Topography, drainage capability, and legacy of drought differentiate tropical ecosystem

Page 1


LETTER • OPEN ACCESS

Topography, drainage capability, and legacy of drought differentiate tropical ecosystem response to and recovery from major hurricanes

To cite this article: Mei Yu and Qiong Gao 2020 Environ. Res. Lett. 15 104046

View the article online for updates and enhancements.

OPENACCESS

RECEIVED 28February2020

REVISED 3August2020

ACCEPTEDFORPUBLICATION 11August2020

PUBLISHED 28September2020

Originalcontentfrom thisworkmaybeused underthetermsofthe CreativeCommons Attribution4.0licence

Anyfurtherdistribution ofthisworkmust maintainattributionto theauthor(s)andthetitle ofthework,journal citationandDOI.

EnvironmentalResearchLetters

LETTER

Topography,drainagecapability,andlegacyofdrought differentiatetropicalecosystemresponsetoandrecoveryfrom majorhurricanes

DepartmentofEnvironmentalSciences,UniversityofPuertoRico,RioPiedras,SanJuan,PR,00936,UnitedStatesofAmerica

E-mail: meiyu@ites.upr.edu

Keywords: majorhurricane, tropicalforest, coastalmangrove, ecosystemresistance, ecosystemresilience, intensifiedclimatevariability, legacyofclimateevent

Supplementarymaterialforthisarticleisavailable online

Abstract

High-carbonsequestrationsoftropicalmontaneforestsandcoastalmangroveshavebeengreatly disturbedbyintensifiedextremeclimateeventssuchasalternatinghurricanesanddroughts. However,fewstudiesofthehurricaneimpacthavetakenintoconsiderationthelegacyofpast climateeventsandanalyzedtheheterogeneityofhurricaneimpactsbetweenmontaneforestsand coastalmangroves.Here,westudiedtheimpactofHurricanesIrmaandMariain2017oncoastal mangrovesanduplandforestsinPuertoRicoafteraseveredroughtduring2015–2016.We investigatedtheisland-wideimmediateimpactongreennessusingfusedvegetationindexfrom Sentinel-2andLandsat-8,andtheimpactonandtherecoveryof62homogeneousvegetation patchesbyderivinganimpactindexandone-yearrecoveryratio(RR).Alinearmixed-effectmodel wasappliedtoexplorerolesofhurricanewind,rainfall,topography,andbiologicalcomponentsin theimpactandtherecovery.Island-wide,theimmediateimpactishighlyspatial-heterogeneous. Althoughmostoftheislandwasbrowned,agreen-upstripinthedrysouthshowedbenefitsfrom thehurricanerainwhichrelievedthepriordroughtstress.Coastalmangrovesexperiencedthe greatestimpactandslowestrecoverywithrelativerecoveryof0.44comparedtorecoverygreater than0.70foruplandforests,andevergreenforestssustainedsignificantlymoredamagethan deciduousforests.Therecoveryofevergreenforestswasonaverage11daysearlierandfasterthan thatofmangroves.Mangroverecoverywasmostlylimitedbyinundation-relatedfactorssuchas elevation,slope,anddrainagecapacity.Whilehigherelevationrelatestoslowerrecoveryforupland forests,itfavorsmangroverecovery.Particularly,mangroverecoveryisfacilitatedbyriverpresence, explaining65%variationinRR.Thedifferentiatedresponse,recovery,andunderlyingmechanisms highlightedacomplicatedarrayofexternalforces,geophysical/biologicalmodulators,andlegacyof pastclimateeventsindeterminingandunderstandinghurricanes’impactontropicalecosystems.

1.Introduction

TropicalforestshavethelargestplantCpool(Pan etal 2013)andthehighestnetprimaryproductivity(Chapin etal 2012),andthusplayimportantroles insequestratingCgloballyandmodulatingchanges inclimate.Intropicalcoast,theforestedwetlands dominatedbymangrovessequesterespeciallylarge amountsofcarbonwithexceedinglyhighwateruse efficiencyandlowdecompositionrate,despitetheir limitedspatialextent(KirwanandMegonigal 2013, Hutchison etal 2014).However,thesustainability ofcarbonsequestrationcapabilityoftropicalcoastal wetlandischallengedbyboostedcoastaldevelopment,acceleratedrisingsealevel(Church etal 2013, Krauss etal 2014,Lovelock etal 2015),andintensified climatevariability(Cai etal 2014, 2015,Yi etal 2015) suchasfrequentseveredroughtsandhurricanes. Tropicalcyclones,especiallymajorhurricanes, arethemostimportantpulsedisturbanceaffecting coastalecosystemsintropicalandtemperateregions (Lugo 2000, 2008,Fisk etal 2013),andhaveboth

short-andlong-termimpactsonecosystemstructures,compositions,andfunctionssuchasCfluxes (Beard etal 2005,Vargas 2012,Fisk etal 2013,Hutley etal 2013).Forexample,HurricanesHugoin1989 andGeorgesin1998hitthetropicalmontaneforests inPuertoRicoandinducedbothimminentand delayedmassivetreemortality(Lugo 2000).Thehurricanesin2005and2008werethoughttocausethe significantlossofsaltmarshintheGulfofMexico in2004–2009(DahlandStedman 2013).Highwinds andexcessiverainfallareoftenthemajorforcesassociatedwithhurricanes.Forinstance,asingleevent oftropicalcyclonescanbring5%–40%annualrainfalltotheCaribbeanandUSsoutheasterncoast (ScatenaandLarsen 1991,Michener etal 1997).In addition,stormsurgesandheavyrunoffinundate thecoastallowland,andtheinundationcanlast forweeksandcausesignificantchangesincoastal vegetations(Michener etal 1997,Lugo 2008).Therefore,acomplexarrayofexternalforces,e.g.wind, rainfall,discharge,stormsurge,flooding,landslide, andhurricane-induceddrought(Miller etal 2019) imposesdiverseeffectsonecosystemsfromuplandto lowland.Recoveryoftheheavilyaffectedecosystems canlastfordecadesandmighttakevariousdirections (Lugo 2008).

Comparedtouplandforests,mangroveslivein low,saline,andanaerobicenvironments,andsurvive thisenvironmentbyexcluding80%–99%ofsaltsin theirroots,andbystoringsaltsinorsecretingsalts throughtheirleaves.Therefore,mangrovesexpend extraenergyonsaltexclusionandwateruptake (ReefandLovelock 2015,Lovelock etal 2016).Under thesaltyandanaerobicenvironment,therecovery ofdefoliatedmangroveswillbemuchharderthan aneighboringuplandforest,whichcanre-sprout quicklyafterhurricanes.Ontheotherhand,tocope withanoxia,allmangroveshaveaerialrootsofvarioustypestotakeinoxygenformetabolismand nitrificationofammoniuminsoil(Clough 2013). Mangrovescantolerateananaerobicenvironmentto somedegree.Forexample,partialsedimentburial mightinducemorpho-anatomicaladaptations,such asdevelopingnewroots,forenhancedsurvivorship (Okello etal 2020),andrisingsealevelmightleadto increasedmangrovecontributiontosoilorganiccarbon(Chen etal 2020).However,hurricane-induced prolongedinundationswithseveredamagesuchas massdefoliationmayimmersetheiraerialrootsand inducemortalitybeforenewrootscomeout.

Ingeneral,tropicalforestecosystemssuchaswet andrainforestswerenotconsideredasmoisturelimited;however,intensifiedclimatevariabilityhas broughtoutmorefrequentandseveredroughtevents whichwerereportedtomodulateCdynamicsand inducetreemortality(Gatti etal 2014,Doughty etal 2015).Forexample,droughtsuppressedphotosynthesisintheAmazonandalteredcarbonallocationtoreducethemaintenanceanddefenseagainst

herbivoresanddiseaseswhichmightbelinkedto increasedmortalityafterdrought(Doughty etal 2015).AsfoundinthetropicalforestsofElYunquein theCaribbeanduring1989–1998(Beard etal 2005), droughtscausedmoreseveredamagetofineroots thanhurricanesdid,andtherecoveryoffineroots afterdroughtswasmuchslowerthanthatafterhurricanes.Forcoastalwetlands,severedroughtexacerbatedthenegativeeffectsofsaltwaterintrusiononthe Pterocarpus freshwaterswampandinducedmassive mortalityofseedlingsandsaplings(Yu etal 2019). Althoughimpactsofhurricanesontropical forestsandmangrovesarewelldiscussedintheliterature(Michener etal 1997,Beard etal 2005,Lugo 2008),fewstudieshaveconsideredtropicalupland forestsandcoastallowlandmangrovesasaspatial continuum,andlinkedtheimpactsofthesequence ofElNiñodrought,majorhurricanes,andposthurricanedrought.Asatropicalmountainousisland intheCaribbean,PuertoRicoispronetostorms andhurricanes(L´ opez-Marrero etal 2019),andthe intensifiedclimatevariabilitypromotestheprobabilityofconsecutiveextremeclimateevents(Cai etal 2014, 2015,Runkle etal 2018).PuertoRico underwentaseveredroughtin2015–2016(Mote etal 2017)andtheannualrainfallin2015wasabout 45%lowerthanthelong-termaverageinthewet forest(Guti´ errez-Fonseca etal 2020).Thisdrought largelyreducedthecommunity-widereproductionin theGu´ anicadryforest(Lasky etal 2016),increased thelitterfallofthetropicalmontaneforestdueto physiologicalstress(Guti´ errez-Fonseca etal 2020), increasedtheCemissionthroughsoilrespiration (O’Connell etal 2018),andinducedlowrecruitment ofthe Pterocarpus freshwaterswampthroughelevatedsalinity(Yu etal 2019).Followingthesevere drought,PuertoRicoexperiencedmajorhurricanes IrmaandMariain2017,whichdefoliatedtheecosystems,snappedoruprootedtreesfromtop-mountain rainforests,wetforests,low-mountainmoistforests, dryforest,andcoastalmangroves.Thegroundsurvey inthemontaneforestreportedthatHurricanesIrma andMariabrokethreetimesthestemsanddoubled themortalitycomparedtopreviousstorms(Uriarte etal 2019).Themajorhurricanesafterseveredrought leaveanimportantopportunitytoinvestigatetheecosystemresistanceandresiliencefromuplandforests tolowlandmangrovesunderconsecutiveextreme climateevents.

Inthisstudy,weaddressthespatialdistributionsoftheimpactof2017hurricanesandthe recoveryafterinPuertoRicointhecontextof majorhurricanesafterseveredrought.Weassume thepriorseveredroughtmightreduceplantactivitiesincludingslowingdownindividualtreegrowth (Doughty etal 2015,Schwartz etal 2019),lower thesurvivorshipofseedlingsandsaplings(Yu etal 2019),andinducefine-rootmortality(Beard etal 2005),andthusmightamplifyecosystemresponses

tosubsequentmajorhurricanes.Wehypothesize thattheimpactandrecoveryarefunctionsofhurricanewindandrainfall,topography,andbiological componentssuchasvegetationtypeandfunctional traits(Lugo 2008).Specifically,wehypothesizethat coastalmangrovesarelessresistantandresilient, intermsof insitu survivorshipduringashort timeperiod,thanuplandvegetationduetotheir salineandanaerobicenvironmentthatexertsstresses onthemetabolismandgrowthofdefoliatedmangroves.Amonguplandvegetation,wehypothesize thathigher-elevationforestsexperiencemoresevere damageandslowerrecoverythanlower-elevation onesduetostrongerwindandthefactthathigherelevationplantsinwetandmoistenvironmentsare moresensitivetoandmorelikelytosufferfromthe pre-hurricanedrought.Forcoastalmangroves,drainagecapacityreducesprobabilityandperiodofinundation,andwehypothesizethatmangrovesinhigher places,onsteeperslopes,orhavingariverflowing throughtodrainexperiencelessdamageandfaster recoverythanthosewithpoordrainage.

2.Methods

2.1.Studyarea

PuertoRicoisamountainoustropicalarchipelagoin thenortheasternCaribbean(18◦15’Nand66◦30’W, figure 1),withelevationsfromslightlylowerthansea leveltomorethan1000minthecentralmountains (figure 2(a)).Thenortheasterlytradewindbrings moisturefromtheAtlanticOceananddepositsmore than4000mmofannualrainfallinwindwardmountainsabout1000mabovesealevelbutlessthan 1000mminthesouthwesternleewardcoast.Forest distributionvariesfromcloudforestandwetforest inwindwardmountains,tomoistforestinlowland, todryforestinleeward,andtomangroveand Pterocarpus swampincoastalwetlands(MillerandLugo 2009).Afteraseveredroughtin2015–2016,HurricaneIrmapassednearthenortheastoftheisland onSeptember6,2017withsustainingwindspeed of298kmh 1,andHurricaneMariatraversedthe islandonSeptember20withsustainingwindspeedof 249kmh 1 atitslandfall.Thelargelyreducedtranspirationduetomassdefoliationandtheincreases inBowenratiochangedtheregionalhydrology,and incurredpost-hurricanedrought(Miller etal 2019).

2.2.Datapreparation

WeretrievedthehurricanedatafromtheNOAA NationalHurricaneCenter(Pasch etal 2019),includinghurricanepaths,rainfall,andgustwindduringMariarecordedatstationsinPuertoRico. WecalculatedthedistancestopathsofMaria andIrma,andinterpolatedtherainfallandgust windbycokriging(figure 2,appendixS1(available onlineat stacks.iop.org/ERL/15/104046/mmedia)). Weacquiredsatellite-basedvegetationindexfrom

Figure1. LocationofPuertoRicointheCaribbean(top) andlandcoverin2010(bottom).HurricaneIrma(blue line)passedtothenortheastonSeptember6,2017while HurricaneMaria(purpleline)madealandfalland traversedtheislandfromsoutheasttonorthweston September20,2017.

Figure2. Elevationinm(a),normalannualrainfallinmm (1980–2010)(b),andwindgustsinms 1 during HurricaneMaria(c).

Landsat-8(Wulder etal 2019)andSentinel-2 (Chastain etal 2019,Pahlevan etal 2019)viaGoogle EarthEngine(Gorelick etal 2017).Normalizeddifferencevegetationindex(NDVI)andenhanced vegetationindex(EVI)werederivedafterclouddetectionandshadowremoval(Housman etal 2018). Todisentangleimpactonvariousvegetation, weobtainedlargehomogeneouspatcheswithout land-coverchangessince2000,guidedbyLandCover

Figure3. TypicaldynamicsofSentinel-2EVItimeseriesforpasture(PAST),deciduousforest(DECI),evergreenforest(EVER), andmangroveandassociates(MANG).Theredverticalbardepictstheperiodbetweenthetwohurricanes(September6to20, 2017).Thehorizontalgreenlinestotheleftandrightoftheredbarillustratethe1-yearmeanbeforeandafterthehurricanes, respectively.TheblacklineindicatestheminimumEVIafterthehurricanes,fromSeptember6,2017–March31,2018.

Mapsof2000,2010andaerialimagesof2010(Gould etal 2008,Wang etal 2017,Yu etal 2017).These include13mangroveandassociate(Pterocarpus),19 evergreenforest,11deciduousforest,and19pasturepatchesusedasareferencevegetationtypein comparisontowoodyvegetation.Sentinel-2EVIand NDVIwith5-dayrevisitareusedtocapturethehighfrequencychangesofvegetationgreennessfromJanuary2016–March2019.

2.3.Dataanalysis

2.3.1.Changesinvegetationindexonemonthbefore andafterthehurricanesovertheisland

Toassesstheimmediateimpacts,wecomparedNDVI beforethehurricanes(Aug.1–Sep.5,2017)andafter (Sep.21–Oct.31,2017)viamedian-compositeof fusedNDVIsfromLandsat-8andSentinel-2(Zhang etal 2018).TheperiodofAug–Octiswithinthewet season,whendeciduousforestshavetheirleaves.The ratioofNDVIaftertoNDVIbeforereflectstherelativechangesingreennessandtheimmediateimpacts. Wefurthercomputedtherelativechangesregarding variouslifezones,directiontoMaria’spath(rightof thepathversusleft,consideringthecounterclockwise spinandstrongerwindstotherightofhurricaneeye), anddistancefromthepath.

2.3.2.Analysisofimpactofhurricanesonvegetation patchesandtheirrecovery

Differenttypesofvegetationshowdifferentresistance andresilience,andweusedthehomogeneousand stablevegetationpatchestoassesstheimpactfromthe mountainstothecoast.Afterfillingmissingdataand filteringrandomnoiseofvegetationindicesforeach patch(ZeileisandGrothendieck 2005),weobtained

thetypicalpatternsofSentinel-2EVItimeseriesas showninfigure 3.

Foreachtimeseries,wecomputedthreestatistics:meanfromSeptember6,2016–September5, 2017asMEANBEFORE,meanfromSeptember 21,2017–September20,2018asMEANAFTER, andminimumfromSeptember6,2017–March31, 2018asLOWAFTERwithconsiderationofthe delayedmortality(figureS2).TheLOWAFTER dividedbyMEANBEFOREiscomputedasrelativelow(RL)toquantifytheimpactsofthehurricanesandpost-hurricanedrought/inundation (equation(1)),whereastheMEANAFTERdivided byMEANBEFOREisregardedasrecoveryratio (RR,equation(2)).TheRLreflectstheproportionof greennessremainingaftertheperturbations,whichis conceptuallysimilartotheresistanceindexproposed todepictdroughtimpactsusingtreerings(Lloret etal 2011).Weusedone-yearmeanbeforeorafterthe perturbationsasreferencestoreduceseasonaleffects. TheRRreflectstheproportionofaveragegreenness thatvegetationisabletoreachafteroneyear,andit isconceptuallysimilartotheresilienceindexinthe literature(Lloret etal 2011).AsRRdependsalsoon severityoftheimpact(RelativeLow),wecomputed relativerecoveryratio(RRR,equation(3))asthe differencebetweenMEANAFTERandLOWAFTER overthatbetweenMEANBEFOREandLOWAFTER. Thisindexdepictsthepercentageoflostgreennessthatvegetationregainedduringtheyearafter perturbations(figureS2). RelativeLow : RL = LowAfter MeanBefore (1)

Figure4. NDVIderivedfromLandsat-8andSentinel-2 overthemainislandofPuertoRico(a)beforeHurricanes MariaandIrma(Aug.1–Sep.5,2017)and(b)afterthe Hurricanes(Sep.21–Oct.31,2017).(c)Ratioofthechange inNDVI(ratioofNDVIaftertoNDVIbefore,lessthan1 indicatingdecreaseinNDVIwhilegreaterthan1indicating increaseinNDVIafterthehurricanes).Thepurpleline showsthepathofHurricaneMariaonSeptember20,2017.

Figure5. Boxplotsoftherelativelowafterthehurricanes (RL),recoveryratio(RR),andrelativerecoveryratio(RRR) ofMANG–mangroves,EVER–evergreenforests, DECI–deciduousforests,andPAST–pastures.

RecoveryRatio : RR = MeanAfter MeanBefore (2)

RelativeRecoveryRatio : RRR = MeanAfter LowAfter MeanBefore LowAfter (3)

RLorRRreflectspartlytheecosystemresistance orresilience,anddependsonthelocalstrengthof thehurricanes(Gardiner etal 2008, 2019)reflected aswindandrainfall,geophysicalvariablessuchas topography(Achim etal 2003,Ribeiro etal 2016), andvegetationtypes(Peltola etal 2000,Peterson etal 2019,ShibuyaandIshibashi 2019).Toquantifytheir effects,welog-transformedandregressedRLandRR onmeanDEM(DigitalElevationModel)andslope, meangust,meanrainfallduringMaria,andmean distancestothepathsofMariaandIrma,respectively.Linearmixed-effectmodelwasappliedforevergreen,deciduousforest,andpasturepatches,with vegetationtypeasthegroupingvariable.ConsideringthatmangrovepatcheshavemuchlowerDEM andslopesthanothers,andthatdrainageisespeciallyimportantforcoastalswamps,weaddedabinaryvariableRIVERtoindicatewhetherthereisariver flowingthroughtodraintheswamp,andperformed

amultipleregressionformangroves.StatisticalanalysesweredonewithR(RCoreTeam 2017)andspatialanalyseswithArcGIS(10.6,ESRI,Redland,CA). DetailsofthemethodologyareinappendixS1.

3.Results

3.1.Island-widechangesinvegetationindexone monthbeforeandonemonthafterthehurricanes Althoughthevegetationindexlargelydecreased island-wideonemonthafterthehurricanes,the changesarehighlyspatiallyheterogeneous(figure 4). Themontaneforestsclosetothehurricanepath encounteredthemostrelativedecrease.Changeratios are0.63 ± 0.33,0.66 ± 0.37,0.71 ± 0.23,0.71 ± 0.53, and0.81 ± 0.26inlowermountainwetforest(highest zonewith880ma.s.l.),subtropicalrainforest,subtropicalwetforest,lowermountainrainforest,and moistforest,respectively(figuresS1(a)and(b)).In contrasttogreennessreductionintheaforementionedzones,wefoundastripofleewardvegetation alongsouthcoastwithindryforestzone(figures 2(b) andS1(c)),withincreasedgreenness(figure 4(c)) asindicatedby1.50 ± 0.78(figureS1(a)).The patternofchangeratioshoweddecreasedimpact (increasedchangeratio)withdistancefromthehurricanepath(figuresS1(d)and(e)).However,abrupt

Table1. Mean ± SEandpairwisecomparisonofrelativelow(RL),recoveryratio(RR),andrelativerecoveryratio(RRR)among vegetationtypes.MANG–mangroves,EVER–evergreenforests,DECI–deciduousforests,andPAST–pastures.

Relativelow(RL)

changeinelevationintheeast(figure 2(a))modulatedthispattern(figuresS1(d)and(f)):Thehigh ElYunqueNationalForest(figures 2(a)andS1(c)) located50–60kmeastofthepathsufferedmore damagethanthoseareasnearthepath(figuresS1(d) and(f)).Directionalsoplaysanimportantrole becauseofthecounterclockwisespinandnorthwestwardmovementofMaria:strongerwindandlower changeratiowerefoundintheeast(right)ofthepath thaninthewest(left),especiallyforareasgreaterthan 30kmawayfromthepath(figureS1(d)).

3.2.Differentiatedhurricaneimpactonvarious vegetationtypes

For62homogeneousvegetationpatches,mangroves havethelowestandevergreenforestshavethesecond lowestaverageRL,whereaspastureshavethehighest averageRL(figures 5(a)and(b)).Averagedover NDVIandEVI,mangroves,evergreen,deciduous forests,andpastureshavemeanRLof0.56,0.65,0.76, and0.79,respectively.Thepairwiset-test(table 1) showedmangroveshavesignificantlylowerRLthan others,andevergreenforestshavesignificantlylower RLthandeciduousforestsandpastures.

ThetimingofLOWAFTERasthenumber ofdaysafterMariaindicatesperiodofdying-out ofleavesandbearstheinformationaboutduration ofhurricane-inducedstresses(figure 6).Duetothe largevariationwithinvegetationgroups,wedidnot findsignificantdifferenceinthemeantimingamong groups.TheaverageddelayofLOWAFTERis53.3 (11/12/2017),53.9(11/13/2017),69.8(11/29/2017), and110.7(1/9/2018)daysformangroves,evergreen forests,deciduousforests,andpastures,respectively. Themuchlongerdelaysforthelattertwomayrelateto post-hurricanedroughtandonsetofdryseasonstartinginlateDecember.EVIismoresensitivetochanges ingreennessforhighleafbiomass,andismore suitablefortropicsthanNDVI(Huete etal 2002). ThedelaysdetectedbyEVIshowedstrongercontrastamongvegetationgroupsthanthosebyNDVI (figure 6).Thelongestdelay,140.8d(2/8/2018),for pasturesshowsthattheimpactonthelowerprofile herbaceousismostlycausedbythedroughts.The shortestdelayof47.9d(11/7/2017)forevergreen forestsand11daysmore(11/18/2017)formangroves

Figure6. Meanplusstandarderrorofthenumberofdays afterSeptember20,2017forLOWAFTERtooccur. MANG–mangroves,EVER–evergreenforests, DECI–deciduousforests,andPAST–pastures. implythedamagetotheseareaswasmostlycausedby thewindsand/orinundationduetostormsurge/runoff.

Theapplicationoflinearmixed-effectmodelof RL(table 2)fornon-mangrovesshowedthatRLsignificantlydependsnegativelyonelevationandgust strength,whilepositivelyonslope.Higherelevation andgreatergustspeedmayindicatestrongersustainedwindandgreaterrainduringthehurricane, whichtendtobringmoredamage.Ontheother hand,steeperslopemightindicateeasierdrainageand attenuatewindspeedwhenblowingfromtheoppositedirection.Theinterceptsforthethreevegetation groupsfollowthepatternofRL(figures 5(a)and(b)).

TheregressionofRLofmangroves(table 3) showeddifferentpatternsoftheeffectsofgeophysicalvariables(table 2).Althoughnotsignificant,the coefficientsofDEMbecomepositiveashigherelevationmightindicatebetterdrainageandlesslikely inundation.Theabsolutevaluesofthecoefficientsof DEMaremuchlargerthanthoseintable 2 because elevationofmangrovesismuchsmallerthanthatof othervegetationtypes.Slopeissignificantonlyfor EVI,andtheeffectissimilartothatofDEMwith higherslopeforbetterdrainage.Gustissignificant onlyforEVIanditseffectisnegative.Inadditionto

Table2. Coefficientsoflinearmixed-effectmodelappliedto log-transformedrelativelow(resistance,lowestdividedbymean beforehurricanes)andlog-transformedrecoveryratio(resilience, meanafterhurricanesdividedbymeanbeforehurricanes)as functionsofgeophysicalvariables,withvegetationtypesasgroup variable.Thefirstthreerowsarerandominterceptsaddedonto thefixedintercepts.Independentvariables:DEM_A–meanDEM, SLOPE_A–meanslope,GUST_A–meanmaximumgustduring HurricaneMaria,DMARIA_A–meandistancetothepathof HurricaneMaria.Independentvariablesweredividedbytheir meanvaluesacross62patches.‘∗’indicatessignificanceat0.05 level.

RelativeLow RecoveryRatio

Table3. Coefficientsofmultipleregressionoflog-transformed relativelowandrateofrecoveryofmangrovepatchesfrom hurricanesongeophysicalvariables.DEM_A—meanDEM, SLOPE_A—meanslope,GUST_A—meanmaximumgustduring HurricaneMaria,DEM_S—standarddeviationofDEMwithin patches,RAIN_A—rainfallduringHurricaneMaria.RIVERisa logicalvariable,indicatingwhetherthereisariverrunning throughthemangrovepatch.‘∗’indicatessignificanceat0.05 level,and‘†’significanceat0.10level. RelativeLowRecoveryRatio

thevariablesfornon-mangrovetypes(table 2),rainfallhassignificantnegativeeffectonRL,ashurricane rainfalltendstoinundatethemangrovesystem.

3.3.Heterogeneousposthurricanerecovery Theone-yearrecoveryfromSep.21,2017toSep. 20,2018(figures 5(c)and(d),table 1)indicatesdistinctivenessbetweenmangrovesandothervegetation groups.MeanRRofmangrovesis0.75,whereasmean RRofothergroupsisnearorabove0.90.Pairwise t-testindicatesthatmeanRRofmangrovesissignificantlylowerthanthoseofothergroupswithEVI andNDVI.WithEVI,meanRRofevergreenforestsis significantlylowerthanthatofdeciduousforestsand pastures.

WhenRRofnon-mangrovevegetationpatches wereregressedonthecovariates(table 2),wefound thattheRRsignificantlydecreasedwithelevationand increasedwithslopeanddistancetothepathofMaria forbothvegetationindices.Vegetationinhighelevationexperiencedgreaterdamageduringthehurricanes,andcoarsersoilandpoorernutrientstatus mayalsolimittheirrecovery.Steeperslopesand greaterdistancefromhurricanepathtendtogivea betterbaseforrecoverybecauseofthelighterdamage withsteeperslopesandgreaterdistance.Theinterceptsforthethreevegetationgroupsalsofollowthe patternofRR(figures 5(c)and(d)).

RegressionofRRofmangrovepatches(table 3) showedthathighelevationsignificantlyfavored recoveryofmangrovesbecauseofthebetterdrainage.ThestandarddeviationofDEMalsoshowspositiveimpact,sothatcomplextopographyhelpsthe recovery.Thegustspeedtendstonegativelyaffect therecovery.Amongthe13mangrovepatches,we foundthat5patcheshaveriversflowingthrough.Our regressionindicatesRIVERsignificantlyandpositivelyimpactsrecoveryofmangroveforests.ANOVA

showedthatRIVERexplainedonaverage65%ofthe sumofsquares.

TheRRR(figures 5(e)and(f),table 1),averaged overEVIandNDVI,is0.44,0.70,0.73,and0.90 formangroves,evergreenforests,deciduousforests, andpastures,respectively.Thus,RRRfurtherdistinguishesmangroverecoveryfromothervegetation groups.Thepairwiset-test(table 1)showedthat mangroveindeedhassignificantlylowerRRRthan others.

4.Discussion

Tropicalforestsandmangrovesarevulnerableto changesinpressdriverssuchaswarming,drying, orrisingsealevel,andpulsedriverssuchashurricanes,whichintroduceslargeuncertaintiestotheir Csequestrationcapacityandfeedbacktoglobalclimate.Intensifiedclimatevariability(Cai etal 2014, 2015)islikelytobringmorefrequentextremeclimateevents,suchasseveredroughtandsubsequent majorhurricanes,toPuertoRico.FromMay2015 toNovember2016,theU.S.DroughtMonitorrecordedthelongestdroughtinPuertoRicosince2000 (www.drought.gov/drought/states/puerto-rico).This pre-hurricanedroughtwouldsuppressplantgrowth, suchasreducedindividualtreegrowthintheEl Yunquemontaneforestinhighaltitude,andleadto mortalityoffineroots(Beard etal 2005,Schwartz etal 2019),andthusmayhaveamplifiedtheresponse ofvegetationtothehurricanesin2017.Ontheother hand,theexcessivemoisturecarriedbythehurricanes immediatelyrelievedthedroughtstressonthevegetationindryforestandpastureinthesouthwestofthe island,whichencounteredlessdirectimpactsfrom hurricanewinds(figure 2(c)).

Ouranalysessupportourhypothesesonthegreat differencesinresistanceandresiliencebetweenlowlandmangrovesanduplandforeststomajorhurricanes(figure 5).Coastalwetlandsencounteredthe worstdamageandtheslowestrecovery,andevergreen forestsexperiencedthesecondworstdamage.The recoveryofevergreenforeststartedearlierandwas fasterthanthatofmangroves(figures 5(e),(f)and 6). Themechanismofimpactandrecoveryinvolveshurricanestrength(windandrainfall),topography,and biologicalcomponentssuchasecosystemproperties (tables 2 and 3).

Coastalmangrovesaremostvulnerable,andless resistantandresilienttohurricaneimpacts(figure 5). TheRRR,whichconsidersthevariationindamage, clearlyshowedmuchslowerrecoveryofmangroves (0.44)thanothervegetation(>0.7).Inadditionto negativeeffectofhurricanewinds,theimpactand recoveryofmangrovesareaffectedbyinundationrelatedfactorssuchasrainfall,elevation,slope,and drainagecapacity.Afterhurricanes,thesalineand anerobicenvironmentexertedhighecophysiological stressondefoliatedmangroves(Medina 1999,Reef andLovelock 2015).Astheymustdevotemuch moreenergytomaintainingthebalanceofwater, salt,oxygen,andnutrientsthanotherterrestrial plants,mangroveecosystemsaremuchmoresensitivetodisturbancesandlessresilient.AfterHurricane Andrewin1992,upto80%–95%ofmangrovesin theEvergladesweredamaged(Smith etal 1994),and mangroveforestsinsoutheastFloridaencountered greaterchangesinstructureandhighermortalitythan adjacentuplandforests(Baldwin etal 1995).After HurricaneMaria,mostofredmangroves(Rhizophoramangle)inPuntaTunaReserveclosetothe landfalldied(personalcommunication).Inundation duetostormsurge,downpourrainfall,andexcessive runoffsubmergedtheaerialrootsandblockedroot respiration.Prolongedinundationtendstoincrease themortalityofmangroves,especiallyblackmangroves(Avicenniagerminans L.),whichgrowinhigher salinityandneedmoremetabolicenergytomaintaintherootfunction.Evaporationofinundating waterincreasedsalinityofbasinmangroves,hurtingtheirrecovery.FieldobservationsinPuertoRico afterthehurricanesexhibitedmassivemortalityof blackmangrovesonthenortherncoastduetothe extendedinundationanddisfunctionofpneumatophores.Withonly1.1minmeanelevationofthe mangrovepatches,inundationafterhurricanesisthe majorthreattosurvivalandrecovery.Efficientdrainageisthekeyformangrovestosurvivetheinundation.OuranalysesofRLandRRshowedthathurricanegustspeedanddownpourstendtoweaken theresistanceandrecovery,butsteeperslopeand higherelevationhelpreducethedamageorfavorthe recovery(table 3).Particularly,ourmodelpredicted thatriverinetypetogetherwithelevationpromote recoveryofmangroves(table 3),allsupportingthe

hypothesisoftheimportanceofdrainagecapacityto mangroverecovery.

Evergreenforestsaremoresusceptibletohurricanedamagethandeciduousforestsandpastures (figure 5).Evergreenforestsgrowinamplerainfall,andthusarelocatedmostlyinthenorthand higherelevations(meanof404.4mforthepatches) closerindistancetoMaria’spath(meanof25.1km, figure 2(c)).Deciduousforestslieinlowerelevations (150.8m),furtherfromthepath(38.2km),and totheleftofthepath,andthusexperiencedless windspeed(figure 2(b)).Evergreentreeshavethicker leaveswithstrongertiestobranches,andareless likelytoshedleaves;thus,theyexperiencemoredrag forceanddamageduringhurricanesthandeciduoustrees.Allthesefactorsfortifiedthecomparison betweenevergreenanddryforestsintermsofresistancetohurricanewinds.InGu´ anica,dryforests inthesouthofPuertoRico,thetreemortalityafter HurricaneGeorgeswaslowerthanwhatwasexpectedaccordingtothemortalityofwetforestsinthe LuquilloExperimentalForestsafterHurricaneHugo duepartiallytothelowerstatureandstructureof dryforesttrees(VanBloem etal 2005, 2006).Also, duetomoreseveredamage,theevergreenforests recovermuchslowerthanthedeciduousforests(table 2).Fromthelandscapeperspective,higherelevations encounteredmoreerosionduringhurricanesandthe nutrientlossassociatedwithexcessiverunoffmight exacerbatethenutrient-poorstatusinhigherelevations.IntheLuquilloExperimentalForests,themontaneelfinforestsatthetopshowedmuchslowerrecoverythanthewetforestsatlowerelevationsafterHurricaneHugo(Walker etal 1996,Lugo 2008).Similarly,canopyrecoveryofmontaneforestswasbehind thatoflowlandforestsinJamaica(Wunderle etal 1992).

Forbothdeciduousforestsandpastures,drought isamoreimportantthreat.Hurricanerainbenefitsthedeciduousforest(figure 3).However,ground observationsindicatetheboostedgreennessmight alsobeattributedtoprosperousvinesandunderstory seedlingsorherbaceousplants,whichtakeadvantages ofthelightandnutrientresourcesoftheopenedcanopy.Ouranalysisindicatedthattheminimumvegetationindicesofdeciduousforestsandpasturesappear onaverage70and111d,respectively,afterthehurricanesincomparisonwiththemeandelayof54dfor evergreenforests.AfterHurricaneHugo,widesproutingandnewleavesoccurredwithin7weeksinthe LuquilloExperimentalForests(Walker 1991),which isclosetoourfindingof54d.Anannualmajordry periodfordeciduousforestsappearsfromDecembertoApril(Rivera 2009),andleavesemergebefore therainyseasonstarts(MurphyandLugo 1986).The minimumgreennessofdeciduousforestsandpasturesoccurredduringthepost-hurricanedrought andtheonsetofthedryseasonduetothewater scarcity.

Weinterpretedourresultsunderthecontextof consecutivepre-hurricanedrought(Schwartz etal 2019,Yu etal 2019),hurricane,andpost-hurricane drought.Thepriordroughtstressmightexacerbatehurricaneimpactsintermsofseveredamage inlowlandswampsandhigh-altitudeforests,orbe relievedbyhurricanerainsfordryforestandpastures.Thelegaciesofpastdisturbanceswerealso highlightedinthestudiesattheLuquilloExperimentalForestsafterHurricaneHugo(Beard etal 2005)andHurricaneGeorges(Ostertag etal 2005). Inadditiontothelegacies,ourconclusionsemphasizethatacomplicatedarrayofexternalforces,includingbutnotlimitingtowind,rainfall,stormsurge, andinundation,andthemodulatorsoftopography andbiologicalcomponentsfeaturedbyvegetation type,structure,andfunctionaltraits(Lugo 2008) altogetherformthebasistodetermineandunderstandtheimpactsofhurricanesontropicalecosystemsandtheirrecovery.Useofhigher-resolution images,suchasLandsatorSentinel2images,wassuggestedtoreducelargesubpixelatmosphericeffects suchasthosefromcoarse-resolutionMODIS,which togetherwithpossiblesensordegradation(Zhang etal 2017)mightleadtothedebatesondrought effectsdetectionintheAmazon(AsnerandAlencar 2010,Atkinson etal 2011,Schwartz etal 2019).We alsotookadvantageofthehighrevisit-frequencyof Sentinel2satellitestoderivetimeseriesofgreennessforanalyzingthehurricanes’impact.However, ourobserveddamageandrecoveryaddressonly changesingreennesswithoutdiscriminationofspeciescompositionorstructuralchangesuchasvine prosperity(Chinea 1999).Ecosystemstructurestake muchlongertorecoverthanecosystemfunctions suchasphotosynthesisanddecomposition,andthus structuralchangesarebetterindicatorsofhurricane disturbance(Beard etal 2005).Resistanceatspecies levelisalsorelatedtowoodtexture,withhardwoodspeciesexperiencinglessdamagethansoftwood(Ostertag etal 2005).Futurestudiesonforest resistanceandresiliencetohurricanedisturbance, basedonhyperspectralorLiDARimagescoupled withgroundsurveys,willbeabletodetectcanopystructuralchangesanddistinguishatthespecies level.

Acknowledgments

ThisresearchissupportedbyNASAEPSCoR NNX15AK43AandNOAAPuertoRicoSeaGrant. WethankChaoWangforhishelpwithinitial VIdatapreparationinGEE.TheEVIandNDVI dataareextractedfrompubliclyavailabledatasetsatUSGS(https://lpdaac.usgs.gov/)andGoogle EarthEngine(https://developers.google.com/earthengine/datasets).

Dataavailabilitystatement

Thedatathatsupportthefindingsofthis studyareopenlyavailableatthefollowing URL/DOI: https://developers.google.com/earthengine/datasets/catalog/COPERNICUS_S2.

ORCIDiD

MeiYu  https://orcid.org/0000-0002-0283-9649

References

RCoreTeam2017R:Alanguageandenvironmentforstatistical computing.RFoundationforStatisticalComputing AchimA,NicollB,MochanSandGardinerB2003Windstability oftreesonslopes Int.Conf.‘WindEffectsonTrees’ (Karlsruhe:UniversityofKarlsruhe)

AsnerGPandAlencarA2010DroughtimpactsontheAmazon forest:theremotesensingperspective NewPhytol. 187 569–78

AtkinsonPM,DashJandJeganathanC2011Amazonvegetation greennessasmeasuredbysatellitesensorsoverthelast decade Geophys.Res.Lett. 38 L19105

BaldwinA,PlattW,GathenK,LessmannJandRauchT1995 Hurricanedamageandregenerationinfringemangrove forestsofSoutheastFlorida,USA J.Coast.Res. SI21 169–83

BeardKH,VogtKA,VogtDJ,ScatenaFN,CovichAP, SigurdardottirR,SiccamaTGandCrowlTA2005 Structuralandfunctionalresponsesofasubtropicalforestto 10yearsofhurricanesanddroughts Ecol.Monogr. 75 345–61

CaiWJ etal 2015IncreasedfrequencyofextremeLaNinaevents undergreenhousewarming Nat.Clim.Change 5 132–7

CaiWJ etal 2014IncreasingfrequencyofextremeElNinoevents duetogreenhousewarming Nat.Clim.Change 4 111–6

ChapinFS,MatsonPAandVitousekPM2012 Principlesof TerrestrialEcosystemEcology Secondedn(Berlin:Springer) ChastainR,HousmanI,GoldsteinJ,FincoMandTennesonK 2019EmpiricalcrosssensorcomparisonofSentinel-2Aand 2BMSI,Landsat-8OLI,andLandsat-7ETM+ topof atmospherespectralcharacteristicsovertheconterminous UnitedStates RemoteSens.Environ. 221 274–85

ChenJ,HuangY,ChenGandYeY2020Effectsofsimulatedsea levelriseonstocksandsourcesofsoilorganiccarbonin Kandeliaobovatamangroveforests ForestEcol.Manage. 460 117898

ChineaJD1999Changesintheherbaceousandvinecommunities attheBisleyExperimentalWatersheds,PuertoRico, followingHurricaneHugo Can.J.ForestRes. 29 1433–7

ChurchJA etal 2013Sealevelchange ClimateChange2013:The PhysicalScienceBasis.ContributionofWorkingGroupItothe FifthAssessmentReportoftheIntergovernmentalPanelon ClimateChange,edTFStocker,DQin,G-KPlattner, MTignor,SKAllen,JBoschung,ANauels,YXia,VBex andPMMidgley(Cambridge:CambridgeUniversityPress) pp1137–216

CloughB2013Continuingthejourneyamongstmangroves InternationalSocietyforMangroveEcosystems(ISME) Okinawa,Japan;)(Yokohama:InternationalTropical TimberOrganization(ITTO)

DahlTEandStedmanSM2013Statusandtrendsofwetlandsin thecoastalwatershedsoftheconterminousUnitedStates 2004to2009U.S.DepartmentoftheInterior,Fishand WildlifeServiceandNationalOceanicandAtmospheric Administration,NationalMarineFisheriesService DoughtyCE etal 2015Droughtimpactonforestcarbon dynamicsandfluxesinAmazonia Nature 519 78–82

FiskJP,HurttGC,ChambersJQ,ZengH,DolanKAand Negr´ on-Ju´ arezRI2013Theimpactsoftropicalcycloneson

thenetcarbonbalanceofeasternUSforests(1851–2000) Environ.Res.Lett. 8 045017

GardinerB,AchimA,NicollBandRuelJ-C2019Understanding theinteractionsbetweenwindandtrees:anintroductionto theIUFRO8thWindandTreesConference(2017) Forestry Int.J.ForestRes. vol 92 pp 375–80

GardinerB,ByrneK,HaleS,KamimuraK,MitchellSJ,PeltolaH andRuelJ-C2008Areviewofmechanisticmodellingof winddamagerisktoforests ForestryInt.J.ForestRes. 81 447–63

GattiLV etal 2014DroughtsensitivityofAmazoniancarbon balancerevealedbyatmosphericmeasurements Nature 506 76–80

GorelickN,HancherM,DixonM,IlyushchenkoS,ThauDand MooreR2017GoogleEarthEngine:planetary-scale geospatialanalysisforeveryone RemoteSens.Environ. 202 18–27

GouldWA,AlarconC,FevoldB,JimenezM,MartinuzziS, PottsG,QuinonesM,SolorzanoMandVentosaE2008The PuertoRicogapanalysisproject(SanJuan,PR) InternationalInstituteofTropicalForestry,USDAForest Service

Guti´errez-FonsecaPE,RamírezA,PringleCM,TorresPJ, McdowellWH,CovichA,CrowlTandP´erez-ReyesO2020 Whentherainforestdries:droughteffectsonamontane tropicalstreamecosysteminPuertoRico FreshwaterSci. 39 197–212

HousmanIW,ChastainRAandFincoMV2018Anevaluation offoresthealthinsectanddiseasesurveydataand satellite-basedremotesensingforestchangedetection methods:casestudiesintheUnitedStates RemoteSens. 10 1184

HueteA,DidanK,MiuraT,RodriguezEP,GaoXand FerreiraLG2002Overviewoftheradiometricand biophysicalperformanceoftheMODISvegetationindices RemoteSens.Environ. 83 195–213

HutchisonJ,ManicaA,SwetnamR,BalmfordAandSpaldingM 2014Predictingglobalpatternsinmangroveforestbiomass Conserv.Lett. 7 233–40

HutleyLB,EvansBJ,BeringerJ,CookGD,MaierSWand RazonE2013Impactsofanextremecycloneeventon landscape-scalesavannafire,productivityandgreenhouse gasemissions Environ.Res.Lett. 8 045023

KirwanMLandMegonigalJP2013Tidalwetlandstabilityin thefaceofhumanimpactsandsea-levelrise Nature 504 53–60

KraussKW,MckeeKL,LovelockCE,CahoonDR,SaintilanN, ReefRandChenL2014Howmangroveforestsadjustto risingsealevel NewPhytol. 202 19–34

LaskyJR,UriarteMandMuscarellaR2016Synchrony, compensatorydynamics,andthefunctionaltraitbasisof phenologicaldiversityinatropicaldryforesttree community:effectsofrainfallseasonality Environ.Res.Lett. 11 115003

LloretF,KeelingEGandSalaA2011Componentsoftree resilience:effectsofsuccessivelow-growthepisodesinold ponderosapineforests Oikos 120 1909–20

LovelockCE,KraussKW,OslandMJ,ReefR,BallMC etal 2016

Thephysiologyofmangrovetreeswithchangingclimate TropicalTreePhysiology-AdaptationsandResponsesina ChangingEnvironment,edGGoldsteinandLSSantiago (Berlin:Springer)pp149–79

LovelockCE etal 2015ThevulnerabilityofIndo-Pacific mangroveforeststosea-levelrise Nature 526 559–63

LugoAE2000EffectsandoutcomesofCaribbeanhurricanesina climatechangescenario Sci.TotalEnviron. 262 243–51

LugoAE2008Visibleandinvisibleeffectsofhurricanesonforest ecosystems:aninternationalreview AustralEcol. 33 368–98

L´ opez-MarreroT,Heartsill-ScalleyT,Rivera-L´ opezCF, Escalera-GarcíaIAandEchevarría-RamosM2019

Broadeningourunderstandingofhurricanesandforestson theCaribbeanislandofPuertoRico:whereandwhatshould westudynow? Forests 10 710

MedinaE etal 1999Mangrovephysiology:thechallengeofsalt, heat,andlightstressunderrecurrentflooding Ecosistemas DeManglarEnAmericaTropical,edAYañez-Arancibiaand ALLara-DomínguezUICN/ORMA,CostaRica, NOAA/NMFSSilverSpringMDUSA.380(ElHaya: InstitutodeEcologíaA.C)pp109–26

MichenerWK,BloodER,BildsteinKL,BrinsonMMand GardnerLR1997Climatechange,hurricanesandtropical storms,andrisingsealevelincoastalwetlands Ecol.Appl. 7 770–801

MillerGLandLugoAE2009Guidetotheecologicalsystemsof PuertoRico(SanJuan,PR)InternationalInstituteof TropicalForestry,USDAForestService

MillerPW,KumarA,MoteTL,MoraesFDSandMishraDR 2019PersistenthydrologicalconsequencesofHurricane MariainPuertoRico Geophys.Res.Lett. 46 1413–22

MoteTL,RamseyerCAandMillerPW2017TheSaharanair layerasanearlyrainfallseasonsuppressantintheeastern Caribbean:the2015PuertoRicodrought J.Geophys.Res. Atmos. 122 10966–82

MurphyPGandLugoAE1986Ecologyoftropicaldryforest Annu.Rev.Ecol.Syst. 17 67–88

OkelloJA,KairoJG,Dahdouh-GuebasF,BeeckmanHand KoedamN2020Mangrovetreessurvivepartialsediment burialbydevelopingnewrootsandadaptingtheirroot, branchandstemanatomy Trees 34 37–49

OstertagR,SilverWLandLugoAE2005Factorsaffecting mortalityandresistancetodamagefollowinghurricanesina rehabilitatedsubtropicalmoistforest Biotropica 37 16–24

O’ConnellCS,RuanLandSilverWL2018Droughtdrivesrapid shiftsintropicalrainforestsoilbiogeochemistryand greenhousegasemissions Nat.Commun. 9 1348

PahlevanN,ChittimalliSK,BalasubramanianSVandVellucciV 2019Sentinel-2/Landsat-8productconsistencyand implicationsformonitoringaquaticsystems RemoteSens. Environ. 220 19–29

PanY,BirdseyRA,PhillipsOLandJacksonRB2013The structure,distribution,andbiomassoftheworld’sforests Annu.Rev.Ecol.Evol.Syst. 44 593–622

PaschRJ,PennyABandBergR2019NATIONALHURRICANE CENTERTROPICALCYCLONEREPORT-HURRICANE MARIA(AL152017)September16-30,2017(National HurricaneCenter)

PeltolaH,KellomakiS,HassinenAandGrananderM2000 Mechanicalstabilityofscotspine,Norwayspruceandbirch: ananalysisoftree-pullingexperimentsinFinland Forest Ecol.Manage. 135 143–53

PetersonCJ,RibeiroGHPDM,Negr´ on-Ju´ arezR,MarraDM, ChambersJQ,HiguchiN,LimaAandCannonJB2019 Criticalwindspeedssuggestwindcouldbeanimportant disturbanceagentinAmazonianforests ForestryInt.J.Forest Res. 92 444–59

ReefRandLovelockCE2015Regulationofwaterbalancein mangroves Ann.Bot. 115 385–95

RibeiroGHPM etal 2016Mechanicalvulnerabilityand resistancetosnappinganduprootingforcentralAmazon treespecies ForestEcol.Manage. 380 1–10

RiveraOAM2009 VascularFloraoftheGuanicaDryForest, PuertoRico (Mayaguez:UniversityofPuertoRico)

RunkleJ,KunkelK,StevensL,ChampionS,EasterlingD,Terando A,SunL,StewartBandLandersG2018NOAANOAAState ClimateSummaries http://pubs.er.usgs.gov/publication/70197909

ScatenaFNandLarsenMC1991PhysicalaspectsofHurricane HugoinPuertoRico Biotropica 23 317–23

SchwartzNB,BudsockAMandUriarteM2019Fragmentation, foreststructure,andtopographymodulateimpacts ofdroughtinatropicalforestlandscape Ecology 100 e02677

ShibuyaMandIshibashiS2019Stand-levelwindthrowpatterns andlong-termdynamicsofsurvivingtreesinnatural secondarystandsafterastand-replacingwindthrowevent ForestryInt.J.ForestRes. 92 473–80

SmithTJIII,RobbleeMB,WanlessHRandDoyleTW1994 Mangroves,hurricanes,andlightningstrikes:assessment ofHurricaneAndrewsuggestsaninteractionacross twodifferingscalesofdisturbance Bioscience 44 256–62

UriarteM,ThompsonJandZimmermanJK2019Hurricane Maríatripledstembreaksanddoubledtreemortality relativetoothermajorstorms Nat.Commun. 10 1362

VanBloemSJ,LugoAEandMurphyPG2006Structural responseofCaribbeandryforeststohurricanewinds:acase studyfromGuanicaforest,PuertoRico J.Biogeogr. 33 517–23

VanBloemSJ,MurphyPG,LugoAE,OstertagR,CostaMR, BernardIR,ColonSMandMoraMC2005Theinfluence ofhurricanewindsonCaribbeandryforeststructureand nutrientpools Biotropica 37 571–83

VargasR2012Howahurricanedisturbanceinfluencesextreme CO2fluxesandvarianceinatropicalforest Environ.Res. Lett. 7 035704

WalkerLR1991TreedamageandrecoveryfromHurricaneHugo inLuquilloExperimentalForest,PuertoRico Biotropica 23 379–85

WalkerLR,ZimmermanJK,LodgeDJandGuzmangrajalesS 1996Analtitudinalcomparisonofgrowthandspecies compositioninhurricane-damagedforestsinPuertoRico J.Ecol. 84 877–89

WangC,YuMandGaoQ2017Continuedreforestationand urbanexpansioninthenewcenturyofatropicalislandin theCaribbean RemoteSens. 9 731

WulderMA etal 2019CurrentstatusofLandsatprogram, science,andapplications RemoteSens.Environ. 225 127–47

WunderleJMJr,LodgeDJandWaideRB1992Short-term effectsofHurricaneGilbertonterrestrialbirdpopulations onJamaica Auk 109 148–66

YiC,PendallEandCiaisP2015Focusonextremeeventsandthe carboncycle Environ.Res.Lett. 10 070201

YuM,GaoQ,GaoCandWangC2017Extentofnightwarming andspatiallyheterogeneouscloudinessdifferentiate temporaltrendofgreennessinmountainoustropicsinthe newcentury Sci.Rep. 7 4125610.1038/srep41256

YuM,Rivera-OcasioE,Heartsill-ScalleyT,Davila-CasanovaD, Rios-L´ opezNandGaoQ2019Landscape-level consequencesofrisingsea-leveloncoastalwetlands: saltwaterintrusiondrivesdisplacementandmortalityinthe twenty-firstcentury Wetlands 39 1343-55

ZeileisAandGrothendieckG2005Zoo:S3infrastructure forregularandirregulartimeseries J.Stat.Softw. 14 1–27

ZhangHK,RoyDP,YanL,LiZ,HuangH,VermoteE,SkakunS andRogerJ-C2018CharacterizationofSentinel-2Aand Landsat-8topofatmosphere,surface,andnadirBRDF adjustedreflectanceandNDVIdifferences RemoteSens. Environ. 215 482–94

ZhangY,SongC,BandLE,SunGandLiJ.(2017).Reanalysisof globalterrestrialvegetationtrendsfromMODISproducts: Browningorgreening?.RemoteSensingofEnvironment. 191 145–55

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.