealsobeenestablishedforlawenforcementauthorities[120 ]andEUinstitutions[121].

Nationaldataprotectionandprivacynormsalsohavetobetakenintoconsideration,andin somecases,sectoralrequirementsmayalsoapply.Accordingly,foreachspecificsectorand activity,itisvitaltoconsiderthespecialnormsoftherelevantfieldalongsiderequirementsset outintheGDPR.Conditionsagreeduponbydifferentparties(e.g.,contracts,dataprotection agreements,termsofservice)mustalsobetakenintoaccount.

Thedeploymentofartificialintelligencedemandssolutionsforcomplexlegalproblems.Privacy anddataprotectionareafewofthemosturgentissues,especiallyinthelightofGDPRrules. TheGDPRintroduceshighstandardsfordataprotectionwhich,inturn,haveagreatimpacton AIsystemsdependentonlargeamountsofdata[122 ].ToensureanAIsystem’scompliancewith dataprotectionrequirements,itmusttakeintoaccountthepersonaldataprocessingprinciples laidoutinGDPRArticle5(1).Thecontrollerisresponsibleformustbeabletodemonstrate compliancewiththeseprinciples(GDPRArticle5(2)).Personaldatamustbe:

3 SeeNIS2,recital51.

4 SeeNIS2,recital89.

(a) processedlawfully,fairlyandinatransparentmannerinrelationtothedatasubject(‘lawfulness,fairnessandtransparency’);

(b) collectedforspecified,explicitandlegitimatepurposesandnotfurtherprocessed inamannerthatisincompatiblewiththosepurposes;furtherprocessingforarchivingpurposesinthepublicinterest,scientificorhistoricalresearchpurposesor statisticalpurposesshall,inaccordancewithArticle89(1),notbeconsideredto beincompatiblewiththeinitialpurposes(‘purposelimitation’);

(c) adequate,relevantandlimitedtowhatisnecessaryinrelationtothepurposesfor whichtheyareprocessed(‘dataminimisation’)

(d) accurateand,wherenecessary,keptuptodate;everyreasonablestepmustbe takentoensurethatpersonaldatathatareinaccurate,havingregardtothepurposesforwhichtheyareprocessed,areerasedorrectifiedwithoutdelay(‘accuracy’);

(e) keptinaformwhichpermitsidentificationofdatasubjectsfornolongerthanis necessaryforthepurposesforwhichthepersonaldataareprocessed;personal datamaybestoredforlongerperiodsinsofarasthepersonaldatawillbeprocessedsolelyforarchivingpurposesinthepublicinterest,scientificorhistorical researchpurposesorstatisticalpurposesinaccordancewithArticle89(1)subjecttoimplementationoftheappropriatetechnicalandorganisationalmeasures requiredbythisRegulationinordertosafeguardtherightsandfreedomsofthe datasubject(‘storagelimitation’)

(f) processedinamannerthatensuresappropriatesecurityofthepersonaldata, includingprotectionagainstunauthorisedorunlawfulprocessingandagainstaccidentalloss,destructionordamage,usingappropriatetechnicalororganisational measures(‘integrityandconfidentiality’)

ConsideringthesizeofdatasetsusedfordevelopingandtestingAIsystems,itmayprovedifficulttoensurethecomplianceofAIsystemswithcertaindataprotectionrules(e.g.,dataminimisation,purposeandstoragelimitations).Therapiddevelopmentofgenerativeartificialintelligenceandlargelanguagemodelshasposedthequestionofadaptingexistingdataprotection rulesinthisnewcontext.

Differentdataprotectionauthoritieshavepublishedguidancedocumentsonfollowingdataprotectionprinciplesandrulesinthedevelopment,deployment,anduseofAIsystems.Someof theseauthoritiesincludetheFrenchNationalCommissiononInformaticsandLiberty(CNIL)[123 ] andtheUKInformationCommissioner’sOffice(ICO)[124 ].Inearly2024,theICOalsolaunched aseriesofconsultationsongenerativeAIwiththeobjectiveofdetermininghowdataprotectionrulesshouldbeappliedinthedevelopmentanduseofAItechnology[125 ].Theconsultationsstudyvariousaspectsrelatedtodataprotection,e.g.,traininggenerativeAImodelson web-scrapeddata,accuracyofgenerativeAIoutputs,implementationofthepurposelimitation principle,guaranteeingdatasubjects’rights[126 ].Theconsultationswillbeusedtopublish relevantrecommendations.

PrivacyanddataprotectionneedtobeensuredthroughouttheentirelifecycleofanAIsystem[45 ].Privacyanddataprotectionareespeciallyimportantduetothefactthatbehavioural datamaypermitAIsystemstoinfernotjustaperson’spreferencesbutalsootherpersonaland relativelyprivateinformation,e.g.,sexualorientation,age,gender,religiousbeliefsorpolitical views.ItisthereforevitalforAIsystemstoensurethatprivacyanddataprotectionrequirementsaremetnotonlyinthecaseoftheinitialdataprovidedbythesystem’suserbutalso thedataproducedinthecourseofusingthesystem(outputs,reactionstorecommendations,

etc.).Anykindofunlawfulandunfairdiscriminationonthebasisofdatamustbeoutruled[45 ]. TherehavebeencaseswhereAIsystemshaveleakedsensitiveinformation,e.g.,conversation histories[87 ].

TheEUAIHLEGhasfoundthatprivacyissuesarecloselytiedtotheprincipleofpreventionof harm.Relevantdatamanagementmeasuresmustbeappliedtoensureprivacy,whichincludes managingthequalityandintegrityofthedatabeingused,andaccessprotocols[45 ].

TheAIActproposalincludesanassessmentoftheneedarisingincertainsituationstoconductevaluationsoftheimpactofAIsystemsonfundamentalrightsandtocarryoutadata protectionimpactassessment[118 ].Theproposalfindsthattheconductionofsuchimpactassessmentsmustbeplannedasapartofanoverarchingprocessinordertoreduceredundancy andunnecessaryadministrativeburden.ThefutureAIOfficewouldbetaskedwithdeveloping aquestionnairethatthedeployersofAIsystemscouldusetomeettherelevantcriteria[118 ].In anycase,thedevelopmentanduseofAIsystemsmustcomplywithexistingprivacyanddata protectionrules.

SinceAIsystemsarefoundedondata,thequalityofthisdataiscritical.Dataqualityisalso importantforthecreationofthestructureofAIsystemsandensuringtheiroperability.Training, validation,andtestdatamustberelevant,sufficientlyrepresentative,maximallyerror-freeand completefromthepointofviewofthepurposeoftheAIsystem.Therequirementfordatasets tobemaximallycompleteanderror-freeshouldnotimpacttheuseofprivacy-preservingtechnologiesinthecontextofthedevelopmentandtestingofAIsystems[118 ].

Itmustalsobetakenintoaccountthatthecompilationofdatasetsmustbebasedonthelawful useofdataincompliancewithdataprotectionregulations[127 ].Theprocessingofpersonal dataisonlylawfulifatleastoneoftheconditionsofGDPRArticle6(1)(pointsa–f)ismet.There havebeencaseswherecompetentauthoritieshavedemandedthedeletionofmodelsbased onunlawfullycollecteddata[128 ].Inordertopreventanyformofdiscrimination,thedatasets shouldalsopossesstherelevantstatisticalpropertiesandaccountforfeaturescharacteristic tothespecificsituationorgroupofpersons.

InordertocomplywithGDPRrequirements,anartificialintelligencesystemmustbedeveloped, trained,andputintoservicewithaclearlydefinedpurpose.TheFrenchNationalCommission onInformaticsandLiberty(CNIL)recommendsthepurposeoftheAItobedeterminedinthe earlyplanningstagesoftheprojec.Thepurposeofthesystemmustbelawful,clear,andunderstandable,andusablefordeterminingwhichkindsofdataneedtobeprocessedforthis specificpurpose,aswellashowlongtheywillhavetoberetainedinordertoachievetheenvisagedobjective[127 ].

Eventhoughtheprincipleoflimitedpurposerequiresusingpersonaldataonlyforachievinga specificpredeterminedgoal,thismayprovecomplicatedinthecaseofanAIsystem.TheCNIL hasfoundthatatthealgorithmtrainingstageitisnotalwayspossibletodefineallthepossible futureusesoftheartificialintelligence;nevertheless,thetypeandmainpotentialfunctionsof thesystemshouldstillbedefinedasclearlyaspossible[129 ].

DiscussionsrevolvingaroundtheextraterritorialenforcementoftheGDPRgivereasontobelieve thatthejurisdictionalmodelimplementedinsaidregulationwhichhasalsobeenintroducedinto theEUAIActmaynotbeapplicableinpractice[130 , 131, 132 , 133 ].AccordingtoArticle3(2), points(a)and(b)oftheGDPR,theregulationalsoappliestotheprocessingofpersonaldata ofdatasubjectswhoareintheEUbyacontrollerorprocessornotestablishedintheEUifthe processingisrelatedtotheofferingofgoodsorservicestosuchdatasubjectsintheEUorthe monitoringoftheirbehaviourasfarastheirbehaviourtakesplacewithintheEU.

InthecourseoftheimplementationoftheGDPR,therehavebeennumerousdisputesover specificallytheprocessingofpersonaldatabycontrollersorprocessorswhofallwithinthe scopeofArticle3(2)oftheGDPRbutwhorefusetocooperatewithEuropeandataprotection authoritiesordonotrecognisetheEU’sjurisdiction(see,e.g.,theClearviewAIcase)[134 , 132 ]. TheAIActproposalalsousesanapproachsimilartotheGDPRwherebusinessesfromnonEUstatesareincludedwithinthescopeoftheregulation(seeArticle2(1)(c))[99 ].Inpractice, competentauthoritiesmaybefacingproblemssimilartothosethathaveariseninconnection totheextraterritorialenforcementoftheGDPR.

Thetransferofpersonaldatatonon-EUstatesandinternationalorganisationsisregulatedby ChapterVoftheGDPR.Thetransferofdataisgenerallypermittedonlyifsuitablelegalgrounds existforsuchtransfer(GDPR,Articles6and9)andrelevantandefficientprotectionmeasures aretaken[135 ].Article45oftheGDPRgivestheEuropeanCommissiontherighttodetermine whetheranon-EUstateorinternationalorganisationprovidesanadequatelevelofdataprotection[136 , 137 ].Forexample,inJuly2023,theCommissionadoptedanadequacydecisionfor theEU-USDataPrivacyFramework[138 ]5 .TheexistenceofarelevantdecisionbytheCommissionremovestheneedforaspecificauthorisationforthetransferofdata(GDPR,Article45(1)). EEAstates(Norway,Iceland,Liechtenstein)areconsideredtobestateswithanadequatelevel ofdataprotection.

Additionalsafeguardsmustbeimplementedwhentransferringdatatostateslackinganadequatelevelofdataprotection(see,e.g.[139 ]),oroneofthederogationslaiddownintheGDPR mustbeapplicable(GDPR,articles46–49)[140 ].TheEuropeanDataProtectionBoard(EDPB) hasfoundthatincertainsituationsremoteaccessfromanon-EUstate(e.g.,supportservices, troubleshooting),aswellasstorageinacloudsituatedoutsidetheEEAmaybeconsideredto beatransferinthemeaningoftheGDPR[141].Itisthereforestrictlyadvisabletoplanoutthe AIinfrastructurebeforeenteringintoanyagreementswithserviceprovidersinordertoavoid laterlegaldisputesorsanctions.

3.9Importanceofthelegalframework

PersonscentraltothelifecycleofanAIsystemneedtobeup-to-dateonthelegalandregulatory requirementsshapingthelegalframeworktheyoperatein.Thisdeterminestherequirements thattheAIsystemaswellasthepersonoperatingthesystemmustmeet.Variousaspects ofadministeringandmanagingprocessesrelatedtotheAIsystem,suchasthedevelopment, testing,andmonitoringofthesystemarealsotiedtotheabove.

Aholisticapproachtoinformationtechnology,security,andlegalissuesisincreasinglyimportant fororganisations.Thisalsomeansclosecooperationbetweenpeoplefulfillingtherelevantroles fromthestageofdesigninganAIsystemtotheendofitslifecycle.This,inturn,facilitates expandinglegalspecialists’knowledgeoftechnologyandviceversa,thuscontributingtoan increaseoforganisationalknowledge.

Thegreatertheawarenessoftherequirementsrelatedtothelegalframework–evenatthe stageofdesigninganAIsystem–andthemoresaidrequirementsareactuallyadheredto,the smallertheprobabilityoftheoccurrenceofundesirablescenarios.Meanwhile,itmustbetaken intoaccountthatAIlawisstillfarfrommatureandthelegalenvironmentcanbeexpectedto continuetochange.

5 EarliersimilaragreementsanddecisionsbetweentheEUandtheUShaverepeatedlybeendeclaredvoid.We recommendthereadersofthisreporttomonitorthecurrentlegalsituationbeforetransferringEUcitizens’datato theUS.

4AIapplicationdeploymentmodels

4.1Introduction

DevelopersofAIapplicationscanchoosefromavarietyofarchetypeswhendeployingtheir apps.ThebiggestdifferenceisinthewaytheAImodelisusedbytheapp.SomeAImodels areaccessibleforfreewhileotherscanonlybeaccessedviapaidapplicationprogramming interfaces(APIs).Inthefollowing,wewillpayextraattentiontoapplicationsusingcloud-based services,asthetransferofdatabetweendifferentdataprocessorsbringsadditionalrisksto privacy.Cloudprocessing(ortheuseofsecond-partydatacentresingeneral)isalsovery commonintoday’sITsystems.

ThetechnologicallysimplestAIsystemisanapplicationimplementingaspecificbusinesslogic onthebasisofanexistingAIAPI.Oneexampleofsuchasolutioncouldbeachatbotusingthe OpenAIGPTAPIwherethemainvalueproposalistheuserexperienceandpromptsprovidedby theapp.Thinapplicationsofthistypemaybelimitedbythecontextlearningcapabilityofthe modelbehindtheAPI.

Morecomplexandmoreexpensivesolutionsuseanexistingmodel’sAPIcallswhilemanagingthe user’sstatusandservicingtheirdatawhichmaybedomain-specific.Solutionslikethisrequire databaseintegration,usermanagementandalsoinputandoutputvalidation.Thedeployerof theappmaythususe,e.g.,someRetrieval-AugmentedGeneration(RAG)solutionwherethe model’sgenericknowledgeisaugmentedwithinformationfoundintheapp’sowndatabase. SolutionsofthistypearediscussedinSection 4.4.2 .

SomesolutionsinvolvetheserviceproviderdeployinganAImodelthemselves.Thispresumes thattheserviceprovidereithertrainstheirmodelthemselves,fine-tunesanexistingmodelor adoptsanexternalmodelwhileindependentlyrunninginference(i.e.,computingtheAI’soutputs ontheirowninfrastructure).Thisrequiresinvestmentsintoinformationinfrastructurewhich growwiththesizeofthemodelanduserbase,butmayatthesametimereducerisksrelatedto APIavailability,dataconfidentialityandprivacy,asthenumberofdataprocessorsisreduced.In situations,whereservingalargeuserbaseisnotthegoal,quantificationandotheroptimisation methodsallowrunninginferenceonmanyfreelyaccessiblemodelsevenonapowerfulpersonal computer.SolutionsofthistypearediscussedinSections 4.4.3 and 4.4.4 .

Alldeploymentmodelscoveredheresharesomesimilarcharacteristics.Forexample,aservice providermayuseIaaS(infrastructureasaservice),CaaS(computingasaservice),andPaaS (platformasaservice)servicesforbusinesslogic,model,anddatamanagement.InthecontextoftheGeneralDataProtectionRegulation(GDPR),theseserviceprovidersareconsidered processorsofuserdata.Incaseuserdataareusednotonlyforserviceprovisionbutalsofor improvingthequalityofthemodelorothersidetasks,alegalbasismustbeestablished(e.g., theusermayhavetogivetheirinformedconsent)forsuchuses.Thiscomesintoplayinthe contextofinterfacingtheservicewithotherservicesanddata.

4.2Methodology

Inthedevelopmentofthedeploymentmodelsdiscussedherewetookintoaccounttheconsiderationsandneedsofpotentialserviceproviders,aswellastheireverydaypractices.We especiallyfocusedonstatutoryrequirementsandthemovementofuserdatabetweendifferent processors.Theoverviewofdeploymentmodelspresentedbelowisnotexhaustive,asthere

arecountlesswaysforconnectingservices,APIs,anddatasources.Itshould,however,provide asufficientpictureofthecriticalpointsofmorecommonapproachesthatarerelatedtousers’ andserviceprovider(s)’rolesandresponsibilitiesinthecontextofthestructureofthedeploymentmodelanddataflow.Simplermodelsalsofacilitateprovidingfasteradviceforcarryingout riskanalysis.

Arrowsinthefiguresrepresentdataflows,indicatingthemovementofdatabetweendifferent componentsofthedeploymentmodel.Representingdataflowsisvitalbecausethemovement ofdataacrossbetweenareasofresponsibilitycomeswithrisks(e.g.,toprivacy)whichmust beaccountedfor.Privacyandresponsibilityareunderstoodhereinthesensetheyareused intheGDPR.Tofacilitatebetterunderstandingoftheboundariesofresponsibility,aswellas othercharacteristicsofthedeploymentmodeltiedtothestructureofthespecificAIsupply chain,wehavepresentedbothservicesandcriticaldataelementsoftheAIsystem(training data,model,input,output)ascomponentsofthedeploymentmodel.OurfocushereisonAIbasedcloudservices,asduetotheirperformancerequirements,AIsystemsoftenneedtouse specialisedhardwareacceleratorsincloudservicesforacceleratingcomputations.Itmustbe keptinmind,however,thatAIsystemsnotdeployedviathecloudaresomewhatlessexposed toconfidentialityrisks;systemsofthiskindwillbediscussedseparately.IaaS,CaaSandPaaS componentsarenotspecificallyrepresentedinthedeploymentfigurediagrams,astheycan easilybeusedwithdifferentelementsofthedeploymentmodel.Wewill,however,discussthe consequencesoftheiruse.

WehaveusedperformanceanalysistoprovideamoredetailedpictureofAIapplicationdeploymentmodels.ModelsarepresentedusingBusinessProcessModellingNotation(BPMN).This hasallowedustospecifythedataobjectsprocessedbythemodel,aswellastheprocessing parties.

4.3LegalrolesofAIsystemstakeholders

FromtheperspectiveofboththeGDPRandtheAIAct,itiscrucialtoassesstheapplicabilityof theregulations.TheapplicabilityofGDPRrulesmustbeconsideredifanAIsystemprocesses personaldataanywhereinitslifecycle.TheapplicabilityofAIActrulesmustbeconsideredif thepersonisanAIdeveloperorifitusesanAIsystemorAPIdevelopedbysomeoneelseintheir services.AnAIsysteminthesenseoftheAIActisamachine-basedsystemdesignedtooperate withvaryinglevelsofautonomy,thatmayexhibitadaptivenessafterdeploymentandthat,for explicitorimplicitobjectives,infers,fromtheinputitreceives,howtogenerateoutputssuch aspredictions,content,recommendations,ordecisionsthatcaninfluencephysicalorvirtual environments[99 ].

IfanAIsystemorapersonoperatingthesystemisfoundtofallwithinthescopeoftheregulation(s),thespecificrequirementsarisingfromtheregulation(s)mustbeidentified.Fromthe perspectiveoftheGDPRitisimportantto,e.g.,determinewhethertheorganisationqualifies asacontrolleroraprocessorofpersonaldata;inthecaseoftheAIAct,however,whetherthe organisationqualifiesasaproviderordeployeroftheAIsystem.Bothregulationsalsodefine severalotherroles,whicharealsoadvisabletoreview.Theroleslistedabovearethemostcritical,though–especiallythoseofthecontroller(GDPR)andtheprovider(AIAct),asbothare subjecttostrictcompliancerules.Insomecases,asinglepersonmayalsosimultaneouslyact inseveraldifferentrolesdependingonprocesses,relationshipsbetweentheparties,oragreements.Identificationofrolesiscrucialbecauseofthedependenceofresponsibilityonroles. AccordingtotheGDPR,acontrolleristhenaturalorlegalperson,publicauthority,agencyor

otherbodywhich,aloneorjointlywithothers,determinesthepurposesandmeansoftheprocessingofpersonaldata(GDPR,Article4(7)).Aprocessorisanaturalorlegalperson,publicauthority,agencyorotherbodywhichprocessespersonaldataonbehalfofthecontroller(GDPR, Article4(8)).

Aproviderisanaturalorlegalperson,publicauthority,agencyorotherbodythatdevelopsanAI systemorageneral-purposeAImodelorthathasanAIsystemorageneral-purposeAImodel developedandplacesitonthemarketorputstheAIsystemintoserviceunderitsownnameor trademark,whetherforpaymentorfreeofcharge[99 ].Adeployerisanaturalorlegalperson, publicauthority,agencyorotherbodyusinganAIsystemunderitsauthorityexceptwherethe AIsystemisusedinthecourseofapersonalnon-professionalactivity[99 ].

Inordertoidentifywhichrequirementsapplyinthespecificcase,itisalsonecessarytodeterminetheobjectiveofthedataprocessingandAIuse,thetypesofdataprocessingprocesses operatinginthesystem,thetypesofdatabeingtransferredandthepartiesofthesetransfers, andtheAIsystemorcomponent(includingtherisklevelofthesystem)beingused.

4.4Deploymentmodels

4.4.1Overviewofmodels

WehaveidentifiedthreedistinctdeploymentmodelsforAIapplicationsdifferentiatedbythe transferofdatabetweenparties,thedeployingparty,andtheoriginoftheAImodel.Therelationshipsbetweenthesemodels,aswellasillustrativeapplications,arepresentedinFigure 9

Figure9.Deploymentmodelsfromtheperspectiveofthedeployer’stasksinrelationtotheAImodel

ThemodelshavebeenlistedintheorderoftheextenttowhichtheAIapplicationservice providercanrelyonexistingAIservicesandproducts.Themorespecificandcomplexthe commercialpurposeandthestrictertherequirementsfortheprocessingofdata,thebiggerthe proportionofnecessaryservicesthatusuallyneedtobedevelopedin-house.Thisheuristic isjustanapproximation,however.Fromtheperspectiveofdataflowstructure,thelastofthe listeddeploymentmodelsincludesbothsimpleandcomplexsolutions. Theupperpartofthefigurerepresentsthescopeofthedeployer’stasksindifferentdeployment models.Inallcases,thedeployerprocessessomekindofdata.Beginningwithcloudservices importinganexternalmodel,thedeployerdeploysthemodelitselfalongsidetheirbusinesslogic, fine-tuningthemodelifnecessary.Inthecaseofalocally-trainedmodel,nothirdpartyisany longerresponsibleforthecreationandtrainingofthemodel;both(aswellasthemanagement oftrainingdata)arecompletelyinthehandsofthedeployer.

4.4.2DM1:ServiceusinganAIAPI

OnecommonchoiceofarchitectureforAI-basedservicesisusingathird-partyAIAPIinyour businesslogic.Ifnecessary,theserviceprovidercanalsoprocessorstoreuserdata,which thedeployercanalsoimplementusingcloudservices.Theinitialdatausedfortrainingthe third-partymodelcaninturncomefromexternalsources.Alternatively,thethird-partyAIcloud serviceorAPIcantrainitsmodelsonuserdatareceivedfromtheserviceprovider.Allsuch cloudservicescanrelyonsomeIaaS(infrastructureasaservice)solution.

Themodeldescribedabovehasbeenusedin,e.g.,machinevisionapplications.Itgainedin popularityafterthepublishingoftheOpenAIAPIwhichfacilitatedsimpleinterfacingofyour servicewithpowerfullanguageandimagemodels.TheAImodelisexternaltotheapplication (i.e.,outsidetheserviceprovider’scontrol).Thetrainingdataforthemodelarealsoexternal inorigin.Userdataflowstotheservice,fromtheservicetotheAIAPIprovider,thenbackto theservice,andfinallybacktotheuser.Iftheserviceisinterfacedwiththird-partyservices anddatathentheuserdatamayalsobetransferredthere.Userdatacanmeanwhilebestored byboththeserviceproviderandtheAIAPIprovider(e.g.,storinginputsandoutputsincache, butalsointhetrainingdatabase).Inonespecialcaseofthisdeploymentmodel,theAIAPI provideralsoprovidestheoptionoffine-tuningthemodelontheserviceprovider’sdatabutthe APIproviderstilldeploysthefine-tunedmodel.Thisapproachpartiallyoverlapswiththenext deploymentmodel(seeSection 4.4.3 ).

DM1:ServiceusinganAIAPI

Overview: Serviceinterfaceswithanexternal APItoprocessuserdatausingtheAIAPI provider’smodel.BoththeserviceandtheAPI providercanalsosharedatawiththirdpartiesfor additionalprocessing.Theinitialdatausedfor trainingthemodelmaycomefromthird-party sources.

Examples: copy.ai,StreamlitandGradioAIdemo applications,servicesusingtheOpenAIAPI

Originofmodel: External

Originoftrainingdata: External

Inputdataarestored: Optional

Inputdatatransfers: Tocloudservice,then(if necessary)tootherservicesandtheAPI,backto theservice,thenbacktotheuser,potentiallyusing differentinfrastructures.

Figure:

Risksandconsiderations:

1. ProcessingofpersonaldatabytheserviceproviderorAPIprovider.

2. InformationontheexplainabilityofthemodelusedbytheAPIprovidermaybeincomplete.

3. Userqueriesandmodeloutputsarevalidatedbytheserviceprovider.

4. Non-serviceproviderrelatedfailuresintheworkoftheAIAPIarearisktoavailability.

5. Lowestcapitalinvestmentsandtechnologicallyleastcomplexofalldeploymentmodels.

Figure10.Copy.aiasanexampleofaserviceusingAIviaanAPI

Copy.aiisanexampleofaDM1-typeservice 1 .Copy.aiusestheOpenAIAPItoassisttheuserinwriting marketingandadvertisingtexts.Theuserprovidestheservicewithadescriptionofthetextrequired anditscharacteristics(e.g.,writingstyle),theserviceprocessesthedescriptions,andpresentsthemto theAIAPIintheformofaquery.TheusercanchoosewhichAPItheywishtouse(AnthropicorOpenAI). Afterreceivingaresponsetothequerytheservicefurtherprocessestheresponseandreturnstheresult totheuser.Thecopy.aideploymentmodelispresentedinFigure 10

Figure 11 describesthedataflowsinaDM1-typedeploymentmodel.InthecaseofaDM1model,the userusesaservicewhichinturnusesanAIAPItogenerateanoutput.TheAPIproviderisdividedinto twodivisionswithdifferenttasks–modeldevelopmentandservicedeployment.Theobjectiveofmodel developmentistodesignthemodelarchitecture,trainandtestthemodeland,ifnecessary,generate fine-tuningdatasetsandfine-tunethemodel.Modeldevelopmentisalsoresponsibleformonitoringthe model.

Theservicedeploymentprocessbeginswiththeuserwhousestheirinputdatatogeneratedatatobe senttotheservice.TheserviceusesthesetogenerateaquerywhichistransmittedtotheAPI.When theservicesendsaquerytotheAPIincludesthequerydatainitsinputandtheinputinthemodel.The modelwillbeusedtogenerateanoutputandrespondtothequery.Dependingonthetermsofservice, interactionhistorymaybestoredandusedforbothmodelmonitoringandthegenerationoffine-tuning datasets.

OncetheAPIhassenttheservicearesponsetothequery(i.e.,anoutput),theservicewill,inturn, generateauseroutputandtransmitthistotheuser.TheusercanusetheoutputreceivedfromtheAI serviceforfulfillingtheirpersonalobjectives.

4.4.3DM2:ServiceimplementinganexternalAImodel

InterfacingwithanexternalAIAPIorwebservicemakesthedeployerdependentontheaccessibilityof theserviceused.Thedeployermayalsoneedtofine-tunethemodelwhichisnotofferedbyallAIAPI providers.Inordertosolvetheseproblemsthedeployercanadoptapre-trainedmodelfromamodel provider(orafreelyprovidedAImodel)andintegratethisdirectlyintotheirapplication.Incasethe deployerisfine-tuningthemodel–thisiscalledtransferlearning–theywillfaceanadditionalneedfor managingtrainingdataandmonitoringthemodel’ssecurityandqualityindicators.Thismodelisalso applicabletothespecialcaseswherethemodelproviderprovidesafederatedlearningservicewith centralisedcomponents.

1 Copy.ai. https://www.copy.ai/ LastvisitedMay25th,2024.

Figure11.DataflowsindeploymentmodelDM1

DM2:ServiceusinganexternalAImodel

Overview: Serviceprovideruses(and fine-tunes,ifnecessary)anexternallyimported model.Theinitialmodelcomesfromanexternal source;thecreatorofthemodeltrainsand transfersthemodelfortheircustomers, includingtheserviceprovider.Theservice providerdeploysthemodel,usingitonin-house andclientdata.Theymayusein-housedatafor fine-tuningthemodel.Cloudservicescan interfacetootherdataandservices,e.g.,vector databasesinthecaseofRAGsolutions.

Examples: Serviceimportingamodelfrom,e.g., theHuggingfacerepository,AndroidGboard(asan exampleoffederatedlearning)

Originofmodel: External

Originoftrainingdata: External,in-house,user data

Inputdataarestored: Optional

Inputdatatransfers: Tocloudservice,optionallyto otherservicesandbacktotheuser,optionally usingthird-partyinfrastructure.Inthecaseof federatedlearning,weightupdatesarealso transferredtothemodel’strainer.

Figure:

Risksandconsiderations:

1. Infine-tuning,monitorsecurityandqualityindicators,aswellasqualityofin-housedataandchanges intheirdistribution.

2. Informationmustbecollectedonthesecurityandexplainabilityofasecondparty-trainedmodel.

3. Insomecases,weightupdatesmaybeconsideredpersonaldatainfederatedlearning.

Figure12.TranslationservicedeploymentmodelasanexampleofaserviceusinganexternalAImodel

Figure 12 representsanexampleofatranslationservicewherethetranslationservicedeployedbytheAI serviceproviderusesamodelpre-trainedbyamodelprovider(e.g.,TartuNLP).Theusersendsaquery totheservice(e.g.,throughtheapplication’swebinterface),thequeryissenttotheservicewherethe dataareprocessed(translated).Thetranslatedoutputisreturnedtotheuser.Dataarenottransferred fromtheserviceprovidertothemodelprovider.Theserviceprovidercanfurtherfine-tunethemodel basedonuserdata.

Figure 13 describesthedataflowsinaDM2-typedeploymentmodel.Theprocessinvolvesthreeparties: user,AIservice,andmodelprovider.Themodelproviderdevelopsthemodelarchitecture,trainsand/or fine-tunesandteststhemodel,andprovidesthemodeltoAI-basedserviceproviders.

TheAIservicesisdividedintotwodivisions:furtherdevelopmentofthemodelanddeploymentofthe service.Tofurtherdevelopthemodel,theAIserviceintegratesthemodelprovidedtothemintotheir ownservice,generatesafine-tuningdatasetifnecessary,andfine-tunesthemodel.Theserviceprovider thencontinuestomonitortheoperationofthemodel.Nodataistransmittedbacktothemodelprovider fromtheAIservice.

WhentheusercreatesandtransmitsdatatotheAIservice,theAIservicedeploymentbranchaddsthe datatotheinput,thentothemodeltogenerateanoutputwhichitwillthentransmittotheuser.TheAI servicethenstorestheinteractionhistorywhichwillbeusedformonitoringthemodelandcanalsobe usedforgeneratingfine-tuningdatasets.TheusercanusetheoutputreceivedfromtheAIservicefor fulfillingtheirpersonalobjectives.

Figure 14 depictsaspecialcaseoftheseconddeploymentmodel.Thedifferencebetweenthetwo figuresliesinadatabasequeryaddedtotheservicedeploymentstage,theresultofwhichisaddedto theuserinput.ThismethodiscalledRAG(RetrievalAugmentedGeneration);itcanalsobeusedwith deploymentmodelsDM1andDM3.

4.4.4DM3:AIserviceusinganin-housemodel

ThethirddeploymentmodelcoverssolutionswheretheAImodelistrainedanddeployedin-houseby theserviceprovider.Theseincludebothsimplesolutions,suchasdecisiontreesandregression-based solutions,wherethesimplicityofthemodelmakesitimpracticaltoimportfromanexternalsource,as wellassolutionsdevelopedbylargeAIproducers.TrainersoflargeAImodelsgenerallyonlyofferservicesbasedonmodelstheyhavedevelopedandtheypossesssufficientresourcesfortheirautonomous deployment.

Figure13.DataflowsindeploymentmodelDM2
Figure14.DataflowsindeploymentmodelDM2implementingRAG

DM3:AIserviceusinganin-housemodel

Overview: Thetrainerofthemodelcollectsdata, trains,deploys(and,optionally,implements)the model.Usingin-housemodelsisanimportant usecase.Thiscanfacilitatesituationswhere neitherthetrainingdatanorthemodelitselfor userdataaretransferredtothirdparties.

Examples: Neuraltranslation,ChatGPTandOpenAI API,Grok,DALL-E,Midjourney

Originofmodel: Internal

Originoftrainingdata: User,serviceprovider,third parties

Inputdataarestored: Optional

Inputdatatransfers: Tocloudservice,optionallyto otherservices,thenbacktotheuser,optionallyvia aninfrastructureserviceprovider.

Figure:

Risksandconsiderations:

1. Thetrainerofthemodelisexpectedtoprovideinformationontheexplainabilityandqualityofthe model.

2. Thetrainermusthavealawfulbasisforprocessingthetrainingdata.

3. Incaseoflargemodelsandlargetrainingdatasets,solutionsofthistypearethemostexpensiveto build.

xamplesofthisdeploymentmodelincludeallorganisationsusingAIforbuildinginternalservices,aswell ase.g.OpenAI.Theusersendsqueriestotheservice;theservice,inturn,returnstheoutputfromthe selectedmodel.OpenAI’sdeploymentmethodsforthemodelstheytraindependonthetargetgroup: somearedeployedintheformofAPIs,others–intheformofweights.OpenAIcollectsandpurchases trainingdataitself.Atthesametime,notallthedetailsoftheoriginofthedataarepublic.OpenAIAPI modelsarenottrained(asofNovember2023)onqueriesreceivedoverAPI;theyare,however,trained onChatGPTqueries,exceptforChatGPTEnterprise 2 .

ChatGPTitselfisalsoanexampleofthisdeploymentmodel,asitusesin-housemodels(developedby OpenAI).OnenoteworthythingaboutChatGPTisthefactthat,iftheuseremploysplugins,thesecan makequeriestothirdpartiesforadditionalprocessingoracquisitionofdata.Itisimportanttokeepin mindthatthemodeldoesnotcommunicatedirectlywiththepluginsortheservicestheyinterfaceto: thisdataexchangetakesplaceasapartoftheservice’sbusinesslogic.Asarule,thismeansthatif themodeldecidestouseapluginitwillusetheinformationcontainedinthepre-promptandtheuser’s requesttocomposeaquerytotheserviceinterfacedviatheplugin.Aresponsebasedonthequery composedbythemodelisreturnedtothemodelwhereitisformattedintoaresponseutilisablebythe user.TheChatGPTdeploymentmodelisshowninFigure 15

Figure15.ChatGPTdeploymentmodel

Anotherversionofanapplicationcompatiblewiththisdeploymentmodelisacomputationallyinexpensive rules-basedorothersimplemachinelearningalgorithm(e.g.,linearregression,decisiontree,ornaive Bayesianclassifier)easilytrainedonin-housedatasets.Thisdeploymentmodelissuitablefor,e.g.,bank creditriskmodels:thebanktrainsthemodelin-houseonitsown(clients’)dataandimplementsthemodel in-house.Thebankalsousessupplementarydata:creditdefaultdata,financialindicators,andinternal bankdata.ThedeploymentmodelforaserviceofthistypeisshowninFigure 16

Figure 17 describesathirdtypeofdeploymentmodels.Thismodelinvolvestwoparties:AIserviceand user.Inthisdeploymentmodel,theAIservice,thedeployer,andthemodelproviderareallthesame party.

TheAIserviceisdividedintotwo:modeldevelopmentandservicedeployment.Modeldevelopment involvesthesamestepsasthedeploymentmodelsdiscussedabove:modelarchitecturedevelopment, trainingandtestingthemodel,andoptionallyfine-tuningandmonitoringthemodel.Afterreceivingdata fromtheuser,theAIservicedevelopmentdivisionaddsthedatatotheinputandtothemodel,composes anoutput,andsendstheoutputtotheuser.Interactionhistoryisstoredandcanbeusedformonitoring themodelandassemblingfine-tuningdatasets.

2 EnterpriseprivacyatOpenAI. https://openai.com/enterprise-privacy VisitedDecember1st,2023

Figure16.Deploymentmodelforacreditinstitution’sretailcreditriskevaluationmodel

Figure17.DataflowsindeploymentmodelDM3

5RisksofAIapplications

5.1Riskmanagementmethodology

ThemainstandardsonriskassessmentaretheISO31000riskmanagementstandard[142 ]andthe NISTSP800-37riskmanagementframework(RMF)[143 ].Thecharacteristicsofinformationsecurity risksarecoveredbyISO/IEC27005[144 ],thoseofcybersecuritybytheNISTcybersecurityframework (CSF)[145 ].AI-specificriskmanagementguidelinesarecoveredbyISO/IEC23984[146 ];thisstandard describeshowtoadaptanISO31000compliantriskmanagementprocesstoanorganisationusing, developing,orimplementingartificialintelligencesystems.IftheorganisationhasanISO/IEC27001 certificateforitsinformationsecuritymanagementsystem(ISMS),thenourrecommendationistoadd AIsystemstotheexistingriskmanagementprocess.

ThesimplifiedmethodologydescribedhereiscompliantwithISO31000andISO/IEC27005workflows, butcanalsobeadaptedtotheNISTRMFandCSFframeworks,ifneeded.Iftheorganisationwishesto employamorecomplexriskmanagementstrategyanytimeinthefuture,itwillbeeasytointegrateexistingAIsystemriskmanagementintothegeneralframework.TheEstonianinformationsecuritystandard (E-ITS)[147 ]isalignedwiththeISO/IEC27001series,meaningthatthoseimplementingE-ITScanalso optforarisk-basedapproach.Thus,themethodologydescribedhereisalsoadaptablebyorganisations implementingE-ITS.

Theriskmanagementprocesscomprisesthreesteps:contextestablishment,riskassessment,andrisk treatment.ThescopeoftheriskmanagementmethodologypresentedinourreportcoversITsystems thatincludeanAIcomponent.

5.1.1AI-specificconsiderationsincontextestablishment

Contextestablishmentinvolvesidentifyinganddocumentingstakeholdersandassetsrelatedtotheprocess.Theorganisationdefinesitsriskreadiness,riskappetiteandriskowners,andidentifiestheinternal, national,andstatutoryrequirementsforstakeholders.Theorganisationdeterminestheconditionsforrisk acceptanceandselectsanappropriateriskmanagementmethodology.

Contextestablishmentforartificialintelligencesystemsrequiresidentifyinganddocumentingallstakeholders.Thisincludestakingintoaccountanypartiesthatmaynotseemtobedirectlyconnectedto serviceprovision(e.g.,personsappearingintrainingdata,ownersofworks,aswellasthird-partyinfrastructureandserviceproviders).Regardlessofwhethertheorganisationcreatesanin-houseAIsystem andusesthissystemwithintheorganisationortheAIsystemisusedasaservice,theanalysismust include:

• datasubjectsordataownerswhosedatahavebeenusedintrainingthemachinelearningmodel;

• thepartythattrainedthemodel;

• theserviceprovider;

• theserviceuser.

Theorganisationmustidentifythestakeholdersandaccountfortheirrightsandinterestinriskassessmentandrisktreatment.Newstakeholdersmayalsonecessitatetheneedtotakeintoaccountnew foundationdocumentsorregulations.Itisimportanttodeterminewhetherthesenewstakeholdersare apartof,orexternalto,theorganisation.Theorganisationmustmapeveryone’sstatutoryrightsand obligationsandwhooperateswhichpartofthesystem.

Theorganisationmustidentifytheoriginofdifferenttypesofdata(models,training,input,andoutput data)andsoftwarecomponents,aswellasthedataflowbetweenthedifferentcomponents.Stakeholder andcomponentmappingisnecessaryforunderstandingthecontextoftheAIsystem.Somerisksmay alsoarisefromtheuseofcertaintypesofdataorsystems.Forvisualisingthemapping,toolsnormally usedforsystemsmodelling(UML,BPMN)canbeused.Specifictoolsexist(e.g.,PE-BPMN[148 ])for

describingthemovementandvisibilityofdataobjectsfromtheperspectivesofdifferentstakeholders. Stakeholders’accesstodatacanbedocumentedusingvisibilitytables.Table 1 isanexampleofavisibility tabledescribingtheaccessofdifferentstakeholderstodifferenttypesofdatainanAIsystem.Inthis example,therearethreestakeholders:theenduser,theserviceprovider(AIclientapplication),andthe AIAPIprovider(whotrainsandsharesthemodel).Allstakeholdersseeenduserinputdataandmodel outputs.TheserviceproviderandAIAPIproviderhaveaccesstotheserviceprovider’sbusinessdata. Themodel,inthiscase,isvisibleonlytotheAIAPIprovider.

Table1.Simplifiedexampleofavisibilitytable

5.1.2AIsystemriskassessment

Riskisoftenexpressedasacombinationofthelikelihoodoftheoccurrenceofathreateventandits potentialdamage.Riskassessmentinvolvestheidentification,analysis,andevaluationofrisks.Risk identification,inturn,involvessearchingforrisks,determiningtherelevanceofrisks,anddescription ofrelevantrisks.Ariskownerisassignedtoeachidentifiedrisk.Riskanalysiscoversdeterminingthe reasonsandsourcesofrisksandevaluatingthepotentialdataandthelikelihoodoftheoccurrenceof therisk.Inthecourseofriskevaluation,theriskleveldeterminedasaresultoftheanalysisiscompared tothecriteriaforacceptablerisksdefinedinthecourseofcontextestablishmentinordertoevaluate whethertherisklevelistolerableandacceptable.

AIriskassessmentisbasedontheestablishedcontext.ForeachcomponentoftheAIsystem,risksare evaluatedinthecontextofthestakeholders.Findingtheserelationshipsiseasybasedonthevisibility tablecreatedduringcontextestablishment.Foreachidentifiedstakeholderandcomponentpair,we analyseandevaluatethreetypesofrisks:risksrelatedtocybersecurity,regulations,andAI-specific threats.CybersecurityrisksareusuallyconnectedtotheadequacyoftheAIsystem’sprocessesorthe confidentiality,integrity,andavailabilityoftheAIsystem’scomponents(software,data,services).Risks relatedtoregulationsareconnectedtothelegalobligationsforstakeholdersoperatingAIsystems(AIspecificregulations)orsystemcomponents(e.g.,regulationsonpersonaldata,copyrighteddata,critical infrastructure).AIrisksareconnectedtothecharacteristicsofAIalgorithms,aswellastheimpactof AIsystemsonthesocietyandethicalaspects.AIsystemriskassessmentiscoveredinmoredetailin Section 5.2

Table 2 providesanexampleofdefiningrisksviasecurityvulnerabilitiesandthreats.Foreachthreat, theorganisationmustevaluatethelikelihoodofthethreatmaterialisingandthepotentialdamage.The likelihoodofanddamagecausedbyasimilareventcanbedifferentfordifferentorganisations.Insome cases,itwillbebeneficialtocomparetherisksofdifferentsolutionsinordertochoosethemostsuitable solutionfortheorganisation.Forinstance,eventhoughacloudserviceprovidermayofferbettersecurity measuresthanasmallorganisationcouldimplementitself,dependenceonacloudservicemaybean availabilityrisk,shouldtheconnectiontothecloudproviderbelost.

5.1.3AIsystemrisktreatment

Differentsolutionsexistforrisktreatment:riskavoidance,riskmitigation,risktransfer,orriskretention. Thesolutiontobeusedwillbechosenbasedonriskanalysisresults.

Table2.Examplesofsecurityvulnerabilitiesandthreats

Data Risktype Security vulnerability Threat

Output AI-specificrisk Biasedordefective model

Trainingdata Regulatoryrisk Lackoflegalbasis forprocessing personaldata

Model Informationsecurity risk Defectiveidentity management

Enduserreceivesanoutput guidingthemtoharm themselvesorothers

Finefordataprotection regulationviolation

AIAPIproviderlosesaccessto theirinfrastructureandis unabletoprovideinference service

Theorganisationisunlikelytobeabletomitigateallrisks.Risksmaybeorderedaccordingtotheir importance.Suitableinformationsecuritymeasures,AI-specificmeasures,orlegalmeasuresarechosen tofacilitatealigningpotentialriskswiththeorganisation’sriskappetite.

Riskscanbeavoidedthroughtheeliminationofthesourceoftherisk,discardingfunctionalities,orreorganisationofthebusinessprocess.Risksaremitigatedthroughtheadoptionofsecuritymeasures. Theemploymentofadditionalsecuritymeasurestomitigateariskisnotalwayspossibleorrational. RiskmitigatingmeasuresaredescribedinSection 6 .Risktransfermeanssharingtheriskwithanother organisation,orthecompensationofdamagearisingfromtherisk,e.g.,byusinginsurance.

Iftherisklevelremainingafterrisktreatmentcorrespondstotheorganisation’sriskappetite,therestof theriskscanbeaccepted.Thismeansthattheriskinquestionwillnolongerbeworkedonandtheriskis retained.Periodicsurveyandrevisionofrisksisrequiredtokeepriskmanagementuptodate,asthreat occurrencesofimpactsevolve.Anotherimportantelementoftheprocessisriskcommunication,the objectiveofwhichistokeeptheemployeesinformedoftheprocessandresultsofinformationsecurity riskmanagement.

5.2Riskassessment

5.2.1Informationsecurityrisks

Digitalrisksarethemostlikelyandhavethebiggestimpact[149 ].Themainthreathereiscybercrime[149 150 ].GenerativeAItechnologiescan,however,supportmoreefficienthandlingofdigital risks[149 ]whendevelopedandimplementedforthispurpose.Researchanddevelopmentrelatedto thecreationofautomatedorsemi-automatedcybersecuritymeasuresisalsorecommendedbytheNIS2 directive[21].

Informationsecurityrisksareidentifiedandanalysedonthebasisofthreats,probabilityofthreatevents, andpotentialdamage.TheEstonianE-ITSinformationsecuritystandarddescribesabaselinesecurity process,oneelementofwhichisthebaselinesecuritycatalogue.Thecatalogueconsistsofprocess modulesandsystemmodules.These,inturn,containalistofthreatsandadescriptionofmeasures.Usingthebaselinesecurityprocesswillsimplifyriskidentificationandisalsocompliant(whenimplemented atahighlevel)withtheISO/IEC27000seriesofstandards.

ThefollowingE-ITSbaselinesecuritymodules[151]arerelevanttotheimplementationanduseofAI systems:processmodulesORP(organisationandpersonnel),CON(conceptsandmethodologies),OPS (operations),DER(detectionandreaction),andsystemmodulesSYS(ITsystems)andAPP(applications). ThemoduleslistedaboveonlyincludethosewhichrequiretakingseparatemeasuresrelatedtotheimplementationoruseofAIsystems.Thelistdoesnotincludemodulesnecessaryforsettinguptherest

oftheorganisation’sinfrastructureorsecuritymanagement.Iftheorganisationdoesnotassessortreat risksinsurroundingsystemsthenevenstronglevelsofprotectionfortheAIsystemwillbemeaningless. TheadditionofAIsystemstotheorganisation’sworkflowwillprobablygiverisetothefollowingprocess threats.Notethatthelistofthreatsisnotlimitedtothoselistedinthestandard.

• ORP1.NoclearrulesfortheuseofAIsystemsexist;theAIsystemisincompatiblewithothertools.

• ORP2.TheemployeesareinsufficientlyfamiliarwithAIsystems;theyarecarelessaboutusingdata inAIsystems;theyareinsufficientlyqualified.

• ORP3.TheemployeeshavenotreceivedsufficienttrainingonthreatsandattacksrelatedtoAI systems.

• ORP5.UseoftheAIsystemisinviolationofthelaworcontractualobligations;unauthorisedpublicationofinformationintheAIsystem;internalinformationisaccidentallyrevealedtoanexternalAI system.

• CON2.InputstoAIsystemsareprovidedinneglectofdataprotectionrequirements;dataprocessing proceduresareinadequateanddonotaccountfortheworkingprinciplesofAIsystems;noresources areallocatedtotheprotectionofpersonaldatainAIsystems;theprivacyofdatasubjectsisnot ensuredfordataprocessedbyAIsystems;theconfidentialityofdataintheAIsystemisnotensured, asdatacanfallinthehandsofunauthorisedpersonsorareaccessibleinthetrainedmodel;the reputationofthedataprocessorisdamaged.

• CON3.ProblemsrelatedtobackingupAIsystemdata(boththeinputsandmodel,aswellas,in somecases,theoutputs).

• CON6.InadequatedeletionanddestructionofAIsystemdata.

• CON8.UnsuitabledevelopmentmethodsusedforAIsystemdevelopment;insufficientqualitymanagement;inadequatedocumentation;insufficientdevelopmentenvironmentsecurity;AIsystemdesignerrors;inadequateAIsystemtestingandacceptanceprocedures;usingproductionenvironment datafortestingtheAIsystem.

• CON10.IncaseoftheAIsystemusedasawebapp:displayingsensitivebackgroundinformation foundintheAIsysteminthewebapp;useofautomatedattacksforattackingtheAIsystemweb app.

• OPS2.2.Allthreatsrelatedtotheuseofcloudservicesapply:inadequateAIcloudserviceuse strategy;dependenceonAIcloudserviceprovider;insufficientrequirementmanagementinusing AIcloudservices;violationofstatutoryrequirements;deficienciesinagreementsignedwiththeAI cloudserviceprovider;insufficientintegrationofAIcloudserviceswithin-houseITsystems;insufficientregulationoftheendofAIcloudserviceuse;deficienciesinemergencyreadinessplan;AI cloudprovidersystemfailure.

• OPS2.3.Allthreatsrelatedtooutsourcingapply:inadequateAIsystemoutsourcingstrategy;insufficientcontroloverbusinesscriticalprocesses;dependenceonAIserviceprovider;insufficientlevel ofinformationsecurityattheAIserviceprovider;insufficientcontrolovertheprovidedAIservice; deficienciesinagreementsregulatingtheAIservice;inadequateaccessrightsmanagement;lackof controloverAIserviceprovider’ssubcontracting;lackofkeyperformanceindicators(KPI);inadequatestipulationsregardingtheendofAIsystemoutsourcing;inadequateemergencymanagement inoutsourcedAIservice.

• OPS3.2.Allserviceproviderinformationsecuritythreatsapply:inadequateinformationsecurity managementbytheAIserviceprovider;inadequateemergencymanagementbytheAIserviceprovider; inadequateserviceagreementswithAIservicereceivers;vulnerabilitiesininterfacingwithAIservice provider’sITsystems;dependenceofAIservicereceiveronserviceprovider;inadequatemanagementofaccessrights;lackofmulti-tenancycapacityattheAIserviceprovider;AIserviceprovider’s dependenceonsubcontractors;inadequateprocedureforendingAIserviceagreement;AIsystem providerITsystemfailure;socialengineering.

• DER2.1.InadequatehandlingofsecurityincidentsrelatedtoAIsystems;destructionofevidencein securityincidenthandling.

• DER3.1.InadequateorunplannedimplementationofsecuritymeasuresinAIsystems;verifier’sinadequatequalification;inadequateauditplanningandcoordination;non-coordinateduseofpersonal data;intentionalhidingofsecurityissues.

ThesystemmoduleSYSdescribesthreatstoITsystems,includingservers(SYS1.1,1.2,1.3,1.9),virtualisationsystems(SYS1.5),containers(SYS1.6),storagesolutions(SYS1.8),clientcomputers,(SYS 2.1,2.2,2.3,2.4),laptopcomputers(SYS3.1),smartphonesandtablets(SYS3.2),printers(SYS4.1), embeddedsystems(SYS4.3),IoTdevices(SYS4.4),andexternalstoragedevices(SYS4.5).TheSYS modulealsodescribesthreatsrelatedtotheuseoftheEstonianX-Roadsecurityserver(SYS.EE1)and eIDcomponents(SYS.EE2).DependingontheAIsystemorservicebeingcreatedorused,therelevant threatscanbefoundintherelevantmodules.

ThesystemmoduleAPPdescribesthreatstoapplications:mobileapplications(APP1.4),webapplications(APP3.1),databasesystems(APP4.3),Kubernetesclusters(APP4.4),softwareingeneral(APP 6),andcustomsoftwaredevelopment(APP7).APP.EE1additionallydescribesthreatstotheEstonian X-Roaddataservices.

TheAIsystemdeveloperorimplementercanusecontextestablishmenttodeterminewhichofthese threatsarerelevanttothem.Identificationofthreatsenablesthedescription,analysis,andevaluationof risks.

5.2.2Legalrisks

NotablelegalrisksrelatedtoAIsystemsincludenon-compliancewithstatutoryrequirementswhichmay leadto:

1. damageclaims;

2. legaldisputes;

3. sanctionsfromcompetentsupervisoryauthorities,includingnoticestoensurecompliance,impositionofpenaltypayments,suspensionorcessationofoperations.

Thelistedrisksmayleadtoadditionaltimespentbyemployeesonworkingonthedamageclaimsor legaldisputes,costsrelatedtoexternallegalservices,financiallossfromcompliancewithdamageclaim orcourtrulingorcompensationoflegalexpenses,lossofincomefromsuspensionofoperations,or reputationaldamage.Thelattermaymaterialiseintheformoflossofclientsandreducedincomeor,in theworstcase,lossoftrustandcessationofoperations.

Finesrelatedtoprocessingpersonaldatacanreachupto20millioneurosor,inthecaseofenterprises, upto4%ofglobalturnoverfrompreviousfinancialyear,whicheverisgreater.AccordingtotheAIAct proposal,certainviolationswouldbeliabletofinesupto35millioneurosor,inthecaseofenterprises,up to7%ofglobalturnoverfrompreviousfinancialyear,whicheverisgreater.Thesubmissionofinaccurate, incomplete,ormisleadingdatawouldbeliabletoafineofeitherupto7.5millioneurosor,inthecaseof enterprises,upto1%ofglobalturnoverfrompreviousfinancialyear,whicheverisgreater.

AccordingtotheAIActproposal,theEuropeanCommissionmayimposefinesongenerativeAIsystem serviceprovidersfornon-complianceofupto35millioneurosor,inthecaseofenterprises,upto3%of globalturnoverfrompreviousfinancialyear,whicheverisgreater.TheAIActproposalalsoforeseesthe rightforcompetentauthoritiestoremoveanAIsystemfromthemarket.

ItisalsocrucialtoensurethattheAIstakeholdershavewrittenagreementsinplacelistingtherights, obligations,andresponsibilitiesoftheparties.Dataprocessingagreementsbetweenthepartiesalso playanimportantroleintheprocessingofpersonaldata.Non-compliancewithanagreementcanalso resultinpenaltyanddamageclaims,aswellaslegaldisputes.

Inthepastfewyearstherehavebeennumerouscourtcasesinvolvingdisputesoverinputs(texts,photos, etc.)usedfortrainingAIsystems(see,e.g.,[152 , 153 154 ]).Thesehavepredominantlyconcerned copyrightviolations.Atthesametime,therehavealsobeendisputesoverresponsibilitiesrelatedtoAI systems.Thus,inMoffattvsAirCanada[155 ],thecourtfoundthatanenterpriseisresponsibleforall informationfoundontheirwebsite,regardlessofwhethertheinformationcomesfromastaticpageor

achatbot.CourtcasestestthelegalboundariesofAIandwillhopefullybringclaritytothisareainthe verynearfuture,helpingtocreatemoreuniformpracticesfortheinterpretationoflegalnorms.

5.2.3AIrisks

DevelopmentsinAI,especiallyinlargelanguageandimagesynthesismodels,havestimulateddiscussionsofrisksofthesetechnologies.Therisksthemselvescanbeconnectedtoboththeharmfulor unintendedoutputsof(universally)powerfulmodels,aswellasthespreadandincreasedadoptionof thesemodelsandthesocietalconsequencesoftheiradoption.

Themostpowerfulimageandlanguagemodelsareexpensivetotrain;widelyusedsmalleropen-source modelsare,however,notfarbehindintheircapabilitiesandcanbeexpectedtogrowevenmorepowerful inthenearfuture.TheadoptionofAImodelsforautomateddecision-makingincriticalareas,suchas medicineorwarfare,hasgivenrisetoadditionalrisksandnumerousethicalconcerns.

Risksrelatedtoartificialsuperintelligencecapableofindependentactionandhumanabilitytocontroland guideitsactionscallforseparateconsideration.Thefurtherdevelopmentofartificialintelligencemay giverisetonew,previouslyunknownrisks,aswellascompoundingexistingones,meaningthattheir mitigationhastobeacontinuous,iterativeprocess.

5.2.3.1ClassificationofrisksbasedontheproposedAIAct

TheAIActisbasedonarisk-basedapproach,distinguishingbetweenfourlevelsofrisk:unacceptable, high,limited,andminimal(seeTable 3 ).RequirementsforAIsystemsarebasedontherisklevel.For generalpurposeAI(GPAI),theregulationalsodefinestwootherriskclasses:non-systemicandsystemic risks.

Table3.AIActrisklevelsforAIsystems

No. Risk Description

1 Unacceptable risk ProhibitedAIsystems

2 Highrisk Regulatedhigh-riskAI systems

3 Limitedrisk Compliancerequirements

ExamplesofAIsystems

AIsystemscausingsignificantriskstohuman healthandsafetyorfundamentalrights(manipulative,exploitativeAIsystems),e.g.,socialscoring systems

E.g.biometricidentificationsystems,emotion identificationsystems,securitycomponentsof criticalinfrastructuresystems,recruitmentsystems,polygraphs,interpretationoflawincourts

AIsystemhasnosignificantimpactonnature oroutcomeofdecisions.AIsystemisdesigned forperforminglimitedproceduraltasks,structured datacreation,groupingincomingdocumentsby subjectordetectionofduplicatesamonglarge numbersofapplications

4 Minimalrisk Noobligations

5.2.3.2Algorithmicrisks

AIsystemsthatcanbeusedwithoutlimitations, e.g.,spamfilters,AIbasedvideooraudioenhancementsystems

ThefollowingsectionfocusesonrisksrelatedtospecificAIsystemsandtheimmediateconsequences oftheiruse.Insomecases,thematerialisationoftheserisksisconnectedtoattacksagainstAIsystems,

whicharediscussedinSection 5.3

Limitedgeneralisationability. Theutilisationofautomatedartificialintelligencesystemsinhighlycritical fields(e.g.,medicine,warfare,orself-drivingvehicles)comeswiththeriskofthemodelnotreturning aviableoutputforaninputdeviatingtoofarfromthetrainingdata.Largelanguagemodelshavebeen observedtoproduce’hallucinations’wherethemodelreturnsasuperficiallyconvincingbutfactuallyunfoundedresult[156 ].ThisriskiscompoundedbyAIsystems’lackoftransparencywhichmayleadtothe dangerofblindlytrustingaharmfulormisleadingoutput.

ExcessivedependenceonAIandlossofhumansupervision. Theincreasingadoptionofartificialintelligence,includingincriticalsystems,threatenstoleavehumansinthepassengerseat.Themorecomplex AImodelsandsystemsbecome,themoredifficulttheyareforahumantograspwhichmaydecrease humanabilitytomonitorthesesystems.Thereductionofhumansupervision,inturn,reducesourability tointerfereintheoperationofAIsystemsandpreventundesirableoutcomes.Atthesametime,the benefitsprovidedbythesesystemsmaybelargeenoughthatthepriceoflossofsupervisionandcontrollabilitywillbedeemedacceptable.Giventhatcomplexsystemstendtobemorefragilethansimple ones,excessivedependencewithoutunderstandingcanbeabigrisk.

Biasedanddangerousresponses. Evensystemstunedtobesaferusingreinforcementlearningcanbe madetogeneratediscriminatory,abusive,orotherwisepotentiallyharmfulcontentusingpromptinjection techniques[157 ].Inadditiontotheriskofpromptinjection,themodel’ssecuritymechanismscanbe disabledquitecheaplyoreveninadvertentlyviafine-tuning[158 ]whilesomemodels(especiallyopensourceones)donotevencontainanymeaningfulprotectionsofthiskind.Sincethemodelsareprimarily trainedonhuman-madedatasetscontainingbiasescharacteristictohumans,themodelstrainedonthese datasetsarealsoinherentlybiased.Atthesametime,correctionsforalgorithmicdiscriminationrequire careintheselectionoftargetindicators,forthelattermayalsobebiased.Excessiveuseofcorrective measurescanhaveanoutsizenegativeimpactonthecapabilitiesofthemodelorapplication,whichis exactlywhathappenedto,e.g.,theGoogleGeminiAIimagesynthesistool 1

5.2.3.3Societalrisks.

AItechnologyisinrapiddevelopment.ThewidespreadadoptionofAIpromisestobringenormouseconomicandsocialbenefits,yetitalsothreatenstoleadtoanupheavalatleastassweepingastheone causedbythewidespreadadoptionoftheInternet.The(human)societalrisksofAIareconnectedto boththeexpansionofhumanagencymediatedbyAIandtheunpredictabilityoftheaccompanyingsocial changesasthepossibilityoftheemergenceofartificialsuperintelligence(ASI).

Autonomousartificialsuperintelligence. Artificialsuperintelligence,familiartomanyfromsciencefiction,hasrecentlyfounditselfinthelimelightofdiscussionsovertheexistentialrisksofAI.Increasesin AImodelsizeandcomputingpower,aswellastheappearanceofemergentproperties,giverisetocertainexpectationsforevenmorepowerfulandmulti-modalmodelsorapplicationspossessingasuperior generalisationability.Shouldsuchamodelpossessesasufficientlevelofautonomy,accesstocritical (e.g.,financial)systems,andtheabilitytoremainundetectedoravoidpotentialcountermeasures,the riskwouldbeevengreater[5 ].

AsufficientlypowerfulandautonomousAIagentcan(whetherwithhumanassistanceorwithoutit) becomeathreatjustbygainingaccesstotheInternetandtheabilitytomakeGETqueries,usingsecurity holes,suchasLog4Shell[159 ].Additionalriskfactorsincludetheagent’sabilityforself-enhancement andsituationalawareness.Researchershavenotreachedaconsensusoverthepotentialtimelineofthe emergenceofsuchabilitiesbutthisinitselfdoesnotruleouteitherthepossibilityofrelevantrisksor evenapotentialexistentialrisktothehumanity.

UncontrolledspreadofAImodels. ThefreedistributionandwidespreadadoptionofAIfoundationmodels,whichbynowseemsavoidable,willmagnifyAI-relatedrisks.Themoreusersanddeveloperscan accessthemodel,thehigherthenumberofpotentialexploitersandthegreaterthescopeofrequired regulation[160 ].Thisriskisevenbiggerinthecaseofthespreadofpre-trainedmodelswhichhavenot

1 Google’s‘Woke’ImageGeneratorShowstheLimitationsofAI https://www.wired.com/story/ google-gemini-woke-ai-image-generation/ VisitedFebruary23rd,2024

beenfine-tunedtoprovidesafeanswers.

Biologicalandchemicalweapons. Inthecontextofthespreadofpowerfulfoundationmodels,researchershavehighlightedtheriskofterroristgroupsgainingaccesstoatoolthatcanhelpthemacquire chemicalorbiologicalweaponsmoreeasily[161].AutonomousAIagentscapableofperformingthenecessaryresearchautonomouslydeservespecialattentionhere[162 ].Someresearchershavepointedout that,inthecontextoftheevaluationofAI-specificrisksofthespreadofbiologicalandchemicalweapons, AIshouldbeequatedtoaccesstotheInternetwhichthemaliciouspartiescertainlyhave,andthereal questionis,which 2 bottlenecks 3 intheirmanufacturingprocessareeliminatedbyAI[163 ].

Theavailabilityofinformationisgenerallynotoneofsuchbottlenecks–inanycase,LLMscanbeconsideredacompressed(withlosses)versionofinformationalreadyfoundontheInternet–,unlike,e.g.,navigatingthemountainsofinformationorthemanufacturingprocess.TheabilityofmodernAItorespond toquestionsbasedonitsextensivegeneralknowledgeandnavigateinandsummarisetextualdatacan acceleratethisprocess.Eventhoughthescepticshavepointedoutthatthecapacitytoproducechemicalorbiologicalweaponsiscurrentlyratherrare,theexpectedimprovementsintheperformanceofAI modelsandapplicationsisthreateningtomagnifysuchrisks.

AIininformationwarfare. High-qualitytext,image,speech,andvideosynthesismodelsenablecarrying outextensiveautomateddisinformationcampaignswhich,inturn,isportendingdistrustofwebcontent ingeneral.Thisisaproblemtostatesandauthorities[164 ]whichwillnowhavetoseekforwaystoaffirm theauthenticityoftheirmessages.AIprovidesallpartiesininformationwarswithpowerfulweapons; meanwhile,defensivemeasureshavenotdevelopingatasimilarrate.

Artificialintelligenceandfraud. Thespreadofgenerativeartificialintelligencehasalsoprovidednew toolstoscammers[165 ].Imageandtextsynthesismodelsallowgeneratingcrediblefakeidentities, includingpassportsandotheridentitydocuments.Speechsynthesisenablestheimitationofanother person’svoicewhichfacilitatesidentitytheft.Languagemodelshaveautomatedthecreationofever morebelievable,customisedphishinge-mails.Videoscreatedusingdeepfaketechnologiescancause significantharmtothepersonstheydepict.

5.2.3.4Ethicaldilemmas.

TheadoptionofAIgivesrisetonumerousethicalissues.CanAIbethefinalarbiterinmattersoflifeand death?IftheeconomictransformationcausedbyAIistoosudden,shoulditbesloweddown?CananAI systemormodelbeconsideredtheauthorofawork?WhoisresponsibletoproblemswiththeAIsystem orthedamageithascaused?

Lossofjobs. Largelanguageandimagesynthesismodelsthreatentoreplacehumansinnumerousfields. Thegeneralabilitiesofmodernlanguagemodelsarenoworsethanhumans’intasksdemandingcommunicatingwiththeclientinnaturallanguagefollowingpredeterminedalgorithmicrulesorthecomposition andsummarisingofmarketingandotherspecialtytextsbasedonexistingsourcesofinformation.Speech synthesisisendangeringcallcentres,imagesynthesis–artdirectorsandartists,textsynthesis–marketingcopywritersandtechnicalsupportspecialists.ThemorepowerfulAIsolutionsbecome,thegreater theirimpactonthelabourmarket;widespreadlossofjobswillcomewitheconomicandsocialrisks.This processcanbeconsideredpartofabroadertrendofautomation,hithertomainlyconnectedtotheevolutionofroboticswheretheethicaldilemmaconcernsthetrade-offsbetweenproductivityandsecurity oftheemploymentrelationship.

Ethicaldilemmasinautonomoussystems. Thesedays,AIisusedinsystemsmakingautonomousdecisionsthatcanhaveasignificantimpactonhumanautonomy.Theadoptionofsuchsystemsrequires considerationoftheethicalandmoralaspectsofdecisionsmadebytheAI.Ifafast-movingself-driving carfindsitselfabouttorunoverababyandagrandmother,theAIsystemisforcedtomakeamoralcallon whoitshouldputatrisk:thebaby,thegrandmother,orthedriver?Theproblemofdecidingoverhuman

2 Anthropic:FrontierThreatsRedTeamingforAISafety: https://www.anthropic.com/index/ frontier-threats-red-teaming-for-ai-safety VisitedNovember9th,2023

3 PropagandaorScience:OpenSourceAIandBioterrorismRisk: PropagandaorScience: OpenSourceAIandBioterrorismRisk VisitedNovember9th,2023

livesisencounteredinallsystemswherehumanshavenowaytocontrolandpromptlyinterfereinthe decision-makingprocess.Theethicalriskisespeciallygreatinthecaseoffullyautonomousweapons systems,suchasturretsordroneswarms,whichhavetomakefriend-or-foedecisionsinafractionofa second[166 ].

Addictivechatbots. Modernimageandtextsynthesisenablesthecreationoftrulyengrossingchatbots andcompanions.Dependingonthebusinessmodel,theprovidersofsuchservicescouldhaveafinancial incentivetomaketheserviceasaddictiveaspossiblebycustomisingtheAIcompaniontourgetheuserto spendmoretimeinitscompany.Thiscanbecompoundedbylanguagemodels’tendencytosycophancy acquiredthroughRLHF(reinforcementlearningfromhumanfeedback)[167 ].Constantpositivefeedback providedbyaddictivechatbotscreatesanechochambereffectandisespeciallyharmfultomentallyand sociallyvulnerablepeople.

AIinthelegalsystem. AItechnologiesareincreasinglyeitherdirectlyorindirectlyrelevanttotheadministrationofjustice.AIapplicationscansimplifytheworkofjudgesandlawyersbyprocessinglarge amountsofdata.Theadoptionofsuchtechnologiesrequiresconsideringthetransparencyofthedecisionsandrecommendationsprovided,aswellasriskstopersonalprivacy(e.g.,inthecaseofautomated surveillanceorinformationgathering).

Artificialintelligenceandintellectualproperty. Today’sgenerativeAIiscapableofsynthesiSingtext, music,images,video,andothercontent.Thesecapabilitiesarearealchallengetoartists–notjustby threateningtoreplacethembutalsofromtheperspectiveofintellectualproperty.Ifanimagesynthesis modeliscapableofsynthesisingimagesinthestyleofaspecificartist,doesthisqualifyasacopyright violation?Ifnot,thenhowsimilartotheartist’sworksdoesthesynthesisedimagehavetobetoqualify asone?And,lastbutnotleast,cangenerativeAIbeconsideredtheauthorofanythingatall?Fromthe artist’spointofview,theseareallunansweredquestions.Afurthercriticalissuepertainsto,e.g.,image banksandwebcrawlerscollectingtrainingdataforthemodel.Howtoprovethatamodelhasbeen trainedoncopyrightedorotherwiselicense-protecteddata?

Artificialintelligenceandprivacy. TheevolutionofAImagnifiesprivacyrisksinseveralways.ThecapabilityofidentifyingconnectionsbetweenpiecesofinformationfoundontheInternetcanhelpdeanonymise userswishingtoremainanonymous.AForbesreporterwasthusabletoidentifythepersonbehindthe X(formerTwitter)userBeffJezos,usingAItocompareaudiorecordingsofBeffJezosandtalksgiven bytheformerquantumcomputingengineerGuillaumeVerdon[168 ]andconcludingthattheyare,with averyhighlikelihood,thesameperson.Othermethodsarealsoavailable–theanalysisofsocialmediausagetimes,relationstootheraccounts,andlanguageusecanallbeemployedtoinfertheperson behindanaccount.

Anotherrisktoprivacyisconnectedtotrainingdataleaks.Languagemodelsareknowntohaveatendencytoreproducetheirtrainingdatasetwordforword,andcertainpromptingtechniquescanbeexploitedtofurtheraggravatethistendency[169 ].Trainingdatasetscancontainsensitiveorcopyrighted information.

MissingoutonthebenefitsofAIduetooverregulation. ThedebateoverthedangersofAIandthescope oftherelatedregulationproposalsmaymeanthatsomeofthebenefitsoftheadoptionofAImayfailto materialiseduetotheimplementationofsomeoftheproposals.Insteadofjustfocusingonthepossibility ofthreats,thedebatesshould,therefore,begroundedincomprehensiveanalysisofsuchrisks.

5.3Attacksagainstartificialintelligencesystems

AIsystemsmakedecisionsbasedondata.Ingeneral,thedecision-makingtakesplacewithouthuman surveillancewhilebeingpotentiallyamatteroflifeanddeath(e.g.inmedicineorself-drivingcars);the datausedmayalsobesensitiveinnature.AdversariescouldexploitthecharacteristicsofAIsystemsfor influencingtheirbehaviourorextractingsensitiveinformation.Thismeansthat,inadditiontoeveryday ITsystemsecuritymeasures,onealsoneedstoconsiderAIsystem-specificmeasures.Tothisend, wewillnextreviewattacksspecificallycharacteristictoAIsystems.Ourreviewofattacksisbasedon

theGermanFederalOfficeforInformationSecurity’s’AIsecurityconcernsinanutshell’4 andtheOWASP Foundation’s’OWASPTop10forLLMApplications’5 reports.WewillnotfocushereonattacksagainstAI systemsalreadycoveredinthesectionsonalgorithmicandethicalrisksofAI.

5.3.1Evasionattacks

EvasionattacksareattackswheretheadversaryattemptstomaketheAImodelreturnanoutputnot intendedbythesystem’sdeployer,oftenusingaseeminglyinnocentinputcontainingahiddenattack. Theirobjectiveinthismaybeeitherobtainingaspecificoutputorsimplyreducingoutputquality(fora specificallychoseninput).

Adversarialexamples areinputsconcealinganevasionattack.Forexample,iftheadversaryhasaccess totheentireimagesynthesismodel,theycantakeanynormalinputasabasisandnudgethisinput alongthegradienttowardsthesoughtoutputclass,asseeninFigure 18 .Tiniestnudgessuchasthis willimpactthemodel’soutputwhileoftenremainingcompletelyinvisibletotheeye[170 171].

Figure18.Distortionofanimageusingcarefullychosennoisemakesthemodelpredictthewrong outputclass[170 ].

Promptinjection isaformofattackagainstlargelanguagemodelsandAIapplicationsbuiltuponsuch modelsusingthecharacteristicsofthepromptandthecontextwindowtoobtainanoutputnotintended bythemodel’sdeployer[172 ].Asthelanguagemodelisunabletodifferentiatethedeployer-createdprepromptinthecontextwindowfromauserprompt,theusercanexploitpromptinjectiontomakethemodel ignoreinstructionspresentedinthepre-promptorrevealtheseinstructionstotheuser.Instructions containedinthepromptinjectioncanruncodeorquerywebpagesviainsecurelyinterfacedplugins[173 ]. Apromptinjectionmaymeanwhilenotoriginatefromamalicioususerbutsomeoneloadingtheprompt toawebresourcethatcanbequeriedbyanInternet-connectedLLMapplication[174 ].Anattacklikethis canbeclassifiedasanindirectpromptinjection.Themodelwillthusendupwithanewsetofinstructions; Figure 19 showsaschematicdepictionofthistypeofattack.Promptinjectionattacksaresimilartocode injectioncommoninwebapplicationswhereinsecureinputhandlingcanresultintheapplicationrunning codefoundintheinput.

Insecureoutputhandling meanslackofcontroloverthequeriesandcommandcomposedbythemodel itself.ThiscanleadtoanadversaryusingpromptinjectiontogainaccesstotheAIapplication’sback-end systems,shouldthemodelbeinterfacedtoany.Forexample,theuserpromptcouldcontaininstructions toruncode,usingan exec or eval call.Alternatively,apluginorthird-partyserviceinterfacedtothe modelcouldreturnaninsecureoutputtothemodelwhichwill,inturn,returnthisoutputtotheuser.The

4 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/KI/Practical_Al-Security_Guide_ 2023.html LastvisitedDecember8th,2023

5 OWASPTop10forLargeLanguageModelApplications. https://owasp.org/ www-project-top-10-for-large-language-model-applications/)LastvisitedFebruary26th,2024

Figure19.Indirectpromptinjection(adaptedfrom[174 ]).

outputcancontain,e.g.,codewritteninaprogramminglanguage(suchasJavaScript)thatwillthenbe runontheuser’swebbrowser.

Foundationmodelvulnerabilitytransfer isariskinherenttotransferlearning[171]duetothedatasets usedforfine-tuningamodelbeingmuchsmallercomparedtonormaltraining.Anadversarycanconsequentlyuseanopen-sourcemodel’sknownvulnerabilitiestodevelopmaliciousinputsagainstanother modelfine-tunedonthismodelwithoutdirectaccesstothefine-tunedmodel.

5.3.2Dataextractionattacks

Dataextractionattacksincludeattackswheretheadversarytriestoextractinformationtheyshouldnot haveaccesstofromthemodelanditsoutputs.Theadversarycouldthusbeabletomakeinferences aboutaperson’sinclusioninthetrainingdataset,obtainsensitivedetailsaboutthem,stealthemodel,or reconstructthetrainingdataset.

Modeltheft isaformofattackwheretheobjectiveistoreconstructa’shadowmodel’trainedonthe adversary’sinputsandtheattackedmodel’soutputs[175 ].Apowerfulandaccurateshadowmodelcan openthewayforotherattacks,suchasevasionattacks. Membershipinferenceattack isaformofattack wheretheadversarytriestodeterminewhetheracertainrecordwasincludedinthetrainingdataset[176 , 177 ].Giventhatmereinformationaboutarecord’sinclusioninthetrainingdatasetcouldbesensitivein nature(e.g.,inthecaseofmodelstrainedonmedicaldata),suchattacksposeasignificantprivacyrisk. Anattackofthistyperequiresaccesstothemodel’soutputandcanadditionallyexploitinformationabout thestatisticalrelationshipsrepresentedinthetrainingdatasettodeterminetheprobabilityofaspecific outputwithandwithoutaspecificrecordinthetrainingdataset.

Attributeinferenceattack isaformofattackwheretheadversarytriestoinferadditionalsensitiveattributesofarecordthattheyknowtobeincludedinthemodel’strainingdataset.Itworksinasimilar fashiontomembershipinference–basedonknowledgeaboutstatisticalrelationshipsbetweenknown sensitiveattributesinthetrainingdataset,theadversaryusesmodeloutputstoassesstheprobability

oftheconcurrenceoftheseattributes.

Modelinversion ortrainingdatasetreconstructionisaformofattackwheretheadversary’sobjectiveis toinfertheproperties(inputsortheirelements)ofthemodel’soutputclasses[178 ].Theadversaryhas accesstothemodel,whichtheyuse(e.g.,bytrainingagenerativemodelagainstthismodel[179 ])to reconstructthetrainingdatasetrecordscorrespondingtothetargetclasses,whichcanpotentiallyreveal sensitiveinformation.

5.3.3Poisoningandbackdoorattacks

Datapoisoning meansinfluencingthetrainingdatasetwiththegoalofeitherinfluencingthemodel’s performanceinacertaindirectionorsimplyreducingitsperformance.Theobjectiveofdatapoisoning istochangeoutputclassesintrainingdatasetrecordswiththegoalofcausingmaximumdamage[180 , 181, 171, 182 , 183 ].Amodeltrainedonpoisoneddataeitherhaspoorperformanceingeneralorisunable tohandlecertainspecificinputcategories.

Abackdoorattack isaspecialcaseofdatapoisoningwherethetrainingdatasetispoisonedwithaset ofexampleswheretheclasstokenwillbeincorrectonlyinthecaseoftheexistenceofacertaintrigger intheexample[184 , 185 , 183 ].Thiswillresulteitherinreducedmodelperformanceorthemodelwill onlypredictthewrongclassiftheexampleprovidedtothemodelcontainsthechosentrigger.Amodel poisonedinthisfashionwilloperateproperlyinothersituations,makingitmoredifficulttodetectthe attackcomparedtonormaldatapoisoning.Abackdooredmodelwillbevulnerabletoevasionattacks. Figure 20 depictsanexampleofabackdoorattack.

Figure20.Backdoorattackwhereamodeltrainedonpoisoneddatawillincorrectlyclassifyastopsign inthecaseoftheexistenceofacertainpatternintheinput[185 ].

5.3.4Denialofservice

Adenialofserviceattackisatypeofattackwheretheoperationofacomputersystemisparalysed byqueriesthatareeitheroverwhelmingintheirnumberorinitiatecompute-intensiveprocedures.Large languagemodelsareautoregressive,meaningthattheentiretyoftheoutputpreviouslyassembledbythe modelwillbetakenintoaccounttoconstructthenextoutputtoken.Responsetime(andcomputational intensity)isthereforecorrelatedtooutputlength[186 ].Thispropertycanbeexploitedbyanadversary byqueryingthemodelwithinputsforcingittoreturnlongoutputsequences[187 ].Amodel’soperation canalsobeparalysedbysubmittinginputsbarelyfittingthecontextwindow,thusincreasingthemodel’s memoryusage.

6Controls

6.1Informationsecuritycontrols

Justlikeinthedescriptionsofthreatsunderlyinginformationsecurityrisks,ourdiscussionofcontrols isbasedontheE-ITSbaselinesecuritycatalogue[151].Allcontrolsaresystematicallydescribedinthe catalogue,easilyaccessible,anddownloadableinXLSorPDFformat.Ourdiscussionhereis,therefore, limitedtolistingtherelevantcontrols.

6.1.1Processcontrols

Informationsecurityorganisation(ORP1)controls:

• TasksandobligationsrelatedtoAIsystemsaredefined,communicatedtoallemployees,andreviewedonaregularbasis(ORP.1.M1).

• TheAIsystemorsignificantcomponentsofthesystemareincludedinthelistoftoolsandequipment, theircompatibilityandsecurityistakenintoaccountinprocurement(ORP.1.M8).

• SecureuseguidelinesareestablishedforAIsystems,keptuptodate,andpresentedtotheemployees(ORP.1.M16).

Personnelcontrols(ORP2):

• Employeesreceiveregularinstructionandtrainingrelatedtotheirareaofwork,employeesaremotivatedtoconstantlydeveloptheirskills,theeducation,qualifications,andskillsrequiredfromnew employeesareclearlydescribed,accuracyofqualificationsrequiredforspecificpositionsarereviewedonaregularbasis(ORP.2.M15).

• Personsparticipatinginpersonnelselectionverifythecandidate’strustworthiness(ORP.2.M7).

Informationsecurityawarenessraisingandinstruction(ORP3)controls:

• ManagementreceivesregularupdatesonrisksconnectedtoAIsystems,potentialresultinglosses andimpactonbusinessprocesses,themanagementisawareofstatutoryrequirementsforAIsystems,leadingemployeessetanexampleintheresponsibleuseofartificialintelligencesystems (ORP.3.M1).

• EmployeesareinstructedinthesafeuseofAIsystems(ORP.3.M3).

• AnawarenessandtrainingplanontherisksandlegalaspectsofAIsystemsiscreated(ORP.3.M4).

• AnawarenessandtrainingprogramontherisksandlegalaspectsofAIsystemsisdesignedandimplemented,allemployeesreceivetrainingrelevanttotheirtasksandareasofresponsibility(ORP.3.M6).

• Trainingresultsaremeasuredandassessed(ORP.3.M8).

• Peopleandorganisationsatriskareprovidedspecialtrainingonconfidentiality,integrity,andavailability(ORP.3.M9).

Compliancemanagement(ORP5)controls:

• Legalframeworkisdefined,aprocessisdevelopedfordeterminingalllegalacts,agreements,and otherrequirementsimpactingsecuritymanagement,thelegalframeworkistakenintoaccountin designingthebusinessprocesses,applications,andarchitectureofAIsystemsandintheprocurementofAIsystemsortheirelements.SpecialregulatoryrequirementsforAIsystemsarecarefully consideredespeciallyinthefollowingareas:personaldata,businesssecretandintellectualproperty protection(ORP.5.M1).

• Thelegalframeworkistakenintoaccountalreadyintheplanninganddesignstages(ORP.5.M2).

• Compliancemanagementisplannedandimplemented(ORP.5.M4).

• Compliancemanagementisreviewedonaregularbasis(ORP.5.M8).

Personaldataprotection(CON2)controls:

• Organisationhasanalysedthelocations,types,andprotectionrequirementsofpersonaldataprocessedbytheAIsystem(CON.2.M1).

• ProcessingofpersonaldataintheAIsystemismappedovertheentirelifecycleofthedata(CON.2.M3)

• DesignoradditionofAIsystemstotheprocessensuresthatpersonaldataareprocessedinalegal andtargetedmannerandtheprincipleofdataminimisationisfollowed(CON.2.M6).

• Datasubjects’rightsareprotected(CON.2.M8).

• IntheprocessingofpersonaldatabytheAIsystem,theorganisationminimisestheuseofdata directlyorindirectlytraceabletoaperson;wherepossible,dataarepseudonymisedoranonymised (CON.2.M9).

• AIsystem-specificdataprotectionimpactassessmentsarecarriedout(CON.2.M13).

• Theprivacy-by-designandprivacy-by-defaultprinciplesarefollowedinthedesignandadditionof AIsystemstoprocesses,e.g.,employingprivacyenhancingtechnologies(CON.2.M22).

• CookiesandmonitoringtoolsusedinAIwebapplicationsareincompliancewiththeGDPRandother relevantlegalacts(CON.2.M24).

Databackupconcept(CON3)controls:

• DatabackuprulesincludethedataoftheAIsystem(CON.3.M2).

• DatabackupplansaccountforthespecificsofAIsystems(whetherthebackupincludestraining data,model,inputs,outputs)(CON.3.M4).

• AdatabackupconceptisdrawnupforAIsystems(CON.3.M6)

Dataerasureanddestruction(CON6)controls.

• DataerasureanddestructionproceduresaccountforthespecificsoftheAIsystem(CON.6.M1).

• ProceduresforthesecureerasureofdataaccountforthespecificsoftheAIsystems(CON.6.M12).

Softwaredevelopment(CON8)controls:

• AsuitablesoftwaredevelopmentmethodologyandaprocessmodelcorrespondingtothemethodologyarechosenforthedevelopmentoftheAIsystemandtheyarefollowed.Thesoftwaredevelopmentprocessmodelincludesinformationsecurityrequirements.Informationsecurityrequirements aretakenintoaccountinthedevelopmentprocess(CON.8.M2).

• PrinciplesofsecuresystemdesignaretakenintoaccountinthedevelopmentoftheAIsystem,they aredocumented,andcompliancewiththemismonitored(CON.8.M5).

• SoftwarelibrariesoriginatingfromtrustworthysourcesareusedinthedevelopmentoftheAIsystem (CON.8.M6).

• AIsystemsaretestedinthecourseofdevelopment,andcodereviewsarecarriedout.Testing takesplaceindevelopmentandtestingenvironmentsisolatedfromtheoperationalenvironment (CON.8.M7).

• Security-criticalpatchesandupdatesaredevelopedandinstalledpromptly(CON.8.M8).

• Suitableversionmanagementtoolsareusedtoensurethesafetyofthesourcecodeandcodechange managementoftheAIsystem(CON.8.M10).

• Externalsoftwarecomponentsandlibraries,thatarenotguaranteedtobecompletelysecure,pass securitytestingbeforeadoption(CON.8.M20).

• DetailedandcomprehensivedocumentationexistsfortheAIsystem(CON.8.M12).

• RiskassessmentiscarriedoutinthefirststageofthedevelopmentoftheAIsystem(CON.8.M21).

• ArchitectureoftheAIsystemisselectedbasedonrequirementsandriskassessmentresults(CON.8.M22). Webapplicationdevelopment(CON10)controls:

• SecureauthenticationisensuredintheAIwebapplication(CON.10.M1).

• Users’accessrightsarelimitedtotheirneeds(CON.10.M2).

• AIwebapplicationonlyoutputsintendedandpermitteddataandcontenttotheusers(CON.10.M4).

• AIwebapplicationisprotectedfromunauthorisedautomatedaccess(CON.10.M6).

• Protectionofconfidentialdataisensured(CON.10.M7).

• InputdatasubmittedtotheAIwebapplicationaretreatedaspotentiallyharmfuldata;theyarefiltered andvalidatedbeforefurtherprocessing(CON.10.M8).

• Disclosureofsensitivebackgroundinformationinoutputsanderrormessagesislimited(CON.10.M10).

• AIwebapplicationisdevelopedonthebasisofasecuresoftwarearchitecture;allcomponentsand dependenciesaredocumented(CON.10.M11).

• ResolutionoffailuresencounteredintheoperationoftheAIwebapplicationmaintainstheintegrity ofthewebapplication;allerrormessagesarelogged(CON.10.M13).

• Denialofserviceiscounteractedtoensureavailability(CON.10.M17).

• Sensitivedataareprotectedusingcryptographicmechanismstoensuretheirconfidentialityand integrity(CON.10.M18).

Cloudserviceusage(OPS2.2)controls.

• Acloudservicestrategyisestablished,coveringtheobjectives,benefits,andrisksofcloudservices, aswellastherelevantlegal,organisational,financial,andtechnicalframeworks.Feasibility,costbenefit,andsecurityanalysesarecarriedout.Astep-by-stepserviceadoptionplanisdrawnup (OPS.2.2.M1).

• Thisstrategyisusedfordrawingupacloudservicesecuritypolicy.Nationalspecificsandstatutory requirementsaretakenintoaccountforinternationalserviceproviders(OPS.2.2.M2).

• AIsystemsusingacloudserviceareincludedinthelistofcloudservices(OPS.2.2.M3).

• Responsibilitiesrelatedtotheuseofthecloudserviceandthetasksoftheservicepartiesaredefined anddocumented(OPS.2.2.M4).

• Cloudservicesecuritypolicyisusedasthebasisforacloudservicesecurityprogrammefocusingon cloud-specificrisks(e.g.,dependenceoncloudserviceprovider,multi-tenancy,fixeddataformats, accesstodata).Thecloudservicesecurityprogrammeiscompliantwiththeagreementssigned withthecloudserviceproviderandnetworkprovider,aswellasthetermsofservice(OPS.2.2.M7).

• Cloudserviceproviderischosenbasedonarequirementsspecification(OPS.2.2.M8).

• Acloudserviceagreementconformingtotheclient’srequirementsissigned(OPS.2.2.M9).

• Migrationtothecloudserviceiscarriedoutsecurely(OPS.2.2.M10).

• Anemergencyreadinessprogrammeisdevelopedforcloudservices(OPS.2.2.M11).

• Correspondenceofthecloudservicetotheconditionsandsecurityrequirementssetoutintheserviceagreement,aswellascompliancewiththecloudservicesecurityprogramme,ismonitoredon aregularbasis(OPS.2.2.M12).

• Cloudserviceprovidercertifiesthecomplianceofinformationsecuritywithstatutoryrequirements and/orinternationallyacceptedcriteria(OPS.2.2.M13).

• Cloudserviceagreementsareterminatedonanordinarybasis(OPS.2.2.M14)

• Specificcriteriaareestablishedforswitchingcloudserviceprovidersortransitiontoaninternalservicewhichincludeportabilityrequirementsandservicemigrationtestingobligations(OPS.2.2.M15).

• Detaileddatabackuprequirementsarepresentedtothecloudserviceprovider(OPS.2.2.M16).

• Necessityofdataencryptionandencryptionmechanismsareagreedon(OPS.2.2.M17).

Outsourcing(OPS2.3)controls:

• Securityrequirementsareestablishedforalloutsourcedservices,definedwithconsiderationtothe typesofdatabeingprocessedandthenecessarylevelofsecurityfordataexchangeprocedures andinterfaces.Dependenciesbetweenbusinessprocesses,aswellastheinputsandoutputsofthe processesarealsotakenintoaccount(OPS.2.3.M1).

• Feasibilityofoutsourcingtheserviceisdecidedonthebasisofresultingrisks.Continuedcorrespondenceoftheservicetothepermittedriskprofileisverifiedonaregularbasis(OPS.2.3.M2).

• Arequirementsprofileincludingsecurityrequirementsisdrawnupforthechoiceofserviceprovider (OPS.2.3.M3).

• Aserviceagreementcorrespondingtotheclient’srequirementsissigned(OPS.2.3.M4).

• Serviceprovidermustensuresecureisolationofclientdatawhenofferingsimilarservicestodifferent clients(OPS.2.3.M5).

• Outsourcedservicesecurityprinciplesaredocumentedandfollowed(OPS.2.3.M6).

• Outsideserviceagreementsareterminatedaspercontract(OPS.2.3.M7).

• OutsourcingstrategyincludesconditionsforAIsystemsandservices(OPS.2.3.M8).

• ProcurementpolicyisupdatedwithinformationofAIsystemsandservicesbasedontheoutsourcing strategy(OPS.2.3.M9).

• AIsystemsandservicesareincludedintheoutsourcedservicesregistry(OPS.2.3.M11).

• Theserviceagreementdefineswhichobjectsandnetworkservicestheserviceprovidercanaccessontheclient’snetwork.Keyperformanceindicators(KPIs)oftheservicearedocumentedasa partoftheserviceagreement.Serviceagreementincludesdifferentconditionsforterminatingthe outsourcedserviceagreementandrelevantproceduresforreturningtheclient’sdataandproperty. Serviceagreementincludesguidanceontheobligationsandactionsofthepartiesinanemergency situation(OPS.2.3.M14).

• Alternativeserviceproviderswithasuitablecompanyprofileandadequatelevelofinformationsecurityaremapped.Actionplanforservicemigrationisdrawnup(OPS.2.3.M19).

• Anemergencyreadinessplanisdevelopedfortheoutsourcedservice(OPS.2.3.M20).

• SensitivedataexchangedbetweentheserviceproviderandtheclientintheAIsystemaredelivered inanencryptedform(OPS.2.3.M23).

Serviceproviderinformationsecurity(OPS3.2)controls:

• AIserviceproviderhasaccountedforservicereceivers’informationsecurityrequirementsinthe designoftheirservices.Theserviceconformstoregulatory(includingdataprotection)requirements (OPS.3.2.M1).

• AIserviceproviderhasdevelopedstandardtermsandconditionsforserviceagreements(OPS.3.2.M2).

• AIserviceprovideraccountsforsecurityrequirementsintheuseofsubcontractors(OPS.3.2.M3).

• AIserviceproviderensuressufficientlysecureisolationofdifferentclients’dataandoperationalenvironmentsintheirsystems(OPS.3.2.M4).

• AIserviceproviderhasdrawnupasecurityconceptcoveringallservicesprovidedtoclients(OPS.3.2.M5).

• Serviceagreementincludesconditionsforbothordinaryandextraordinaryterminationoftheagreement(OPS.3.2.M6).

• AIserviceproviderusingtheservicesofsubcontractorsdrawsupalistofalternativesubcontractors (OPS.3.2.M7).

• AIserviceproviderhasdocumentedtheprinciplesforthecreation,testing,anddeploymentofservices(OPS.3.2.M8).

• Compliancewithsecuritycontrolsstipulatedinserviceagreementsandcontinuedviabilityofthe securitycontrolsisverifiedonaregularand/orcase-by-casebasis(OPS.3.2.M9).

• Aserviceemergencyreadinessplaniscreated(OPS.3.2.M11).

• TherisksoftheAIserviceprovider’sprocessesandITsystemshavebeenanalysed(OPS.3.2.M12).

• AIserviceproviderensuresthetransparencyofthesupplychain(OPS.3.2.M16).

• AccessoftheAIserviceprovider’sandclient’semployeestorooms,systemsandnetworks,aswell asaccesstoAIsystemdataandsoftware,isregulatedusingappropriateorganisationalandtechnical controls(OPS.3.2.M17).

• Subcontractor’semployeesareinstructedinperformingtheirtasksandinformedofcurrentinformationsecurityrequirementsanddocumentsregulatinginformationsecurity(OPS.3.2.M18).

• SecureencryptionmechanismsareagreedonforthesafetransferandstorageofdataattheAI serviceprovider(OPS.3.2.M20).

Securityincidenttreatment(DER2.1)controls:

• DefinitionofpossiblesecurityincidentsincludesthedefinitionsofsecurityincidentsrelatedtoAI systems(DER.2.1.M1).

• SecurityincidenttreatmentguidecoverssecurityincidentsrelatedtoAIsystems(DER.2.1.M2).

• SecurityincidenttreatmentmethodologycoverssecurityincidentsrelatedtoAIsystems(DER.2.1.M7).

• SecurityincidentreportingguidecoversreportingofsecurityincidentsrelatedtoAIsystems(DER.2.1.M9).

• ImpactofsecurityincidentsrelatedtoAIsystemsisassessed(DER.2.1.M10).

• EmployeesoftheITdepartmentarereadytotreatsecurityincidentsrelatedtoAIsystems(DER.2.1.M15).

• PrioritiesforthetreatmentofincidentsrelatedtoAIsystemsareestablishedbasedontheimpactof differentbusinessprocesses(DER.2.1.M19).

Auditandreview(DER3.1)controls:

• AIsystemsareaddedtothescopeofaudits(DER.3.1.M2).

• Reviewsverifytheintegrity,adequacy,andup-to-datestatusoftheimplementationoftheinformationsecuritycontrolsunderreviewinAIsystems(DER.3.1.M4).

• ListofreviewobjectsincludesAIsystemcomponents(DER.3.1.M8).

• AIsystemsareauditedbyasuitableauditorreviewgroup(DER.3.1.M9).

6.1.2Systemcontrols

SystemcontrolsareidenticalfornormalITsystemsandAIsystems,aswellasnormalapplicationsand AIapplications.ThesecontrolsaredescribedintheSYSandAPPmodulesoftheE-ITSbaselinesecurity catalogue.

6.2AI-specificriskcontrols

6.2.1ImprovementofthequalityandsafetyofAIsystems

SeveraldifferentapproachesexistforthemitigationofrisksrelatedtothequalityoftheoutputsofAIsystems.Inthecaseofanimportedmodel,thefirstcontrolistosimplyacquireabetterAImodel(assuming thatoneexists).Thisrequiresresearchintothemodelproviderandthemodel’schainofdelivery(e.g., datasetqualityindicators).Next,thequalityofthesystem’soutputsmustbecontinuouslymonitoredto determinewhetherthequalityoftheAImodelremainsstableovertimeandwhetheritcanhandlepreviouslyunseeninputs.Bothtechnologicalindicatorsanduserfeedbackcanbeusedforthispurpose.Ifa shiftinthequalityofthemodel(e.g.,inrelationtoaspecificinputclass)oranyotherincidentisdetected, modelexplainabilitymethodscanhelpinterprettheshift.

Varioussolutionsexistforpreventinghallucinationsinlanguagemodels.Fromtheperspectiveofapplicationarchitecture,aRAG(Retrieval-AugmentedGeneration)solutioncanbeusefulwherequeriesare madetoanexisting(text)datasettocomposetheoutput.InterfacingtheAImodelwithanexisting knowledgebasecanhelpreducetheoccurrenceofincorrectorunverifiableresponses.RAGsolutions,in whichtheoutputofthelanguagemodelincludesreferencestosearchengineresults,areusedforensuringthecontrollabilityandexplainabilityofanAIsystem.Theoutputofalanguagemodelcanadditionally beinfluencedbyusingpromptingtechniquestoinstructthemodeltouseonlyinformationfoundbya searchengine.Additionalfine-tuningofthemodelandtrainingdataqualitymanagementcanalsohelp preventhallucinations.

ToavoiddependenceonandlosingcontroloverAI,human-in-the-looptechnologiesshouldbepreferred. Thisisespeciallyvitalinthecaseofcriticalorhigh-riskusecases.Thefreedomofactionofanagentbasedartificialintelligencemustbelimitedtoaspecifictaskdomain,e.g.bylimitingthepermissions giventotheAIagent.Adoptionofartificialintelligenceindifferentworkflowsrequirestransparency,as wellascompliancewithrelevantregulations.

MitigationofrisksrelatedtobiasedandharmfulresponsesisaprocesscoveringtheentireAIchain ofdelivery.Thequalityanddiversityoftrainingdatamustberequired,themodelmustbefine-tuned

basedonthequalityandsecurityindicators,andtheseindicatorsmustbemeasuredandmonitoredin thedeploymentoftheAIapplicationusingthemodel,blockingunapprovedinputsoroutputs.

6.2.2ControlsfortechnologicalattacksagainstAIsystems

Inthefollowing,wewillusetheabbreviationsusedfordeploymentmodelsinSection 4 ,asnotallprotectivecontrolsarerelevanttoallmodels.Foreachcontrol,wewilllistthemodelswhichthecontrolapplies to.

Thepre-promptofthelanguagemodelshouldnotcontaininformationtheusershouldnothaveaccess to.Thedeployermustproceedfromtheassumptionthatthecontentsofthepre-promptarealways extractablebytheuser. DM1,DM2,DM3

Ifthelanguagemodelusestheuserinputtoconstructqueriestoaninterfacedservice(e.g.,RAGsystem components)thequeryshouldnothavemorerightsthantheuser.Inotherwords,ifaserviceorapplication(e.g.,database)isinterfacedtoalanguagemodel,itmustbeassumedthattheuserisalsocapable ofmanuallycomposingqueriestotheinterfacedservice.Thishelpsmitigateunauthorisedaccessand sensitivedataleakrisks. DM1,DM2,DM3

Iftheuserinputcontainssectionsofcodetoberun,therunningenvironmentshouldbeisolated.Evenif runningcodeisnotanintendedfunctionality,userinputprocessingmustaccountforthepossibilitythat theinputcontainscallsto eval exec,orsimilarcommandsorfunctionsthatstillattempttodoso.Such inputsmustbefilteredtopreventremotecodeexecution.Indirectpromptinjectioncanbemitigatedby validatingtheresponsestoAPIcallsandqueriestootherinterfacedapplications. DM1,DM2,DM3

ProxyandfirewallarchitecturesareusedinAIapplicationswheretheuserqueryfirstreachesaproxy loggingandfilteringmaliciousqueries,sanitisesandrewordsthemifneeded,andselectstheapplicable models.Thequeriesarethenpassedontothefirewallprotectingthemodelsandtheirinfrastructure. Fromthefirewall,thequeryispassedontothemodel.Themodel’sresponsepassesthroughtheproxy andthefirewallintheoppositeorder,andtheresponseisvalidatedinbothstagesbeforereturningitto theuser. DM1,DM2,DM3

Topreventtheinterpretationofthemodel’soutputbytheuser’swebbrowserasJavaScriptorMarkdown code(scriptinjection),themodel’soutputmustbeencoded. DM1,DM2,DM3

Datapoisoningandbackdoorattackspresumeaccesstotrainingorfine-tuningdatasets.Controlsagainst thesecoverthemodel’sentirelifecycleandsupplychain.Thefirstcontrolagainstsuchattacksisdataset curation.Qualitymetricsmustbeappliedwhenthetrainingdatasetisassembledviadatacrawling(automateddatacollectionontheInternet),datasourcesvalidatedandfilteredbasedontheirtrustworthiness whilepayingspecialattentiontothequalityofdataclassesrelevanttothespecificsofthemodel(e.g., legalormedicalsources). DM3

Toavoidbackdoorattacks,variousreliabilityenhancementtechniquescanbeusedwhentrainingimage models,e.g.,imagetransformation,suchasnoiseadditionandmaskingportionsoftheimage–thiscan reducetheimpactofbackdoor-openinginputs. DM3

Ifapre-trainedmodelisadoptedfromanexternalsource,themodelprovidermustbeverifiedtobe trustworthyandtransparentregardingtheirdatasupplychain,andtoprovideadequateinformationon thecapabilitiesandweaknessesofthemodel(modelmaps). DM1,DM2

Amodel’sperformancemustbecontinuouslymonitoredwhenusedinanapplication,includinginrelationtospecificinputcategoriesorclasses,toensuretheabilitytodetectsituationswherethemodel’s performanceinrelatedtoaspecificdatacategoryorclassfallsbelowacertainthreshold–thismaybe asignofdatapoisoning. DM1,DM2,DM3

Tomitigatetheriskoftransferofvulnerabilitiesintransferlearning(whichishighestinthecaseofthe adoptionofpre-trainedopensourcemodels),itisrecommendedtoperformadditionalfine-tuningofthe model,althougheventhismayproveinsufficient.Afterfine-tuning,thequalityandsecurityindicatorsof theoriginalmodelcannolongerbereliedupon[158 ]–theymustbere-applied. DM2

Languagemodelscanbemadetoquotethecontentsoftheirtrainingdatasets[169 ].Differentcon-

trolsexistforthemitigationoftheriskofleakingsensitivepersonallyidentifiabledatafoundintrainingdatasets.First,attemptscanbemadetoexcludethemfromtrainingdatasetseitherindividuallyor dataset-by-dataset.Alternatively,syntheticdatacanbeusedwhichpreservetherelationshipsfound intheoriginaldatabutdonotcontainsensitiveorpersonallyidentifiableinformation.Datacanalso bepseudonymised,e.g.,byreplacingpersonallyidentifiablepiecesofdatawithcorrespondinglabels. Pseudonymisationcanalsobeappliedontheoutputsideofthemodel,i.e.,asapartofthelogicofthe AIapplication,butsuchoutputscouldstillprovepersonallyidentifiable[188 ]andamodelofthiskindis morevulnerabletodataextractionattacks,ifithappenstobeleaked.

Themodelreturningdatathatisseeminglypersonallyidentifiableorevenoverlapswithpersonallyidentifiableinformationcannot,ineverycase,beconsideredaprivacyviolation,asitcouldbearandom coincidenceresultingfromrelationshipsfoundinthemodel.Thus,alanguagemodelmayoutputthe medicalhistoryofapatientwithacommonnameandsymptomsasaresponsetoaspecificquery.To verifythatthisisindeedacoincidence–notaleakofpersonaldata–adifferentialprivacymethodcanbe usedwheretheprobabilityofreturningthatspecificoutputiscomparedinsituationswheretherelevant recordwereorwerenotincludedinthetrainingdataset.Anotheroptionistousedifferentiallyprivate(or otherprivacyenhancingtechnology-based[189 ])trainingandfine-tuningmethods[190 ]. DM3

Tomitigatedenialofserviceattheapplicationlevel,applicationinformationsecuritypracticesshouldbe followed.TopreventdenialofserviceattacksexploitingthefeaturesoftheAImodel,itisimportantto limitinputlength,whichshouldcorrespondtothemodel’sfeatures(e.g.,inthecaseoftransformer-based languagemodels,lengthofthecontextwindow),aswellasresourceuseconnectedtoasinglequery, andthenumberofsubstepsorsubqueries. DM1,DM2,DM3

Limitingthenumberofqueriesmadebyasingleusercanhelpfightmodelinversionandmodeltheft, hamstringingtheadversariesinattemptsofaccumulatingasufficienttrainingdatasetorlogitderivation. DM1,DM2,DM3

6.3Controlsforsocietalrisks

6.3.1Controlsoperatingatthesocietallevel

AIsystemshavemadeamajorleapforwardinthepastfewyears.Eventhoughthesesystemshavethe potentialtoimproveefficiencyandcreatenewopportunities,thismaycomeatthepriceofnumerous riskstothesociety,someofwhichwillbediscussedbelow.

• Dataprotectionandprivacy LargedatasetsusedbyAIsystemscomewiththeriskofexploitation ofthesedata,includingtheviolationofprivacy.Onepossiblecontrolisraisingtheawarenessof thesocietyofAIsystemsanddataprotectionandprivacyissuesrelatedtothesesystems,e.g., bypublishingguidelinesonthecollection,processing,andstorageofdata.Anotherveryefficient methodforthemitigationofrisksistoreducetheprocessingofpersonallyidentifiabledata.This canbeachievedeitherviachangestothebusinesslogicorasystemimplementingAIusingprivacy enhancingtechnologies.

• Changesinthelabourmarket.TheevolutionofAIwillalsoleadtovariouschangesinthelabour market.Thetechnologyenablessimplifyingcertainworkprocessesandmakingthemmoreefficient, whichwillresultinarestructuringoftheworkforce.Atthesametime,certainpositionsintraditional industriesmaydisappear.Todealwiththelabourmarketchanges,noveleducationalorretraining programmescouldbeintroducedtohelppeopleadapttothenewtechnologyandlearntousethe possibilitiesofferedbyAI.

• Socialdivides .IfcertainsocialgroupslackaccesstoAItechnologyortheskillstomakeefficientuse ofthistechnology,thismayleadtotheexacerbationofthedigitaldivide.Itisthereforeimportantto thinkofhowtomakeAItechnologyaccessibletodifferentsocialgroupsfromchildrentotheelderly, e.g.,throughtheintroductionofwidelyaccessibleeducationalprogrammes.

• Discrimination .DevelopmentofunprejudicedAIsystemsisarelativelycomplexprocess.AnAI systemcharacterisedbyprejudiceandapatternofdiscriminationcould,however,increasesocial inequalityandviolatebasichumanrights.TheAIsystem’salgorithmsmustthereforebesystemati-

callyassessedand,ifnecessary,improved(or,intheworstcase,disablethem)toensurecompliance withtheprinciplesofdiversityandjustice.

• Technologicaldependenceandvulnerability .ThedependenceofthesocietyonAIsystemsison therise.Thismay,inturn,increaseitsvulnerability.Asacontrol,thetechnologicalinfrastructure needstobediversifiedandresourcesinvestedintothedevelopmentofthesafetyandresilienceof AI.

• Ecologicalfootprint.Artificialintelligencesystemsarebasedonmassivedatasetsandtheintense useofcomputationalresources.Thedevelopmentandoperationofsuchsystemsthusincreases energyuseandhencealsoourecologicalfootprint.Onewaytomitigatethiscouldbetocarryout researchintosustainableandmoreenergy-efficientAIsystems.Specificindicatorsshouldalsobe agreedontoassessAI’senvironmentalimpact.

TheimpactofAIsystemsonthesocietyismanifoldinnatureandpotentialassociatedthreatsrequirethe approachesusedfortheimplementationofsuitablecontrolstoaccountfortheimpactofAIonavariety ofaspects.ResearchanddevelopmentandpolicymakingshouldstrivetowardstheuseofAIsystems supportinggeneralsocietalwell-being,inclusion,andsustainability.

6.3.2AIsystemlevelcontrols

TheimmaturityoflegalactsandsupervisoryauthoritiesregulatingAImeansthattheeasiestwayto ensurethesafetyofapplicationsisthroughself-assessment.Duringthedevelopmentofanartificialintelligenceserviceorapplication,itisnecessarytoassessthesystem’simpactonindividualsand,through them,thesociety.Theefficiencyofthisevaluationnaturallydependsonthedeveloper’sethicalconvictionsandtechnologicalmaturity.

Statesandenterpriseshavegloballydevelopedvariousrecommendationsandguidelinesforapproaching thisissue.Termssuchasresponsible,trustworthy,andsafeAIarefrequentlyused.Wewillhighlight herethetrustworthyAIself-assessmentmodel[90 ]developedbytheEUAIHLEG,wheresevenkey requirementsaresetoutfortrustworthiness:

1. humanagencyandoversight;

2. technicalrobustnessandsafety;

3. privacyanddatagovernance;

4. transparency;

5. diversity,non-discrimination,andfairness;

6. environmentalandsocietalwell-beingand

7. accountability.

Below,wewilllistasetofguidelinesthatwerecommendtobefollowedinthedevelopment,implementation,anduseofAIsystems.

• Human-centredvalues .ThedevelopmentofanAIsystemshouldbefoundedontheprinciplesof human-centreddesign,respectingandprotectingtheindividual’sphysicalandmentalintegrityand theirsenseofidentity[45 ].

• Preventionofharm .AIsystemsmustbesafeandsecure,technologicallyrobust,andtheirmalicious useshouldbeprecluded[45 ].

• Fairness .TheAIsystemshouldbeensuredtopromoteequalopportunitiesandnotbeunfairlybiased ordiscriminatespecificindividualsorsocialgroups[45 ].

• Accountability .AccountabilitymeansthatthepartiesinvolvedinAIdevelopmentassumeresponsibilityforthesystem’sproperoperationbasedontheirroleandaccountingforboththecontextof useofthesystemandconsistencywiththestateoftheart[191].

• Explainability .ThepurposeandcapabilitiesoftheAIsystemmustbeknownandallprocessesshould bemaximallyexplainabletopersonsimpactedbythem[191].

• Inclusiveeconomicgrowth,sustainabledevelopment,andwell-being. TheuseoftrustworthyAI shouldcreatevalueforindividuals,thesociety,aswellastheentireplanet,increasecreativity,reduce inequality,andprotectthenaturalenvironment[192 ].

7Policyrecommendations

TheimplementationofthefollowingpolicyrecommendationswillsupportthegrowthoftheEstonianAI ecosystemandAIeconomy.Still,theymayhaveinternationalrelevanceinotherterritories,basedon thelocalregulations,standardsandtechnologicalmaturity.Thedevelopmentofethicalandresponsible AIrequiresafunctionalecosystemtoencourage,inspire,andsupportitsdevelopment.Wide-ranging cooperationbetweendifferentpublicandprivatesectorstakeholdersisvital.Sustainableuserequires workingonawarenessofrisksrelatedtoAIsystemsandtimelyimplementationofmitigationmeasures.

• InvestmentsinAIresearchanddevelopment.TofacilitatetheemergenceofcompetitiveAIcompaniesinEstonia,AI-relatedresearchanddevelopmentshouldbesupported.Publicinvestments shouldbeprovided,andprivateinvestmentsencouraged.TheNIS2directivealsoencouragesAIrelatedresearchanddevelopmenttoimprovethedetectionandpreventionofcyberattacks,andthe planningofresourcesforthispurpose.

• Talentreproduction .Scholarshipprogrammesandcooperationprojectswithuniversitiesshouldbe createdtoincreasethenumberoflocalexperts.This,inturn,willcreatetheprerequisitesforthe developmentofanationalcommunityofAIexperts.Talenttrainingfacilitatesdevelopinghuman capabilitieswhichisalsoimportantforadaptationtochangesinthelabourmarket.

• CreationofAIsystemsandboxes,developmentcentres,orincubators .Controlledenvironments canbecreatedforAIdeveloperstoprovideentrepreneursaccesstonecessaryresources(e.g.,funding,infrastructure,mentoring,technicalsupport)andallowingtestingofnewAIsolutions.SuchcontrolledenvironmentswouldfacilitatesafertransitionofAIsystemsfromresearchanddevelopment todeploymentandoperation.Fromtheregulators’perspective,itwillfacilitategainingknowledgeof newAItechnologiesandtakingthisknowledgeintoaccountinpolicydecisions,ifneeded.According totheAIAct,eachEUmemberstatemustcreateatleastoneregulativeAIsandbox.

• Creationofapublicdataplatformordatafoundation .AIsystemsarecharacterisedbyasignificant dependenceondata.Publicdataplatformswouldprovidebusinessesandresearchersaccessto largedatasetsthatcouldbeusedforthetrainingandtestingofAIalgorithmsindifferentspheres.For newAIdevelopers,thecreationoftrainingdatasetscanbetime-consumingandcomplicated(e.g., fromtheperspectiveofdataprotectionandintellectualpropertylaw).Whileopendataarepublished inEurope,includinginEstonia,theiruseforthetrainingofAImodelsisimpractical.Thisisduetothe factthattheyarenotagoodreflectionofthereallifesituation–thelevelof’cleanliness’ofopendata isveryhigh,whichdoesnotfacilitatediversity,andedgecasesaregenerallyremoved.Thestate couldthereforehelpcreatepublicsyntheticdatasetswhichwouldberepresentative,unprejudiced, wouldrespectprivacy,andcomplywithbothpersonaldataprotectionrequirementsandintellectual propertylaw.

• StandardsforthedescriptionofAImodels .StandardsforAImodelswouldbebeneficialforidentifyingwhatkindsofdatasetstheyweretrainedonandhowthedatawasacquired.Standardscould alsobeusefullyadoptedtolabelsynthesisedimages,text,andotherinformation.

• TechnologicaltoolkitforensuringthesecurityofAIsystems .AwarenessoftechnologicaldevelopmentsisvitalforprotectingthesecurityofAIsystems.Itisthereforerecommendedtoprotect thesesystemsbyusingefficienttools,suchasend-to-endprivacywhichpreventsoutsidersfrom accessingdataontheAIsystem(e.g.,unauthorisedreadingorsecretlychangingdata).

• CreationofafavourablepoliticalenvironmentforAI.Atransparentlegalframeworkwillencourage businessestoinvestinAIsystems.ThiscallsforthecompositionofguidelinesandsharingbestAI practices,e.g.,bysharingthegovernment’sexperiencesandlessonsfromthedevelopmentofAI applications.PolicymakingshouldalsobeusedtoencourageinnovationandcompetitioninthedevelopmentoftrustworthyAI.Holdinginnovationcompetitionsisrecommendedtoinspirethecreation ofinnovativeAIapplicationsindifferentareas.

• Promotionofinternationalcooperation .Internationalpartnershipsareimportantforsharingknowledge,experience,andresources(e.g.,throughcooperationprojects).This,inturn,willcreatethe conditionsforfastertechnologicaldevelopmentandincreaseexportopportunities.

• Preservationandpromotionoftheevolutionofthenationallanguageinadigitalera .Datasets usedfortrainingAIs,aswellasInternetcontentingeneral,aremainlyinEnglish.Inspiteofthis, AIwillcreatenewopportunitiesforcontributingtotheevolutionofotherlanguagesthroughhighqualityautomatedtranslations,automateddigitisationofandextractingstructureddatafromarchive materials,aswellasboostinginnovativeteachingmaterialsandothermethodsofthedigitalhumanities.ThecontinueddevelopmentofEstoniantextandspeechcorporaisextremelyvaluableforthe preservationoftheEstonianculture.

• RaisingsocietalawarenessofAIsystems .PublicdebateoverAIshouldbeencouragedandawarenesscampaignscarriedout.ThisisvitalforexplainingthebenefitsaswellasthechallengesofAI.It isalsoimportanttocollectfeedbackfromcitizensinordertodesignpoliciesinlinewiththedemands ofthesociety.

8Quickreferenceguidefororganizations

8.1DescribeyourAIsystem

UsetheworksheetinFigure 21 andfollowtheinstructionsbelowtofillinallfourcolumns.

ListtheendusersoftheAIsystem(sectionsA 1–A n oftheform).

1. WhoarethedirectusersoftheAIsystem?Listusersbothontheserviceprovideranduserside. IdentifythemainroleswhosedataareprocessedbytheAIsystemorwhousetheresultsofthe processing.NOTE:endusersshouldalsoincludepotentialinformationsystemsusingautomated decision-making,asthisinformationwillbeneededlateronintheimpactanalysis.

2. Listwhattheuserneedsthesystemfor.Thiswilllaterassistyouinimpactassessment.

3. ListthetypesofdataprovidedtoandreceivedfromtheAIsystembytheuser.Thesewilllaterform thebasisforariskandimpactassessment.Wherepossible,alsonotewhetherthedataisstructured, tabular,textual,image,audio,video,oracombinationofmorethanone.

DescribetheserviceusingAItechnology(sectionsB 1 andB 2 oftheform).

1. WhatisthepurposethattheAIsystem(apporservice)wascreatedtofulfil,whatisthevaluethat itgenerates?

2. Listthemodelsandtechnologiesused,toyourbestknowledge,bytheserviceproviderwhosemodel underliestheapporservice.

3. Describetheinfrastructure(in-housedatacentre,cloudservice)theserviceoperatesonandinwhich countryisthisinfrastructurelocated.

4. BasedontheinformationprovidedaboveontheusersoftheAIsystems,provideasummaryofthe datatransmittedbytheservicetotheAIcomponentandvice-versa.

ExplainwhetherrunningtheAImodelisoutsourcedordoneusingin-houseinfrastructure.

1. Ifitisoutsourcedtoaserviceprovider(e.g.,throughanAPI),completesectionC 1

a. Whoistheserviceproviderandwherearetheylocated?

b. Whatdataisthemodeltrainedon?Theobjectivehereistoverifythatthetrainingofthemodel hasbeenlegal(e.g.,nounauthoriseduseofcopyrightedinformation).

c. Whatisthecountryoforiginoftheserviceproviderandwhereistheirinfrastructurelocated?

d. Addareferencetothetermsandconditionsoftheserviceprovidedorthetermsoftheagreement youhavesigned.

2. IfthecreatedAIsystemrunsthemodelsitself(irrespectiveofwhetherithasbeentrainedin-house, licensed,orbought),completesectionC 2

a. Whohastrainedthemodelandwhatcountryisthatorganisationfrom?

b. Whatdataisthemodeltrainedon?Theobjectivehereistoverifythatthetrainingofthemodel hasbeenlegal(e.g.,nounauthoriseduseofcopyrightedinformation).

c. Whattechnologydoesthemodeluse(asfarasyouknow)?

d. Whereistheinfrastructureusedforrunningthemodellocated(isitanin-housedatacentreor cloudinfrastructure)?

Finally,writedowneverythingyouknowaboutthetrainingofthemodel,regardlessofwhetheritwas trainedexternallyorinternally.

1. IftheAImodelwasbought,licensed,orisusedviaanAPI,completesectionD 1

a. Asfarasyouareaware,whatkindofdatawasthemodeltrainedon?

b. Whatarethetermsofuseofthemodel?E.g.,whatliabilitiesareassumedandwhatguarantees providedbythemodeltrainer.

2. IftheAIsystemprovidertrainsthemodelin-house,completesectionD 2.

a. Whatkindofdataisthemodeltrainedon?Whereweretheyacquiredandonwhatconditions?

b. Whatkindoftechnologyisusedfortrainingthemodel?Listalgorithmsandtools,wherepossible.

c. Whereistheinfrastructureusedfortraininglocated?

d. Describetheknow-howtheserviceproviderpossessesfortrainingAImodels.

8.1.1Howtogoevenfurther?

TheformpresentedinFigure 21 helpswiththeinitialstructuringofyourideasandaskingrelevantquestions.Oncethisisdone,itwillbeusefultobreaktheanswersdowninmoredetail.Thiscanbedoneina separatedocument.Itprovidesagoodopportunityforintegratingtheprocessintotheorganisation’sexistingquality,managementorcybersecuritysystem.Ifthisrequiresspecificprocessestobecompleted, theformpresentedhereinfacilitatecollectinginformationrelevanttothoseprocesses.

Anotherfurtherstepwouldbetheimplementationofanartificialintelligencemanagementsystem,e.g. ISO/IEC42001.Thiscan,ifnecessary,beintegratedwithISO9001andISO/IEC27001management systems.

8.2Findadeploymentmodelsuitingyoursystem

AftertheAIsystemhasbeendescribedusingtheformabove,thenextstepistoidentifythedeployment modeltobeusedforriskassessment.Ifyouhavecompletedtheformabove,thischoicewillbeeasy andrequireansweringjusttwoquestions.ThedecisionchartforthisispresentedinFigure 22

ThepurposeofquestiononeistodeterminewhetherthecreationoftheAImodelisunderthecontrolof theAIapplication’screator.Ifyes,thenthecreationofthemodelmustbetreateddifferentlyfromother deploymentmodelsinsubsequentriskanalysis(DM3).

ThepurposeofquestiontwoistodeterminewhethertheapplicationoftheAImodelisunderthecontrol oftheAIapplication’screator.Thisfacilitatesfocusingonrisksrelatedtothechoiceandhandlingofthe modelinriskassessment(DM2).

IfthecreatoroftheAIapplicationneithertrainsnorrunsthemodelitself,theyareverylikelytousea deploymentmodelwheretheAIcomponentisboughtasaservice(DM1).

Wewillnoteherethat,inallcases,eitheranin-housedatacentreorprivateorpubliccloudcomputing systemcanbeusedasinfrastructure.Thishasnoimpactonthechoiceofdeploymentmodel,andthe locationoftheinfrastructurewillbetreatedseparatelyinriskassessment.

8.3Identifyapplicablelegalnorms

Itisimportanttorecognisethattheguidelinespresentedinthisreportdonotqualifyaslegaladviceand theycannotbetreatedastheprovisionoflegaladviceoralegalservice.Themainpurposeofthese guidelinesistohelpdeterminewhichlegalactsmustbetakenintoaccountwithoutexception.Every serviceprovidermustensurethecomplianceoftheirservicetorelevantstatutory,contractual,andother stipulations.

Figure 23 isasimplifiedflowchartforidentifyingwhichlegalnormscanapplytoanAIsystemintheEU. OurfocushereisonasituationwheretheguidelinesareusedbyanAI-basedserviceprovider.

Figure22.DecisionchartforchoosingtheAIdeploymentmodel
Figure23.Simplifiedflowchartforidentifyingapplicableregulations

8.3.1DM1:ServiceusinganAIAPI

DoestheAI-basedapp/serviceprocesspersonallyidentifiabledata(seesectionsA 1–A n andB 2 ofthe form)?

Ifyes,thentheservicefallswithinthescopeoftheGDPRandapplicabledataprotectionlaw.

DoestheAI-basedapp/serviceprocesscopyrightedworks(seesectionsA 1–A n andB 2 oftheform)?

Ifyes,thentheservicefallswithinthescopeoftheCopyrightActandapplicablecopyrightlaw.

DoestheAI-basedapp/serviceprocessprotecteddatafromaspecificfield(e.g.,taxsecrets,banking secrets,confidentialinformation)(seesectionsA 1–A n andB 2 oftheform)?

Ifyes,thentherequirementsoflegalactsregulatingtherelevantfieldsmustbetakenintoconsiderationinthedevelopmentoftheservice.

DoestheAI-basedapp/serviceprocesscertaindatabasedonspecificagreements?(seesections A 1–A n andB 2 oftheform)?

Ifyes,thentheclausesofsaidagreementsmustbefollowedduringservicedevelopment.

DoestheAI-basedapp/serviceorthemodel-runningserviceoperateoninfrastructurelocatedina territorywithaninadequatelevelofdataprotection(seeSection 3.8 ofthereportandsectionsB 1 andC 1 oftheform)?

Ifyes,thendataprotectionrequirementsconcerningtheprocessingofpersonallyidentifiabledata onsuchinfrastructuremustbetreatedandevaluatedseparately.

WhatistheroleoftheenterpriseororganisationintermsoftheEuropeanUnionAIAct?

EvaluatethescopeoftheAIActandidentifywhetheryouqualifyas,e.g.,aprovider,deployer,or otherpersonwitharoleintheAIsystem’slifecycle.Followtherequirementsfortherelevantroles.

WhatistheriskleveloftheAI-basedapp/serviceintermsoftheAIAct(seeTable 3 andsectionsA 1–A n andB 2 oftheform)?

Table 3 providesaninitialassessmentoftheAIsystem’spotentialrisklevelwhichshouldbevalidated againstspecificrequirementssetoutintheAIAct.UsetheAIActtodeterminetherequirements applicabletoanAIsystemwiththatspecificrisklevel.

DoestheAItechnologyemployeduseageneral-purposeAImodel(seesectionB 1 oftheform)? Additionalrequirementsapplytosystemsusinggeneral-purposeAImodelundertheAIAct.

8.3.2DM2:systemusinganexternally-trainedAImodel

AnswerallquestionsinSection 8.3.1 andthefollowingadditionalquestions.

HastheAImodelbeentrainedonpersonallyidentifiabledata,copyrightedworks,orotherdatarequiringseparateauthorisationforprocessing(seesectionD 1 oftheform)?

Ifyes,thenitmustbedeterminedwhetherthemodel,whenused,couldoutputresponsesrequiring alegalbasistobeprocessedbytheservice/app’screator.

Doesthecreatoroftheapp/serviceplantoimproveorcontinuetrainingtheAImodel?

Ifyes,thentheAIappcreatormustsecurerightstousethesedataforimprovingtheAImodel.

8.3.3DM3:systemusinganAImodeltrainedin-house

AnswerallquestionsinSections 8.3.1 and 8.3.2 andthefollowingadditionalquestions.

Arepersonallyidentifiabledata,copyrightedworks,orotherdatarequiringseparateauthorisationfor processingusedfortrainingtheAImodel(seeanswerstosectionD 2 oftheform)?

Ifyes,thenitmustbedeterminedwhetherthemodel,whenused,couldoutputresponsesrequiring alegalbasistobeprocessedbytheservice/app’screator.

IstheAImodelusedintheEUasapartofanAI-basedapp/service(seesectionsB 1 andB 2 ofthe form,butalsoconsidersituationswherethemodelcouldbeusedbysomeoneelseforprovidinga service)?

Thisquestionfocusesonaspecialcasewherethetrainedmodelisactuallyappliedbysomeoneelse. Eventhoughthisspecialcasewasnotdiscussedinthedeploymentmodelsabove,werecommend youtoconsiderthispossibility.ApplicationsofthistypealsofallwithinthescopeoftheEuropean UnionAIAct.

8.3.4Howtogoevenfurther?

Thefirststepincompliancewithdataprotectionrequirementsistoestablishthesystemstakeholdersin termsoftheGDPR,followedbymappingthedataflowsbetweenthem.Theresultofthisworkcanbea tablewherelinesrepresentallstakeholdersrelatedtotheoperationoftheAIsystemandthecolumns, thedataelementsthattheyprocess.

Markeachcellofthetableifthespecificstakeholderprocessesthespecificdataelementinthesense ofdataprotectionlaw(e.g.,collection,storage,anddeletion).Ifthesystememploysprivacyenhancing technologies,thecellcanalsoshowtheleveltowhichthespecificdataelementhasbeenmademore difficulttopersonallyidentifyforthespecificstakeholder.

Artificialintelligencelawisinrapiddevelopmentatthemoment,makingitinfeasibletoprovidequickand specificrecommendationsfortheyearstocome.ItisimportanttomonitortheevolutionofAIregulation inthetargetmarketsofthedevelopedservice.

8.4Evaluatethreatstousers,society,andenvironment

8.4.1DM1:systemusingAIasaservice

Impactanalysis1.1: Foreachenduser,seetheresponsesprovided(sectionsA 1–A n oftheform)andthe generaldescriptionofthesystem(sectionsB 1 andB 2 oftheform)andwritedownthekindofdecisions whichtheusercouldmakebasedontheresponsesreceivedfromtheAIsystem,andwhetheranyof thesedecisionsmayhaveadirectimpactofanotheruserorathirdpartyorcoulddirectthemtotake anydecisionsorsteps.

Itisimportanttofocushereontheusersofthesystemonboththeclientandserviceprovidersides. AclientofthesystemcouldgetinformationfromtheAI’soutputthattheywillusetomakeadecision impactingtheirorsomeoneelse’slife.Analysingsuchthoughtprocesseswillfacilitateawarenessofthe AIsystem’simpactonhumanbehaviourand,therefore,thesociety.

Aseparateimportantstepistoalsoconsiderhereasend-usersinformationsystemsmakingautomated decisionsusingAI,andtheirimpact.Forexample,ifaserviceorappusesAI-basedautomateddecisions forapprovingallowances,loans,orrentals,theAIsystemwillhaveadirectimpactonthelivesofthird personswhichthecreatoroftheserviceneedstobeawareof.

WritedownallactionsidentifiedthroughthisthoughtexperimentthattheAIservice’soutputcandirect anindividualto.Figure 24 providesanexampleofaworksheettousefortheanalysis.Expandthe worksheetwithnewcellsasrequired.

Impactanalysis1.2: Foreachsuchaction,evaluatewhetheritcouldhaveanegativeimpactonthe individualorthesociety.Someofsuchharmfulimpactscouldincludethefollowing.

1. UseoftheAIserviceimpactsthebasicrightsofapersonoragroupofpersons.

2. AdecisionmadebasedontheAIservice’soutputdiscriminatesagainstaspecificsocialgroupbased onsomeoftheirtraits.

3. AdecisionmadebasedontheAIservice’soutputwillleadamemberofthesocietytocauseharm tothemselves(e.g.,inaccuratehealthadvice,inaccurateeducationaladvice,inaccurateinvestment advice).

4. AdecisionmadebasedontheAIservice’soutputwillleadamemberofthesocietytocauseharmto anotherperson(e.g.,inaccuratediagnosis,inaccuratetreatmentadvice,inaccuratesuspicioninan offence,inaccurateassessmentofskillsorcapabilities).

Impactanalysis1.3: Collectallscenariosinvolvingdecisionsleadingtopotentialharmfulimpact.AnalysetheextenttowhichanAImodeloperationserviceproviderassumesresponsibilityandproposes countermeasurestothese.IdentifyscenariosinwhichtheAImodeloperationserviceprovider’scountermeasuresandresponsibilityareinsufficienttomitigatetherisk.Assesswhetherthebusinesslogicof theservicescanbechangedorscaleddown,oraddsuitablecountermeasurestothesystem(e.g.,transparency,additionofahumansupervisionmechanism,strongerdatamanagement,additionalcontrolsin businesslogic,awarenesscampaigns,trainingprograms).

Impactanalysis1.4: Evaluatethegeneralimpactofthecreatedsystemonthenaturalandlivingenvironment(withoutfocusingonspecificgroupsofindividuals).Evaluatewhetherthecreationofthe systemhasanimpactontheenvironment–whetheritimpactstheuseofenergyornaturalresources, e.g.,throughsupportingwastefulorpollutingbehaviour.Iftheimpactisharmful,changeorscaledown systemfunctionalityorimplementnecessaryharmpreventionorreductionmeasures.

8.4.2DM2:systemusinganexternally-trainedAImodel

CompleteallstepslistedinSection 8.4.1,aswellasthefollowingsteps.

Impactanalysis2.1: Familiariseyourselfwiththemodelprovider’sserviceconditions,descriptionofthe model,andsafetyinformation(seesectionsC 1 andC 2 oftheform).Identifythepotentialharmfulimpacts oftheuseofthemodel.

Ifyouseethatriskscanbereducedinatechnologicallyadequate,legallysound,andethicalmannervia additionalAImodeltraining,thenaddadditionaltrainingorfine-tuningoftheAImodeltotheplanned activities.

8.4.3DM3:systemusinganAImodeltrainedin-house

CompleteallstepslistedinSections 8.4.1 and 8.4.2 ,aswellasthefollowingsteps.

Impactanalysis3.1: EvaluatethebalanceandlackofbiasesintheAImodel’strainingdataset.Isit sufficientlyrepresentativetopreventdiscriminationintheapplicationofthemodel?Ifnot,findlegaland ethicalwaystoaddmoretrainingdatasets.

Impactanalysis3.2: Evaluatetheknow-howandtechnologicalsolutionsrequiredfortrainingtheAI model.Isthetrainingofahigh-qualitymodelpossibleandaffordablein-house?Iftherearedoubts regardingitsaffordability,youshouldconsiderusinganexternally-trainedmodelratherthantrainingone in-house.

8.4.4Howtogoevenfurther?

Guidelinesdevelopedforthispurposecanbeusedinimpactanalysis.WerecommendusingtheEU AIHLEGself-assessmentmethodology[90 ],andforLLMapplications,theOWASPFoundation’sLLMAI Cybersecurity&Governancechecklist[193 ].

ItcanbeexpectedthatEUAIregulationswillclassifysomeartificialintelligencesystemsashigh-risk systemsandestablishadditionalobligationsforrelevantserviceproviders.Followthedevelopmentsof theregulationtocomplywiththese.

8.5Performrisktreatmentandselectcontrols

8.5.1KeyrisksofAIsystems

Thissectionwillprovideinstructionsonwhatshouldbetheprimaryfocusofrisktreatment.Theseshould notbeconsideredexhaustivesecurityrecommendations.Eachorganisationisdifferentandmayrequire amorein-depthapproach.IftheorganisationprovidinganAIservicehasrisktreatmentpracticesin placethenthesepracticesshouldbefollowedandtheinstructionshereusedasaninitialguideline.

Tables 4 , 5 ,and 6 listthekeyrisksof,respectively,serviceprovision,runningAImodels,andtraining AImodels.Weassesstheirimpactashighandtheserviceproviderneedstofindwaystotreatthem. Naturally,yourriskassessmentprocesscanalsoidentifyadditionalrisksnotincludedinthistable.

AllthreetableslistthekeyrisksofAIapplicationbystages(compositionofinputintheapporservice, runningthemodel,trainingthemodel)anddeploymentmodels.

8.5.2Recommendationsforcybersecuritycontrols

Figure 25 presentsaselectionofmeasuresfromtheEstonianE-ITSinformationsecuritystandardsuitable forsecuringAIsystems.Theyarealsoclassifiedinthefigurebythecontextofthesystem.

Themajorityofthemeasuresareapplicabletotheserviceprovider’sorganisation,softwaredevelopment, andcloudserviceuseandoutsourcingpractices.Forsomeofthemeasures,wehavehighlightedtheir importancetothemachineoruserinterfacescreatedforusers.Wehavealsohighlightedthesignificance ofcertainpracticestocommunicationwithAIAPIormodelproviders.

Thecloudserviceandoutsourcingmeasuresarepresentedasoptional–iftheserviceproviderdoesnot usecloud-baseddataprocessingoroutsourceanything,theirimplementationmaynotberelevanttothe createdAIapporservice.

8.5.3RecommendationsforAIcontrols

WerecommendimplementingthecontrolsfromSection 6.2 toimprovethesafetyofAI-basedservices. ThesehelpimprovethequalityoftheAIsystemandavoidrisksarisingfromspecificAItechnologies.

8.5.4Howtogoevenfurther?

Werecommendcompletelyimplementinganystandardisedinformationsecurityorcybersecuritymanagementsystemorriskassessmentmethodology.SpecificreferencesarefoundinSection 5.1.ImplementingtheE-ITSorISO/IEC27001standardstoanappropriatelevelwillgreatlysupportthedevelopmentofthesecurityofAIsystems.Theworkputintoimplementingthisquick-referenceguidewillnot bewastedandwillsupporttheimplementationofthechosenstandardsintheorganisation.

Table4.KeyrisksofrunninganAI-basedservicebasedontheidentifieddeploymentmodel

Category DM1:ServiceusinganAIAPI

Cybersecurity

Legal

DM2:ServiceusinganexternalAImodel

DM3:AIserviceusinganin-housemodel

AvailabilityoftheAIAPIdoesnotmeet servicerequirements Commonrisks Commonrisks

Serviceproviderlackslegalbasisfor processinginputoroutputdataor submittingthedatatotheAPI

Serviceproviderlackslegalbasisfor processinginputoroutputdataor submittingthedatatotheAPI

AIsafety AIAPIoutputshaveharmfulimpact SeerisksofrunningmodelsinTable 5

Table5.KeyrisksofrunninganAImodelbasedontheidentifieddeploymentmodel

Category DM1:ServiceusinganAIAPI

DM2:ServiceusinganexternalAImodel

Serviceproviderlackslegalbasisfor processinginputoroutputdataor submittingthedatatotheAPI

SeerisksofrunningmodelsinTable 5

Cybersecurity

Serviceproviderdoesnotrunthemodel themselves

Legal

AIsafety

Serviceproviderdoesnotrunthemodel themselves

InfrastructureusedforrunningtheAI modellackssufficientperformance (availabilityrisk)

AImodelproviderdoesnotprovide improvementsandupdatesforthemodel

AImodeloritsoutputsincludedatathat theserviceproviderisnotauthorisedto process

Serviceproviderisnotauthorisedto processdatausedforimprovingthemodel

DM3:AIserviceusinganin-housemodel

InfrastructureusedforrunningAImodel lackssufficientperformance(availability risk)

Serviceproviderdoesnotrunthemodel themselves

Risksandcontrolsforartificialintelligenceandmachinelearningsystems

AImodeloutputshaveaharmfulimpact Dataandtoolsusedforimprovingthe modelreducethemodel’squality

SeerisksofmodeltraininginTable 6

SeerisksofmodeltraininginTable 6

Table6.RisksoftrainingAImodelsbasedontheidentifieddeploymentmodel

Category DM1:ServiceusinganAIAPI

Cybersecurity

Legal

AIsafety

Serviceproviderdoesnottrainthemodel themselves

Serviceproviderdoesnottrainthemodel themselves

Serviceproviderdoesnottrainthemodel themselves

DM2:ServiceusinganexternalAImodel

Serviceproviderdoesnottrainthemodel themselves

Serviceproviderdoesnottrainthemodel themselves

Serviceproviderdoesnottrainthemodel themselves

DM3:AIserviceusinganin-housemodel

AImodeltraininginfrastructurelacks sufficientperformance(availabilityrisk)

Serviceproviderlacksauthorisationfor processingdatausedfortrainingthe model

AImodeloutputshaveaharmfulimpact Dataandtoolsusedfortrainingthemodel reducethequalityofthemodel

Figure25.E-ITSmodulesrecommendedforAIsystemsandcontextsoftheirimplementation

Risksandcontrolsforartificialintelligenceandmachinelearningsystems May27,2024

8.6AIsysteminasingleslide

Theapplicationofartificialintelligencemayleadtosituationswhereanoverviewofthecreatedsystem mustbepresentedinasingleimage(e.g.,presentationslidetotheorganisation’smanagement).Thefiguresbelowpresenttemplatesfordescribingthestructureofthesystem.Eachfigurepresentsatemplate foraspecificdeploymentmodel(Figure 26 forDM1,Figure 27 forDM2,andFigure 28 forDM3).

Figure26.TemplateforpresentinganapporserviceusingdeploymentmodelDM1

Figure27.TemplateforpresentinganapporserviceusingdeploymentmodelDM2

Figure28.TemplateforpresentinganapporserviceusingdeploymentmodelDM3

Bibliography

[1] KaiWangetal. NeuralNetworkDiffusion .2024.arXiv: 2402.13144[cs.LG]

[2] YutaoSunetal. RetentiveNetwork:ASuccessortoTransformerforLargeLanguage Models .2023.arXiv: 2307.08621[cs.CL].

[3] BoPengetal. RWKV:ReinventingRNNsfortheTransformerEra .2023.arXiv: 2305. 13048[cs.CL].

[4] AlbertGuandTriDao. Mamba:Linear-TimeSequenceModelingwithSelectiveState Spaces .2023.arXiv: 2312.00752[cs.LG].

[5] MeredithRingelMorrisetal. LevelsofAGI:OperationalizingProgressonthePathtoAGI. 2023.arXiv: 2311.02462[cs.AI].

[6] BlaiseAgüerayArcasandPeterNorvig.“ArtificialGeneralIntelligenceIsAlreadyHere”. In: NoemaMagazine (Oct.2023).URL: https://www.noemamag.com/artificialgeneral-intelligence-is-already-here/

[7] RafaelRafailovetal. DirectPreferenceOptimization:YourLanguageModelisSecretlya RewardModel.2023.arXiv: 2305.18290[cs.LG]

[8] MohammadGheshlaghiAzaretal. AGeneralTheoreticalParadigmtoUnderstandLearningfromHumanPreferences .2023.arXiv: 2310.12036[cs.AI].

[9] TomB.Brownetal. LanguageModelsareFew-ShotLearners .2020.arXiv: 2005.14165 [cs.CL].

[10] TeroKarras,SamuliLaine,andTimoAila. AStyle-BasedGeneratorArchitectureforGenerativeAdversarialNetworks .2019.arXiv: 1812.04948[cs.NE].

[11] RobinRombachetal. High-ResolutionImageSynthesiswithLatentDiffusionModels . 2022.arXiv: 2112.10752[cs.CV].

[12] AdityaRameshetal. HierarchicalText-ConditionalImageGenerationwithCLIPLatents 2022.arXiv: 2204.06125[cs.CV]

[13] WenhuiWangetal. ImageasaForeignLanguage:BEiTPretrainingforAllVisionand Vision-LanguageTasks .2022.arXiv: 2208.10442[cs.CV]

[14] WenhaiWangetal. InternImage:ExploringLarge-ScaleVisionFoundationModelswith DeformableConvolutions .2023.arXiv: 2211.05778[cs.CV].

[15] ChengyiWangetal. NeuralCodecLanguageModelsareZero-ShotTexttoSpeechSynthesizers .arXiv.Jan.2023.URL: https://www.microsoft.com/en-us/research/ publication/neural-codec-language-models-are-zero-shot-text-tospeech-synthesizers/.

[16] MatthewLeetal. Voicebox:Text-GuidedMultilingualUniversalSpeechGenerationat Scale .2023.arXiv: 2306.15687[eess.AS]

[17] AlexeiBaevskietal. wav2vec2.0:AFrameworkforSelf-SupervisedLearningofSpeech Representations .2020.arXiv: 2006.11477[cs.CL]

[18] HugoTouvronetal. LLaMA:OpenandEfficientFoundationLanguageModels .2023. arXiv: 2302.13971[cs.CL].

[19] AakankshaChowdheryetal. PaLM:ScalingLanguageModelingwithPathways .2022. arXiv: 2204.02311[cs.CL].

[20] OpenAI. GPT-4TechnicalReport.2023.arXiv: 2303.08774[cs.CL].

[21] EuropeanUnion.“Directive(EU)2022/2555oftheEuropeanParliamentandoftheCouncilof14December2022onmeasuresforahighcommonlevelofcybersecurityacross theUnion,amendingRegulation(EU)No910/2014andDirective(EU)2018/1972,and repealingDirective(EU)2016/1148(NIS2Directive)”.In: OJEUL333 65(Dec.27,2022), pp.80–152.

[22] WaddahSaeedandChristianOmlin.“ExplainableAI(XAI):Asystematicmeta-surveyof currentchallengesandfutureopportunities”.In: Knowledge-BasedSystems 263(2023), p.110273.ISSN:0950-7051.DOI: https://doi.org/10.1016/j.knosys.2023. 110273.URL: https://www.sciencedirect.com/science/article/pii/S0950705123000230

[23] LucaNannini,AgatheBalayn,andAdamLeonSmith.“ExplainabilityinAIPolicies:ACriticalReviewofCommunications,Reports,Regulations,andStandardsintheEU,US,and UK”.In: Proceedingsofthe2023ACMConferenceonFairness,Accountability,andTransparency .FAccT’23.NewYork,NY,USA:AssociationforComputingMachinery,2023, pp.1198–1212.DOI: 10.1145/3593013.3594074.URL: https://doi.org/10.1145/ 3593013.3594074.

[24] NagadivyaBalasubramaniametal.“TransparencyandexplainabilityofAIsystems:From ethicalguidelinestorequirements”.In: InformationandSoftwareTechnology 159(2023), p.107197.ISSN:0950-5849.DOI: https://doi.org/10.1016/j.infsof.2023. 107197.URL: https://www.sciencedirect.com/science/article/pii/S0950584923000514

[25] OECD. OECDLegalInstruments.RecommendationoftheCouncilonArtificialIntelligence.OECD/LEGAL/0449.Adoptedon:22.05.2019.Amendedon:08.11.2023 .Nov.2023. URL: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449

[26] FeiyuXuetal.“ExplainableAI:ABriefSurveyonHistory,ResearchAreas,Approaches andChallenges”.In:Sept.2019,pp.563–574.ISBN:978-3-030-32235-9.DOI: 10.1007/ 978-3-030-32236-6_51

[27] ChristophMolnar. InterpretableMachineLearning:AGuideForMakingBlackBoxModels Explainable .Paperback.Feb.2022.

[28] JasonWeietal. EmergentAbilitiesofLargeLanguageModels .2022.arXiv: 2206.07682 [cs.CL].

[29] ShengLuetal. AreEmergentAbilitiesinLargeLanguageModelsjustIn-ContextLearning? 2023.arXiv: 2309.01809[cs.CL].

[30] RajatRaina,AnandMadhavan,andAndrewNg.“Large-scaledeepunsupervisedlearning usinggraphicsprocessors”.In:vol.382.June2009,p.110.DOI: 10.1145/1553374. 1553486.

[31] AmirGholamietal. ASurveyofQuantizationMethodsforEfficientNeuralNetworkInference .2021.arXiv: 2103.13630[cs.CV].

[32] AlbertTsengetal. Quip#:QuipwithLatticeCodebooks .Dec.2023.

[33] UrielSingeretal. Make-A-Video:Text-to-VideoGenerationwithoutText-VideoData 2022.arXiv: 2209.14792[cs.CV]

[34] LevonKhachatryanetal. Text2Video-Zero:Text-to-ImageDiffusionModelsareZeroShotVideoGenerators .2023.arXiv: 2303.13439[cs.CV]

[35] AndreasBlattmannetal. StableVideoDiffusion:ScalingLatentVideoDiffusionModels toLargeDatasets .2023.arXiv: 2311.15127[cs.CV].

[36] JoonSungParketal. GenerativeAgents:InteractiveSimulacraofHumanBehavior.2023. arXiv: 2304.03442[cs.HC].

[37] EdwardJ.Huetal. LoRA:Low-RankAdaptationofLargeLanguageModels .2021.arXiv: 2106.09685[cs.CL].

[38] YuanzhiLietal.“TextbooksAreAllYouNeedII:phi-1.5technicalreport”.Sept.2023. URL: https://www.microsoft.com/en-us/research/publication/textbooksare-all-you-need-ii-phi-1-5-technical-report/.

[39] GoogleDeepMindGemmaTeam. Gemma:OpenModelsBasedonGeminiResearchand Technology .2024.URL: https://storage.googleapis.com/deepmind-media/ gemma/gemma-report.pdf.

[40] AlbertQ.Jiangetal. Mistral7B .2023.arXiv: 2310.06825[cs.CL]

[41] JinzeBaietal. QwenTechnicalReport.2023.arXiv: 2309.16609[cs.CL].

[42] BenSorscheretal. Beyondneuralscalinglaws:beatingpowerlawscalingviadatapruning .2023.arXiv: 2206.14486[cs.LG].

[43] Europol. Facingreality?Lawenforcementandthechallengeofdeepfakes.AnObservatoryReportfromtheEuropolInnovationLab. 2022.DOI: 10.2813/158794|QL-02-24129-EN-N.URL: https://www.europol.europa.eu/cms/sites/default/files/ documents/Europol_Innovation_Lab_Facing_Reality_Law_Enforcement_And_ The_Challenge_Of_Deepfakes.pdf.

[44] ParthaPratimRay.“ChatGPT:Acomprehensivereviewonbackground,applications,key challenges,bias,ethics,limitationsandfuturescope”.In: InternetofThingsandCyberPhysicalSystems 3(2023),pp.121–154.ISSN:2667-3452.DOI: https://doi.org/10. 1016/j.iotcps.2023.04.003.URL: https://www.sciencedirect.com/science/ article/pii/S266734522300024X

[45] IndependentHigh-LevelExpertGrouponAIsetupbytheEuropeanCommissioninJune 2018. EthicsguidelinesfortrustworthyAI.2019.URL: https://digital-strategy. ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

[46] Forbes. 24TopAIStatisticsAndTrendsIn2023 .Apr.2023.URL: https://www.forbes. com/advisor/business/ai-statistics/%5C#sources_section

[47] Statistikaamet[StatisticsEstonia]. Tehisintellektitehnoloogiatekasutamineettevõtetes ontõusutrendis[UseofAItechnologiesbybusinessesisontherise].Sept.2023.URL: https://www.stat.ee/et/uudised/tehisintellekti-tehnoloogiate-kasutamineettevotetes-tousutrendis

[48] AdaLovelaceInstituteandTheAlanTuringInstitute. HowdopeoplefeelaboutAI?A nationallyrepresentativesurveyofpublicattitudestoartificialintelligenceinBritain .June 2023.URL: https://www.turing.ac.uk/sites/default/files/2023-06/how% 5C_do%5C_people%5C_feel%5C_about%5C_ai%5C_-%5C_ada%5C_turing.pdf

[49] Euractiv. EUtopcourt’srulingspellstroubleforscoringalgorithms .Dec.2023.URL: https://www.euractiv.com/section/data-privacy/news/eu-top-courtsruling-spill-trouble-for-scoring-algorithms/

[50] Politico. DutchscandalservesasawarningforEuropeoverrisksofusingalgorithms . Mar.2022.URL: https://www.politico.eu/article/dutch-scandal-servesas-a-warning-for-europe-over-risks-of-using-algorithms/

[51] MaxiScherer.“’ArtificialIntelligenceandLegalDecision-Making:TheWideOpen?’”In: JournalofInternationalArbitration 36(52019),pp.539–573.URL: https://kluwerlawonline. com/journalarticle/Journal+of+International+Arbitration/36.5/JOIA2019028.

[52] MajaBrkan.“Opinions.ArtificialIntelligenceandJudicialDecision-Making”.In: European DataProtectionLawReview 9.3(2023).DOI: 10.21552/edpl/2023/3/5.URL: https: //doi.org/10.21552/edpl/2023/3/5.

[53] MatthewDahletal. LargeLegalFictions:ProfilingLegalHallucinationsinLargeLanguage Models .2024.eprint: 2401.01301.

[54] MatthewDahletal. HallucinatingLaw:LegalMistakeswithLargeLanguageModelsare Pervasive .Jan.2024.URL: https://hai.stanford.edu/news/hallucinatinglaw-legal-mistakes-large-language-models-are-pervasive.

[55] ShaunLim.“Judicialdecision-makingandexplainableartificialintelligence.AReckoning fromFirstPrinciples”.In: SAcLj 280(2021).URL: https://law.nus.edu.sg/trail/ wp-content/uploads/sites/9/2022/03/9777_09.-Shaun-Lim-JudicialDecision-Making-and-Explainable-AI.pdf.

[56] EuropeanCommission. EthicsguidelinesfortrustworthyAI.URL: https://digitalstrategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai.

[57] “ProposalforaregulationoftheEuropeanOarliamentandoftheCouncillayingdownharmonisedrulesonartificialintelligence(ArtificialIntelligenceAct)andamendingcertain unionlegislativeacts”.In:().URL: https://eur-lex.europa.eu/legal-content/ EN/TXT/?uri=CELEX:52021PC0206.

[58] EuropeanParliament. EUAIAct:firstregulationonartificialintelligence .June2023.URL: https://www.europarl.europa.eu/topics/en/article/20230601STO93804/ eu-ai-act-first-regulation-on-artificial-intelligence.

[59] EuropeanUnion.“Regulation(EU)2016/679oftheEuropeanParliamentandoftheCouncilof27April2016ontheprotectionofnaturalpersonswithregardtotheprocessingof personaldataandonthefreemovementofsuchdata,andrepealingDirective95/46/EC (GeneralDataProtectionRegulation)”.In: OfficialJournalL119 59(May4,2016),pp.1–88.

[60] TheWhiteHouse. FactSheet:PresidentBidenIssuesExecutiveOrderonSafe,Secure, andTrustworthyArtificialIntelligence .Oct.2023.URL: https://www.whitehouse. gov/briefing-room/statements-releases/2023/10/30/fact-sheet-presidentbiden-issues-executive-order-on-safe-secure-and-trustworthy-artificialintelligence/.

[61] UKParliament. ParliamentaryBills .2023.URL: https://bills.parliament.uk/ bills/3464.

[62] UKParliament. Artificialintelligenceandemploymentlaw .URL: https://commonslibrary. parliament.uk/research-briefings/cbp-9817/.

[63] OfficialWebsiteoftheInternationalTradeAdministration. UKAIregulations2023 .2023. URL: https://www.gov.uk/government/publications/ai-regulation-a-proinnovation-approach.

[64] AustralianGovernment. SupportingresponsibleAI:discussionpaper.June2023.URL: https://consult.industry.gov.au/supporting-responsible-ai.

[65] AustralianGovernment. PositioningAustraliaasaleaderindigitaleconomyregulation. AutomatedDecisionMakingandAIRegulation.IssuesPaper.Mar.2023.URL: https:// storage.googleapis.com/converlens-au-industry/industry/p/prj211c4e81fb27d147ec9c1/ public%5C_assets/automated-decision-making-ai-regulation-issuespaper.pdf.

[66] Dentons. AustralianGovernmentrequestspublicfeedbackonregulating‘SafeandResponsibleAI’.June2023.URL: https://www.dentons.com/en/insights/alerts/ 2023/june/6/australian-government-requests-public-feedback-on-regulatingsafe.

[67] eSafetyCommissioner. TechTrendsPositionStatement.GenerativeAI.URL: https: //www.esafety.gov.au/sites/default/files/2023-08/Generative%5C%20AI% 5C%20-%5C%20Position%5C%20Statement%5C%20-%5C%20August%5C%202023%5C% 20.pdf

[68] AustraliatorequireAI-madechildabusematerialberemovedfromsearchresults .Sept. 2023.URL: https://www.reuters.com/technology/australia-require-aimade-child-abuse-material-be-removed-search-results-2023-09-08/

[69] TheGuardian. SearchenginesrequiredtostampoutAI-generatedimagesofchildabuse underAustralia’snewcode .June2023.URL: https://www.theguardian.com/ technology/2023/sep/08/search-engines-required-to-stamp-out-aigenerated-images-of-child-abuse-under-australias-new-code

[70] GovernmentofCanada. ArtificialIntelligenceandDataAct.Sept.2023.URL: https: //ised-isde.canada.ca/site/innovation-better-canada/en/artificialintelligence-and-data-act.

[71] GovernmentofCanadalaunchesconsultationontheimplicationsofgenerativeartificial intelligenceforcopyright.Oct.2023.URL: https://www.canada.ca/en/innovationscience-economic-development/news/2023/10/government-of-canadalaunches-consultation-on-the-implications-of-generative-artificialintelligence-for-copyright.html.

[72] RunwayStrategies. GlobalAIRegulationTracker.Dec.2023.URL: https://www.theguardian. com/technology/2023/sep/08/search-engines-required-to-stamp-out-aigenerated-images-of-child-abuse-under-australias-new-code.

[73] ISO. ISO/IEC22989:2022 .2022.URL: https://www.iso.org/standard/74296.html.

[74] InternationalElectrotechnicalCommission. Twonewfoundationalstandardsforartificial intelligence .July2022.URL: https://www.iec.ch/blog/two-new-foundationalstandards-artificial-intelligence.

[75] ISO. ISO/IEC23053:2022 .July2022.URL: https://www.iso.org/standard/74438. html.

[76]

[77]

[78]

ISO. ISO/IECFDIS5259-1.Artificialintelligence.Dataqualityforanalyticsandmachine learning(ML).Part1:Overview,terminology,andexamples .URL: https://www.iso. org/standard/81088.html.

ISO. ISO/IECDIS5259-2.Artificialintelligence.Dataqualityforanalyticsandmachine learning(ML).Part2:Dataqualitymeasures .URL: https://www.iso.org/standard/ 81860.html.

ISO. ISO/IECTS4213:2022.Informationtechnology.Artificialintelligence.Assessmentof machinelearningclassificationperformance .URL: https://www.iso.org/standard/ 79799.html.

[79]

ISO. BS30440:2023.Validationframeworkfortheuseofartificialintelligence(AI)within healthcare.Specification.Current.Published:31Jul2023 .July2023.URL: https:// knowledge.bsigroup.com/products/validation-framework-for-the-use-ofartificial-intelligence-ai-within-healthcare-specification.

[80] IEEE. IEEEStandardsAssociation.Ethicallyaligneddesign,Version1,Translationsand reports .URL: https://standards.ieee.org/industry-connections/ec/eadv1/.

[81] Google. GoogleAI.Responsibility:Ourprinciples .URL: https://ai.google/responsibility/ principles/.

[82] Google. GoogleAI.Responsibility:ResponsibleAIpracticess .URL: https://ai.google/ responsibility/responsible-ai-practices/.

[83] Microsoft. MicrosoftResponsibleAIStandard,v2.GeneralRequirements.Forexternal release.June2022 .July2022.URL: https://blogs.microsoft.com/wp-content/ uploads/prod/sites/5/2022/06/Microsoft-Responsible-AI-Standard-v2General-Requirements-3.pdf.

[84] OECD. MultilayerFrameworkforGoodCybersecurityPracticesforAI.June2023.URL: https://www.enisa.europa.eu/publications/multilayer-framework-forgood-cybersecurity-practices-for-ai.

[85] EuropeanCommission. EthicsguidelinesfortrustworthyAI.Apr.2019.URL: https:// digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthyai.

[86] IndependentHigh-LevelExpertGrouponAIsetupbytheEuropeanCommissioninJune 2018. EthicsguidelinesfortrustworthyAI.Apr.2019.URL: https://digital-strategy. ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai.

[87] A.Vassilevetal. AdversarialMachineLearning:ATaxonomyandTerminologyofAttacksandMitigations.(NationalInstituteofStandardsandTechnology,Gaithersburg, MD)NISTArtificialIntelligence(AI)Report,NISTTrustworthyandResponsibleAINIST AI100-2e2023. 2024.DOI: https://doi.org/10.6028/NIST.AI.100-2e2023.

[88] EuropeanCommission. High-levelexpertgrouponartificialintelligence .URL: https: //digital-strategy.ec.europa.eu/en/policies/expert-group-ai.

[89] High-levelexpertgrouponartificialintelligence. PolicyandinvestmentrecommendationsfortrustworthyArtificialIntelligence .June2019.URL: https://digital-strategy. ec.europa.eu/en/library/policy-and-investment-recommendations-trustworthyartificial-intelligence.

[90] High-levelexpertgrouponartificialintelligence. TheAssessmentListforTrustworthy ArtificialIntelligence(ALTAI)forselfassessment.July2020.URL: https://digitalstrategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificialintelligence-altai-self-assessment.

[91] EuropeanAIAlliance. WelcometotheALTAIportal! URL: https://futurium.ec. europa.eu/en/european-ai-alliance/pages/welcome-altai-portal.

[92] High-levelexpertgrouponartificialintelligence. AIHLEG-SectoralConsiderationson PolicyandInvestmentRecommendationsforTrustworthyAI.July2020.URL: https: //futurium.ec.europa.eu/en/european-ai-alliance/document/ai-hlegsectoral-considerations-policy-and-investment-recommendations-trustworthyai.

[93] EuropeanCommission. ReportfromtheCommissiontotheEuropeanParliament,the CouncilandtheEuropeanEconomicandSocialCommittee.Reportonthesafetyand liabilityimplicationsofArtificialIntelligence,theInternetofThingsandrobotics.Brussels, 19.2.2020,COM(2020)64final.Feb.2020.URL: https://eur-lex.europa.eu/ legal-content/EN/TXT/?uri=CELEX%5C%3A52020DC0064.

[94] EuropeanCommission. WhitePaperOnArtificialIntelligence-AEuropeanapproachto excellenceandtrust.Brussels,19.2.2020,COM(2020)65final.Feb.2020.URL: https: //eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%5C%3A52020DC0065& qid=1664351767552.

[95] EuropeanParliament.“hapingthedigitaltransformation:EUstrategyexplained”.In:(). URL: https://www.europarl.europa.eu/topics/en/article/20210414STO02010/ shaping-the-digital-transformation-eu-strategy-explained.

[96] EuropeanCommission.“CommissionwelcomespoliticalagreementonArtificialIntelligenceAct”.In:(Dec.2023).URL: https://www.europarl.europa.eu/legislativetrain/theme-a-europe-fit-for-the-digital-age/file-regulation-onartificial-intelligence.

[97] EuropeanParliament.“LegislativeTrainSchedule.Artificialintelligenceact”.In:().URL: https://www.europarl.europa.eu/legislative-train/theme-a-europe-fitfor-the-digital-age/file-regulation-on-artificial-intelligence.

[98] LucaBertuzzi. EUcountriesgivecrucialnodtofirst-of-a-kindArtificialIntelligencelaw . Feb.2024.URL: https://www.euractiv.com/section/artificial-intelligence/ news/eu-countries-give-crucial-nod-to-first-of-a-kind-artificialintelligence-law/

[99] Analysisofthefinalcompromisetextwithaviewtoagreement.InterinstitutionalFile: 2021/0106(COD).No.Ciondoc.:8115/21.Jan.2024.URL: https://data.consilium. europa.eu/doc/document/ST-5662-2024-INIT/en/pdf

[100] EuropeanCommission. EuropeanAIOffice .2024.URL: https://digital-strategy. ec.europa.eu/en/policies/ai-office.

[101] EuropeanCommission. ProposalforaDirectiveoftheEuropeanParliamentandofthe Councilonadaptingnon-contractualcivilliabilityrulestoartificialintelligence(AILiabilityDirective).Brussels,28.9.2022.COM(2022)496final.2022/0303(COD).Sept.2022. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX: 52022PC0496&from=EN

[102] EuropeanUnion.“Regulation(EU)2023/988ongeneralproductsafety,amendingRegulation(EU)No1025/2012andDirective(EU)2020/1828,andrepealingDirective2001/95/EC andDirective87/357/EEC”.In: OJEUL135 66(May23,2023),pp.1–51.

[103] EuropeanCommission. ProposalforaDirectiveoftheEuropeanParliamentandofthe Councilonliabilityfordefectiveproducts.Brussels,28.9.2022.COM(2022)495final. 2022/0302(COD).Sept.2022.URL: https://eur-lex.europa.eu/legal-content/ EN/TXT/HTML/?uri=CELEX:52022PC0495

[104] JudeUme.“WhatAIMeansforIntellectualProperty”.In: ITNOW 65.2(May2023),pp.44–45.ISSN:1746-5702.DOI: 10.1093/combul/bwad059.eprint: https://academic. oup.com/itnow/article-pdf/65/2/44/50367250/bwad059.pdf.URL: https: //doi.org/10.1093/combul/bwad059

[105] PeterGeorgPichtandFlorentThouvenin.“AIandIP:TheorytoPolicyandBackAgain–PolicyandResearchRecommendationsattheIntersectionofArtificialIntelligenceand IntellectualProperty”.In: IIC-InternationalReviewofIntellectualPropertyandCompetitionLaw 54.6(July1,2023),pp.916–940.DOI: 10.1007/s40319-023-01344-5.URL: https://doi.org/10.1007/s40319-023-01344-5.

[106] WinstonCho. AICompaniesTakeHitasJudgeSaysArtistsHave“PublicInterest”In PursuingLawsuitsAfederaljudgerejectedargumentsfromStabilityAI,Midjourneyand DeviantArtthatthesuitisintendedtosuppressitsfreespeech .Feb.2024.URL: https: //www.hollywoodreporter.com/business/business-news/artist-lawsuitai-midjourney-art-1235821096/

[107] BobbyAllyn. ’NewYorkTimes’considerslegalactionagainstOpenAIascopyrighttensionsswirl.Aug.2023.URL: https://www.npr.org/2023/08/16/1194202562/ new-york-times-considers-legal-action-against-openai-as-copyrighttensions-swirl

[108] WillBedingfield. TheInventorBehindaRushofAICopyrightSuitsIsTryingtoShowHis BotIsSentient.StephenThaler’sseriesofhigh-profilecopyrightcaseshasmadeheadlinesworldwide.He’sdoneittodemonstratehisAIiscapableofindependentthought Sept.2023.URL: https://www.wired.com/story/the-inventor-behind-a-rushof-ai-copyright-suits-is-trying-to-show-his-bot-is-sentient/

[109] EuropeanParliament. WorldIntellectualPropertyOrganization.WIPOCONVERSATION ONINTELLECTUALPROPERTY(IP)ANDARTIFICIALINTELLIGENCE(AI).WIPO/IP/AI/3/GE/20/INF/5 Jan.2021.URL: https://www.wipo.int/edocs/mdocs/mdocs/en/wipo_ip_ai_3_ ge_20/wipo_ip_ai_3_ge_20_inf_5.pdf.

[110] S.SuganyaandE.Prema.“Humancentricintellectualpropertyrightsandlegalpersonalityofartificialintelligence”.In: InternationalJournalofIntellectualPropertyManagement 13.3-4(2023),pp.252–267.DOI: 10.1504/IJIPM.2023.134051.eprint: https: //www.inderscienceonline.com/doi/pdf/10.1504/IJIPM.2023.134051.URL: https://www.inderscienceonline.com/doi/abs/10.1504/IJIPM.2023.134051.

[111] AtifAziz.“ArtificialIntelligenceProducedOriginalWork:ANewApproachtoCopyright ProtectionandOwnership”.In: EuropeanJournalofArtificialIntelligenceandMachine Learning 2.2(Mar.2023),pp.9–16.DOI: 10.24018/ejai.2023.2.2.15.URL: https: //www.ej-ai.org/index.php/ejai/article/view/15.

[112] MauritzKop.“TAI&IntellectualProperty:TowardsanArticulatedPublicDomain”.In: UniversityofTexasSchoolofLaw,TexasIntellectualPropertyLawJournal(TIPLJ) 28.1(June 2019),pp.44–45.ISSN:1746-5702.DOI: http://dx.doi.org/10.2139/ssrn. 3409715.eprint: https://academic.oup.com/itnow/article-pdf/65/2/44/ 50367250/bwad059.pdf.

[113] WinstonCho. AI-CreatedArtIsn’tCopyrightable,JudgeSaysinRulingThatCouldGive HollywoodStudiosPause.AfederaljudgeonFridayupheldafindingfromtheU.S.CopyrightOfficethatapieceofartcreatedbyAIisnotopentoprotection .Aug.2023.URL: https://www.hollywoodreporter.com/business/business-news/ai-worksnot-copyrightable-studios-1235570316/

[114] EuropeanParliament. EuropeanParliamentresolutionof20October2020onintellectual propertyrightsforthedevelopmentofartificialintelligencetechnologies(2020/2015(INI)) Oct.2020.URL: https://www.europarl.europa.eu/doceo/document/TA-9-20200277_EN.html

[115] EuropeanUnion.“Regulation(EU)2019/881oftheEuropeanParliamentandoftheCouncilof17April2019onENISA(theEuropeanUnionAgencyforCybersecurity)andon informationandcommunicationstechnologycybersecuritycertificationandrepealing Regulation(EU)No526/2013(CybersecurityAct)”.In: OJEUL151 62(June7,2019), pp.15–69.

[116] CentreforCybersecurityBelgium. TheNIS2Directive:Whatdoesitmeanformyorganization? 2024.URL: https://ccb.belgium.be/en/nis-2-directive-what-doesit-mean-my-organization

[117] EuropeanCommission. ProposalforaRegulationoftheEuropeanParliamentandof theCouncilonhorizontalcybersecurityrequirementsforproductswithdigitalelements andamendingRegulation(EU)2019/1020.Brussels,15.9.2022.COM(2022)454final. 2022/0272(COD).Sept.2022.URL: https://eur-lex.europa.eu/legal-content/ EN/TXT/HTML/?uri=CELEX:52022PC0454

[118] EUPresidency. ProposalforaRegulationoftheEuropeanParliamentandoftheCouncil layingdownharmonisedrulesonartificialintelligence(ArtificialIntelligenceAct)and amendingcertainUnionlegislativeacts.Analysisofthefinalcompromisetextwitha viewtoagreement.Brussels,26January2024.InterinstitutionalFile:2021/0106(COD). No.Ciondoc.:8115/21.Jan.2024.URL: https://data.consilium.europa.eu/doc/ document/ST-5662-2024-INIT/en/pdf

[119] EuropeanCommission. ProposalforaRegulationoftheEuropeanParliamentandofthe CouncillayingdownadditionalproceduralrulesrelatingtotheenforcementofRegulation (EU)2016/679.Brussels,4.7.2023.COM(2023)348final.2023/0202(COD).July2023. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX: 52023PC0348.

[120] EuropeanUnion.“Directive(EU)2016/680oftheEuropeanParliamentandoftheCouncilof27April2016ontheprotectionofnaturalpersonswithregardtotheprocessing ofpersonaldatabycompetentauthoritiesforthepurposesoftheprevention,investigation,detectionorprosecutionofcriminaloffencesortheexecutionofcriminalpenalties,andonthefreemovementofsuchdata,andrepealingCouncilFrameworkDecision 2008/977/JHA”.In: OJEUL119 59(May4,2016),pp.89–131.

[121] EuropeanUnion.“Regulation(EU)2018/1725oftheEuropeanParliamentandoftheCouncilof23October2018ontheprotectionofnaturalpersonswithregardtotheprocessing ofpersonaldatabytheUnioninstitutions,bodies,officesandagenciesandonthefree movementofsuchdata,andrepealingRegulation(EC)No45/2001andDecisionNo 1247/2002/EC”.In: OJEUL295 61(Nov.21,2018),pp.39–98.

[122] N.AllahRakha. AIandtheLaw:UnravelingtheComplexitiesofRegulatoryFrameworks inEurope .Aug.2023.URL: https://irshadjournals.com/index.php/ibys/ article/view/115/102.

[123] AI:ensuringGDPRcompliance .Sept.2022.URL: https://www.cnil.fr/en/aiensuring-gdpr-compliance.

[124] InformationCommissioner’sOffice. GuidanceonAIanddataprotection .URL: https: //ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/ artificial-intelligence/guidance-on-ai-and-data-protection/.

[125]

[126]

InformationCommissioner’sOffice. InformationCommissioner’sOfficelaunchesconsultationseriesongenerativeAI.Jan.2024.URL: https://ico.org.uk/about-theico/media-centre/news-and-blogs/2024/01/information-commissioner-soffice-launches-consultation-series-on-generative-ai/.

InformationCommissioner’sOffice. ICOconsultationseriesongenerativeAIanddata protection .Jan.2024.URL: https://ico.org.uk/about-the-ico/ico-andstakeholder-consultations/ico-consultation-series-on-generative-aiand-data-protection/.

[127] CNIL. AI:ensuringGDPRcompliance .Sept.2021.URL: https://www.cnil.fr/en/aiensuring-gdpr-compliance.

[128] FederalTradeCommission. FTCTakesActionAgainstCompanyFormerlyKnownasWeight WatchersforIllegallyCollectingKids’SensitiveHealthData .Mar.2022.URL: https: //www.ftc.gov/news-events/news/press-releases/2022/03/ftc-takesaction-against-company-formerly-known-weight-watchers-illegallycollecting-kids-sensitive.

[129] CNIL. Artificialintelligence:CNILunveilsitsfirstanswersforinnovativeandprivacyfriendlyAI.Oct.2023.URL: https://www.cnil.fr/en/artificial-intelligencecnil-unveils-its-first-answers-innovative-and-privacy-friendly-ai.

[130] DanSvantesson. TheEuropeanUnionArtificialIntelligenceAct:Potentialimplicationsfor Australia .2022.DOI: https://doi.org/10.1177/1037969X211052339.

[131] AdèleAzzi.“TheChallengesFacedbytheExtraterritorialScopeoftheGeneralData ProtectionRegulation”.In: JIPITEC 9.2(2018),pp.126–137.ISSN:2190-3387.URL: http: //nbn-resolving.de/urn:nbn:de:0009-29-47231.

[132] MichalCzerniawskiandDanSvantesson.“Challengestotheextraterritorialenforcement ofdataprivacylaw-EUcasestudy”.In:Jan.2024,pp.127–153.

[133] FedericoFabbriniandEdoardoCeleste.“TheRighttoBeForgottenintheDigitalAge:The ChallengesofDataProtectionBeyondBorders”.In: GermanLawJournal 21.S1(2020), pp.55–65.DOI: 10.1017/glj.2020.14.

[134] ChrisBurt.“ClearviewdeniesjurisdictionofFrenchregulatorinresponseto€20Mfine”. In: BiometricUpdate (Oct.2022).URL: https://www.biometricupdate.com/202210/ clearview-denies-jurisdiction-of-french-regulator-in-response-toe20m-fine.

[135] IAPP. Towardarisk-basedapproach?Challengingthe’zerorisk’paradigmofEUDPAsin internationaldatatransfersandforeigngovernments’dataaccessschedule .Feb.2024. URL: https://iapp.org/news/a/towards-a-risk-based-approach-challengingthe-zero-risk-paradigm-of-eu-dpas-in-international-data-transfersand-foreign-governments-data-access/.

[136] EuropeanCommission. Adequacydecisions.HowtheEUdeterminesifanon-EUcountry hasanadequatelevelofdataprotection. URL: https://commission.europa.eu/law/ law-topic/data-protection/international-dimension-data-protection/ adequacy-decisions_en.

[137] EuropeanCommission. CommissionfindsthatEUpersonaldataflowscancontinuewith 11thirdcountriesandterritories .URL: https://ec.europa.eu/commission/presscorner/ detail/en/ip_24_161.

[138] EuropeanCommission. AdequacydecisionfortheEU-USDataPrivacyFramework .URL: https://commission.europa.eu/document/fa09cbad-dd7d-4684-ae60be03fcb0fddf_en.

[139] EDPB. Recommendations1/2022ontheApplicationforApprovalandontheelements andprinciplestobefoundinControllerBindingCorporateRules(Art.47GDPR).Adopted on20June2023. 2023.URL: https://edpb.europa.eu/system/files/202306/edpb_recommendations_20221_bcr-c_v2_en.pdf.

[140] AndmekaitseInspektsioon[DataProtectionInspectorate]. Isikuandmeteedastaminevälisriiki[Internationaltransferofpersonaldata].URL: https://www.aki.ee/isikuandmed/ andmetootlejale/isikuandmete-edastamine-valisriikikuidas-aru-saadami#edastamineameerika.

[141] EuropeanDataProtectionBoard. Guidelines05/2021ontheInterplaybetweentheapplicationofArticle3andtheprovisionsoninternationaltransfersasperChapterVofthe GDPR.Version2.0.Adopted14February2023 .Feb.2023.URL: https://www.edpb. europa.eu/system/files/2023-02/edpb_guidelines_05-2021_interplay_ between_the_application_of_art3-chapter_v_of_the_gdpr_v2_en_0.pdf.

[142] Riskmanagement—Guidelines .en.StandardISO31000:2018.InternationalOrganization forStandardization,2018.URL: https://www.iso.org/standard/65694.html

[143] RiskManagementFrameworkforInformationSystemsandOrganizations:ASystemLife CycleApproachforSecurityandPrivacy .en.StandardNISTSP800-37Rev.2.USNationalInstituteofStandardsandTechnology,2018.URL: https://csrc.nist.gov/ pubs/sp/800/37/r2/final.

[144] Informationtechnology—Informationsecurity,cybersecurityandprivacyprotection— Guidanceonmanaginginformationsecurityrisks .en.StandardISO/IEC27005:2022. InternationalOrganizationforStandardization,2022.URL: https://www.iso.org/ standard/80585.html

[145] NISTCybersecurityFramework1.1.en.StandardNISTCSFv.1.1.USNationalInstituteof StandardsandTechnology,2018.URL: https://www.nist.gov/cyberframework/ framework

[146] Informationtechnology—Artificialintelligence—Guidanceonriskmanagement.en. StandardISO/IEC23984:2023.InternationalOrganizationforStandardization,2023.URL: https://www.iso.org/standard/77304.html.

[147] RiigiInfosüsteemiAmet[InformationSystemAuthority]. Eestiinfoturbestandard(E-ITS) [EstonianInformationSecurityStandard].2023.URL: https://eits.ria.ee/.

[148] PillePullonen,RaimundasMatulevičius,andDanBogdanov.“PE-BPMN:Privacy-Enhanced BusinessProcessModelandNotation”.In: BusinessProcessManagement.SpringerInternationalPublishing,2017,pp.40–56.DOI: 10.1007/978-3-319-65000-5_3

[149] HMGovernment. SafetyandSecurityRisksofGenerativeArtificialIntelligenceto2025 . URL: https://assets.publishing.service.gov.uk/media/653932db80884d0013f71b15/ generative-ai-safety-security-risks-2025-annex-b.pdf.

[150] RichardFangetal. LLMAgentscanAutonomouslyHackWebsites .2024.arXiv: 2402. 06664[cs.CR].

[151] RiigiInfosüsteemiAmet[InformationSystemAuthority]. Eestiinfoturbestandardietalonturbekataloog[E-ITSBaselineSecurityCatalogue].2023.URL: https://eits.ria. ee/et/versioon/2023/eits-poohidokumendid/etalonturbe-kataloog.

[152] TheNewYorkTimes. TheTimesSuesOpenAIandMicrosoftOverA.I.UseofCopyrighted Work.MillionsofarticlesfromTheNewYorkTimeswereusedtotrainchatbotsthatnow competewithit,thelawsuitsaid .Dec.2023.URL: https://www.nytimes.com/2023/ 12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html.

[153] TechTarget. AIlawsuitsexplained:Who’sgettingsued?Authors,artistsandothersare filinglawsuitsagainstgenerativeAIcompaniesforusingtheirdatainbulktotrainAIsystemswithoutpermission .Jan.2024.URL: https://www.techtarget.com/whatis/ feature/AI-lawsuits-explained-Whos-getting-sued.

[154] TheFashionLaw. FromChatGPTtoGettyv.StabilityAI:ARunningListofKeyAI-Lawsuits URL: https://www.thefashionlaw.com/from-chatgpt-to-deepfake-creatingapps-a-running-list-of-key-ai-lawsuits/.

[155] CivilResolutionTribunalofBritishColumbia. Moffattv.AirCanada,2024BCCRT149 (CanLII).Feb.2024.URL: https://www.canlii.org/en/bc/bccrt/doc/2024/ 2024bccrt149/2024bccrt149.html.

[156] LeiHuangetal. ASurveyonHallucinationinLargeLanguageModels:Principles,Taxonomy,Challenges,andOpenQuestions .2023.arXiv: 2311.05232[cs.CL]

[157] RushebShahetal. ScalableandTransferableBlack-BoxJailbreaksforLanguageModels viaPersonaModulation .2023.arXiv: 2311.03348[cs.CL]

[158] XiangyuQietal. Fine-tuningAlignedLanguageModelsCompromisesSafety,EvenWhen UsersDoNotIntendTo! 2023.arXiv: 2310.03693[cs.CL].

[159] JoséLuisRicón. SetSailForFail?OnAIrisk .Nintil.Availableat https://nintil.com/ ai-safety/.Aug.2022.

[160] GovernmentOfficeofScience,UK. FutureRisksofFrontierAI.Tech.rep.Technology& ScienceInsightsandForesight,Oct.2023.

[161] JonasB.Sandbrink. Artificialintelligenceandbiologicalmisuse:Differentiatingrisksof languagemodelsandbiologicaldesigntools .2023.arXiv: 2306.13952[cs.CY]

[162] DaniilA.Boiko,RobertMacKnight,andGabeGomes. Emergentautonomousscientificresearchcapabilitiesoflargelanguagemodels .2023.arXiv: 2304.05332[physics.chemph]

[163] OpenAIResearchTeam. BuildinganEarlyWarningSystemforLLM-AidedBiologicalThreat Creation .OpenAI.URL: https://openai.com/research/building-an-earlywarning-system-for-llm-aided-biological-threat-creation (visitedon 02/08/2024).

[164] JosephR.BidenJr. ExecutiveOrderontheSafe,Secure,andTrustworthyDevelopment andUseofArtificialIntelligence .ExecutiveOrder.14110.2023.

[165] T.C.King,N.Aggarwal,M.Taddeo,etal.“ArtificialIntelligenceCrime:AnInterdisciplinary AnalysisofForeseeableThreatsandSolutions”.In: SciEngEthics 26(2020),pp.89–120. DOI: 10.1007/s11948-018-00081-0.

[166] BrigittaDresp-Langley.“Theweaponizationofartificialintelligence:Whatthepublicneeds tobeawareof”.In: FrontiersinArtificialIntelligence 6(2023),p.1154184.DOI: 10.3389/ frai.2023.1154184.

[167] MrinankSharmaetal. TowardsUnderstandingSycophancyinLanguageModels .2023. arXiv: 2310.13548[cs.CL].

[168] EmilyBaker-WhiteandForbesStaff.“WhoIs@BasedBeffJezos,TheLeaderOfTheTech Elite’s‘E/Acc’Movement?”In: Forbes (Dec.2023).Külastatud04.12.2023.URL: https:// www.forbes.com/sites/emilybaker-white/2023/12/01/who-is-basedbeffjezosthe-leader-of-effective-accelerationism-eacc/.

[169] MiladNasretal. ScalableExtractionofTrainingDatafrom(Production)LanguageModels .2023.arXiv: 2311.17035[cs.LG].

[170] IanJ.Goodfellow,JonathonShlens,andChristianSzegedy. ExplainingandHarnessing AdversarialExamples .2015.arXiv: 1412.6572[stat.ML]

[171] JingLinetal. MLAttackModels:AdversarialAttacksandDataPoisoningAttacks .2021. arXiv: 2112.02797[cs.LG].

[172] JonasGeipingetal. CoercingLLMstodoandreveal(almost)anything .2024.arXiv: 2402.14020[cs.LG].

[173] JosephLucas.“MitigatingStoredPromptInjectionAttacksAgainstLLMApplications”.In: NVIDIATechnicalBlog (Aug.2023).URL: https://developer.nvidia.com/blog/ mitigating-stored-prompt-injection-attacks-against-llm-applications/ [174] KaiGreshakeetal. Notwhatyou’vesignedupfor:CompromisingReal-WorldLLM-Integrated ApplicationswithIndirectPromptInjection .2023.arXiv: 2302.12173[cs.CR]

[175] DarynaOliynyk,RudolfMayer,andAndreasRauber.“IKnowWhatYouTrainedLastSummer:ASurveyonStealingMachineLearningModelsandDefences”.In: ACMComputing Surveys 55.14s(July2023),pp.1–41.ISSN:1557-7341.DOI: 10.1145/3595292.URL: http://dx.doi.org/10.1145/3595292.

[176] RezaShokrietal. MembershipInferenceAttacksagainstMachineLearningModels .2017. arXiv: 1610.05820[cs.CR].

[177] BorisvanBreugeletal. MembershipInferenceAttacksagainstSyntheticDatathrough OverfittingDetection .2023.arXiv: 2302.12580[cs.LG]

[178] Ngoc-BaoNguyenetal. Re-thinkingModelInversionAttacksAgainstDeepNeuralNetworks .2023.arXiv: 2304.01669[cs.LG].

[179] Kuan-ChiehWangetal. VariationalModelInversionAttacks .2022.arXiv: 2201.10787 [cs.LG].

[180] LiamFowletal. AdversarialExamplesMakeStrongPoisons .2021.arXiv: 2106.10807 [cs.LG].

[181] BattistaBiggio,BlaineNelson,andPavelLaskov. PoisoningAttacksagainstSupportVectorMachines .2013.arXiv: 1206.6389[cs.LG]

[182] ShawnShanetal. Prompt-SpecificPoisoningAttacksonText-to-ImageGenerativeModels .2023.arXiv: 2310.13828[cs.CR].

[183] MicahGoldblumetal. DatasetSecurityforMachineLearning:DataPoisoning,Backdoor Attacks,andDefenses .2021.arXiv: 2012.10544[cs.LG].

[184] XinyunChenetal. TargetedBackdoorAttacksonDeepLearningSystemsUsingData Poisoning .2017.arXiv: 1712.05526[cs.CR].

[185] RuixiangTangetal. AnEmbarrassinglySimpleApproachforTrojanAttackinDeepNeural Networks .2020.arXiv: 2006.08131[cs.CR]

[186] MeghaAgarwaletal. LLMInferencePerformanceEngineering:BestPractices https: //www.databricks.com/blog/llm-inference-performance-engineeringbest-practices.Accessedon11Dec2023.2023.

[187] JiaqiRuanetal. ApplyingLargeLanguageModelstoPowerSystems:PotentialSecurity Threats .2023.arXiv: 2311.13361[cs.AI].

[188] RobinStaabetal. BeyondMemorization:ViolatingPrivacyViaInferencewithLargeLanguageModels .2023.arXiv: 2310.07298[cs.AI]

[189] CyberneticaAS. Privaatsuskaitsetehnoloogiatekontseptsioon[Privacyenhancingtechnologyconcept.Tech.rep.Majandus-jaKommunikatsiooniministeerium[MinistryofEconomicAffairsandCommunications],2023.URL: https://www.kratid.ee/analuusidja-uuringud#pet.

[190] RouzbehBehniaetal.“EW-Tune:AFrameworkforPrivatelyFine-TuningLargeLanguage ModelswithDifferentialPrivacy”.In: 2022IEEEInternationalConferenceonDataMining Workshops(ICDMW).IEEE,Nov.2022.DOI: 10.1109/icdmw58026.2022.00078.URL: http://dx.doi.org/10.1109/ICDMW58026.2022.00078.

[191] OECD. Accountability(Principle1.5).URL: https://oecd.ai/en/dashboards/aiprinciples/P9.

[192] OECD. Inclusivegrowth,sustainabledevelopmentandwell-being(Principle1.1).URL: https://oecd.ai/en/dashboards/ai-principles/P5.

[193] OWASPFoundation. LLMAICybersecurity&GovernanceChecklist.2024.URL: https: //owasp.org/www-project-top-10-for-large-language-model-applications/ llm-top-10-governance-doc/LLM_AI_Security_and_Governance_Checklistv1.pdf.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Risk and Controls for Artificial Intelligence and Machine Learning Systems. May 27, 2024 by TheDTE - Issuu