Design and Construction of LNG Storage Tanks Rötzer
Visit to download the full and correct content document: https://textbookfull.com/product/design-and-construction-of-lng-storage-tanks-rotzer/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

2017 ASME Boiler and Pressure Vessel Code Section XII Rules for Construction and Continued Service of Transport Tanks 1st Edition American Society Of Mechanical Engineers
https://textbookfull.com/product/2017-asme-boiler-and-pressurevessel-code-section-xii-rules-for-construction-and-continuedservice-of-transport-tanks-1st-edition-american-society-ofmechanical-engineers/

Design and Construction of Soil Anchor Plates 1st Edition Hamed Niroumand
https://textbookfull.com/product/design-and-construction-of-soilanchor-plates-1st-edition-hamed-niroumand/

Design and Construction of Modern Steel Railway Bridges
John F. Unsworth
https://textbookfull.com/product/design-and-construction-ofmodern-steel-railway-bridges-john-f-unsworth/

Tall wood buildings design construction and performance
Green
https://textbookfull.com/product/tall-wood-buildings-designconstruction-and-performance-green/

Climate Politics and the Impact of Think Tanks
Alexander Ruser
https://textbookfull.com/product/climate-politics-and-the-impactof-think-tanks-alexander-ruser/




ASHRAE greenguide design construction and operation of sustainable buildings Fifth Edition Ashrae
https://textbookfull.com/product/ashrae-greenguide-designconstruction-and-operation-of-sustainable-buildings-fifthedition-ashrae/
Sustainable Design and Construction for Geomaterials and Geostructures Behzad Fatahi
https://textbookfull.com/product/sustainable-design-andconstruction-for-geomaterials-and-geostructures-behzad-fatahi/
Construction Engineering Design Calculations and Rules of Thumb 1st Edition Ruwan Abey Rajapakse
https://textbookfull.com/product/construction-engineering-designcalculations-and-rules-of-thumb-1st-edition-ruwan-abey-rajapakse/
Offshore Structures Design Construction and Maintenance
Mohamed A. El-Reedy
https://textbookfull.com/product/offshore-structures-designconstruction-and-maintenance-mohamed-a-el-reedy/
DesignandConstructionofLNGStorageTanks
DesignandConstruction ofLNGStorageTanks
Author
Dr.JosefRötzer TGEGasEngineeringGmbH Leopoldstraße175 80804Munich Germany
Cover:LNGtankwithtypicalsteel structure
Photocourtesy: GüntherSell,TGEGas EngineeringGmbH,Munich
EditorsofBeton-Kalender
Prof.Dipl.-Ing.Dr.-Ing.KonradBergmeister Ingwien.atengineeringGmbH Rotenturmstr.1 1010Vienna Austria
Prof.Dr.-Ing.FrankFingerloos GermanSocietyforConcreteand ConstructionTechnology Kurfürstenstr.129 10178Berlin Germany
Prof.Dr.-Ing.Dr.h.c.mult. Johann-DietrichWörner ESA–EuropeanSpaceAgency Headquarters 8-10,rueMarioNikis 75738Pariscedex15 France
EnglishTranslation: PhilipThrift, Hannover,Germany
Allbookspublishedby Ernst&Sohn are carefullyproduced.Nevertheless,authors, editors,andpublisherdonotwarrantthe informationcontainedinthesebooks, includingthisbook,tobefreeoferrors. Readersareadvisedtokeepinmindthat statements,data,illustrations,procedural detailsorotheritemsmayinadvertently beinaccurate.
TheoriginalGermantextispublishedin Beton-Kalender2016,ISBN 978-3-433-03074-5,titled“Planungund AuslegungvonFlüssigerdgastanks”.This bookistherevisedEnglishtranslationof thementionedcontribution.
LibraryofCongressCardNo.: appliedfor
BritishLibraryCataloguing-in-Publication Data
Acataloguerecordforthisbookis availablefromtheBritishLibrary.
Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>
©2020WilhelmErnst&Sohn,Verlagfür Architekturundtechnische WissenschaftenGmbH&Co.KG, Rotherstraße21,10245Berlin,Germany
Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm,or anyothermeans–nortransmittedor translatedintoamachinelanguage withoutwrittenpermissionfromthe publishers.Registerednames,trademarks, etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobe consideredunprotectedbylaw.
PrintISBN: 978-3-433-03277-0
ePDFISBN: 978-3-433-60997-2
ePubISBN: 978-3-433-60996-5
oBookISBN: 978-3-433-60998-9
CoverDesign: HansBaltzer,Berlin, Germany
Typesetting: SPiGlobal,Chennai,India PrintingandBinding: Printedinthe FederalRepublicofGermany
Printedonacid-freepaper
Contents Editorial vii AbouttheAuthor ix
1Introduction 1 Reference 3
2HistoryofNaturalGasLiquefaction 5
2.1IndustrialisationandEnergyDemand 5
2.2TheBeginningsofGasLiquefaction 6
2.3TheFirstStepsTowardsTransportinShips 9
2.4AlgeriaBecomestheFirstExporter 11
2.5FurtherDevelopmentwithPeak-ShavingPlants 12
2.6TheFirstGermanLNGTankinStuttgart 13
2.7Wilhelmshaven–theAttempttoEstablishaGermanReceiving Terminal 14
2.8TheLiquefactionofGasinAustralia 15
2.9PollutantEmissionsLimitsintheEU 21 References 23
3RegulationsandtheirScopeofApplicability 25
3.1HistoryoftheRegulations 25
3.2EEMUAPublicationNo.147andBS7777 26
3.3LNGInstallationsandEquipment–EN1473 28
3.4DesignandConstructionofLNGTanks–EN14620 29
3.5API620–theAmericanStandardforSteelTanks 32
3.6API625–CombiningConcreteandSteel 33
3.7ACI376–theAmericanStandardforConcreteTanks 33 References 34
4DefinitionsoftheDifferentTankTypes 37
4.1DefinitionsandDevelopmentoftheDifferentTypesofTank 37
4.2SingleContainmentTankSystem 38
4.3DoubleContainmentTankSystem 40
4.4FullContainmentTankSystem 40
4.5MembraneTankSystem 44 References 47
5PerformanceRequirementsandDesign 49
5.1PerformanceRequirementsforNormalOperation 49
5.2ThermalDesign 51
5.3HydrostaticandPneumaticTests 52
5.4SoilSurvey,SoilParametersandPermissibleSettlement 54
5.5SusceptibilitytoSoilLiquefaction 56 References 58
6TankAnalysis 59
6.1RequirementsfortheAnalysisoftheConcreteStructure 59
6.2RequirementsfortheModeloftheConcreteStructure 60
6.3Strut-and-TieModelsforDiscontinuityRegions 62
6.4LiquidSpill 65
6.5FireLoadCases 68
6.6ExplosionandImpact 72 References 74
7DynamicAnalysis 77
7.1TheoryofSloshingFluid 77
7.2Housner’sMethod 79
7.3Veletsos’Method 81
7.4ProvisionsinEN1998-4,AnnexA 82
7.4.1HydrodynamicPressureonTank 83
7.4.2MassesandAssociatedLeverArms 85
7.5SeismicDesignofLNGTanks 88 References 92
8Construction 93
8.1ConstructionPhasesandProcedures 93
8.1.1BaseSlab 93
8.1.2TankWall 94
8.1.3RingBeam 97
8.1.4TankRoof 97
8.1.5ConcreteRoof 100
8.2WallFormwork 102
8.3Reinforcement 105
8.4Prestressing 108
8.5TankEquipment(Inclinometers,Heating) 111
8.6ConstructionJoints 114
8.7CuringofConcreteSurfaces 115 References 115
9Summary 117
Index 119
Editorial
The ConcreteYearbook isaveryimportantsourceofinformationforengineers involvedintheplanning,design,analysisandconstructionofconcretestructures. Itispublishedonayearlybasisandofferschaptersdevotedtovarious,highly topicalsubjects.Everychapterprovidesextensive,up-to-dateinformationwrittenbyrenownedexpertsintheareasconcerned.Thesubjectschangeeveryyear andmayreturninlateryearsforanupdatedtreatment.Thispublicationstrategy guaranteesthatnotonlyisthelatestknowledgepresented,butthatthechoiceof topicsitselfmeetsreaders’demandsforup-to-datenews.
Fordecades,thethemeschosenhavebeentreatedinsuchawaythat,ontheone hand,thereadergetsbackgroundinformationand,ontheother,becomesfamiliar withthepracticalexperience,methodsandrulesneededtoputthisknowledge intopractice.Forpractisingengineers,thisisanoptimumcombination.Inorder tofindadequatesolutionsforthewidescopeofeverydayorspecialproblems, engineeringpracticerequiresknowledgeoftherulesandrecommendationsas wellasanunderstandingofthetheoriesorassumptionsbehindthem.
Duringthehistoryofthe ConcreteYearbook ,aninterestingdevelopmenthas takenplace.Intheearlyeditions,themesofinterestwerechosenonanadhoc basis.Meanwhile,however,thebuildingindustryhasgonethrougharemarkableevolution.Whereasinthepastattentionfocusedpredominantlyonmatters concerningstructuralsafetyandserviceability,nowadaysthereisanincreasing awarenessofourresponsibilitywithregardtosocietyinabroadersense.Thisis reflected,forexample,inthewishtoavoidproblemsrelatedtothelimiteddurabilityofstructures.Expensiverepairstostructureshavebeen,andunfortunately stillare,necessarybecauseinthepastourawarenessofthedeteriorationprocessesaffectingconcreteandreinforcingsteelwasinadequate.Therefore,structuraldesignshouldnowfocusonbuildingstructureswithsufficientreliability andserviceabilityforaspecifiedperiodoftime,withoutsubstantialmaintenance costs.Moreover,weareconfrontedbyalegacyofolderstructuresthatmustbe assessedwithregardtotheirsuitabilitytocarrysafelytheincreasedloadsoften appliedtothemtoday.Inthisrespect,severalaspectsofstructuralengineering havetobeconsideredinaninterrelatedway,suchasrisk,functionality,serviceability,deteriorationprocesses,strengtheningtechniques,monitoring,dismantlement,adaptabilityandrecyclingofstructuresandstructuralmaterialsplus theintroductionofmodernhigh-performancematerials.Thesignificanceofsustainabilityhasalsobeenrecognized.Thismustbeaddedtotheawarenessthat
designshouldfocusnotjustonindividualstructuresandtheirservicelives,but ontheirfunctioninawidercontextaswell,i.e.harmonywiththeirenvironment, acceptancebysociety,responsibleuseofresources,lowenergyconsumptionand economy.Constructionprocessesmustalsobecomecleaner,causelessenvironmentalimpactandpollution.
Theeditorsofthe ConcreteYearbook haveclearlyrecognizedtheseandother trendsandnowofferaselectionofcoherentsubjectsthatresideunderthecommon“umbrella”ofabroadersocietaldevelopmentofgreatrelevance.Inorderto beabletocopewiththecorrespondingchallenges,thereadercanfindinformationonprogressintechnology,theoreticalmethods,newresearchfindings,new ideasondesignandconstruction,developmentsinproductionandassessment andconservationstrategies.Thecurrentselectionoftopicsandthewaytheyare treatedmakesthe ConcreteYearbook asplendidopportunityforengineerstofind outaboutandstayabreastofdevelopmentsinengineeringknowledge,practical experienceandconceptsinthefieldofthedesignofconcretestructuresonan internationallevel.
Prof.Dr.Ir.Dr.-Ing.h.c. JoostWalraven,TUDelft
AbouttheAuthor
Dr.-Ing.JosefRötzer(bornin1959)studiedcivilengineeringattheTechnical UniversityofMunichandlaterobtainedhisPhDattheBundeswehrUniversityMunich.From1995onwards,heworkedintheengineeringheadofficeof Dyckerhoff&Widmann(DYWIDAG)AGinMunich.Hisareaofresponsibilityincludedthedetaileddesignofindustrialandpowerplantstructures.The DYWIDAGLNGTechnologycompetencearea,focusingontheplanningand worldwideconstructionofliquefiedgastanks,wasintegratedintoSTRABAG Internationalin2005.
JosefRötzerisamemberoftheWorkingGroupforTanksforCryogenic LiquefiedGasesoftheGermanStandardsCommitteeandamemberofthe committeefortheAmericancodeACI376.
Introduction
Theuseofnaturalgasasanindependentbranchoftheglobalenergysupplysectorbeganintheearly1960s.Priortothat,naturalgashadonlybeenregardedas aby-productofcrudeoilproduction;therewasnouseforitandsoitwaseither pumpedbackintothegroundorflared.Butallthathaschangedinthemeantime–naturalgascurrentlyaccountsfor22%ofglobalenergysupplies.Huge depositsinAustraliaarenowbeingexploitedanddepositsintheUSAwillsoon becomingonline,whichwillincreasethatglobalshare(Fig.1.1).Therearemany reasonsforthisdevelopment–economic,politicalandecological:Australiais closetothegrowingAsianeconomies,theUSAisaimingtoreduceitsdependenceonforeignoilandenergysuppliesbydevelopingitsownresources,and globaleffortstoreplacefossilfuelsbygasapplythroughouttheworld.
TheInternationalMaritimeOrganisation(IMO),aspecialisedagencyofthe UnitedNations,hasdrawnupnewrulesthathavebeenvalidfrom2015and areparticularlystrictfortheNorthSeaandBalticSea.Complyingwithemissionsrequirementsisdifficultwhenusingdieselandheavyoilasmarinefuel.But usingliquefiednaturalgas(LNG)asamarinefuelresultsin–comparedwith diesel–about90%lessnitrogenoxide,upto20%lesscarbondioxideandthe completeavoidanceofsulphurdioxideandfineparticles[1].DetNorskeVeritas (DNV),theNorwegianvesselclassificationbody,thereforeexpectsthattherewill beabout1000newLNG-poweredshipsby2020,whichamountstoalmost15%of predictednewvesselorders.Thischangeisheavilyinfluencedbythehugedropin thepriceofnaturalgas,whichhasbeenbroughtaboutbytheglobalproduction ofshalegas(Fig.1.2,Fig.1.3).
Theuseofnaturalgasinvolvestransportandstoragedifficulties.Transport viapipelinesiseconomicuptoadistanceof4000–5000km,dependingonthe boundaryconditions.Inthecaseofdifficultgeographiccircumstances,suchas suppliestoislands,e.g.JapanandTaiwan,orwhereitisnecessarytocrossmountainranges,supplyinggasviaapipelineismuchmoredifficultandcostly.Therefore,themethodofliquefyingnaturalgasandthentransportingitovergreat distancesinshipshadalreadybecomeestablishedbythemid-20thcentury.
LNGtechnologytakesadvantageofthephysicalmaterialbehaviourofnatural gas,themainconstituentofwhichismethane.Atthetransitionfromthegaseous totheliquidstate,thevolumeisreducedto1/600.However,thisrequiresthe temperatureofthegastobeloweredto-162∘ C.Onlythisextremereduction
DesignandConstructionofLNGStorageTanks, FirstEdition.JosefRötzer. ©2020Ernst&SohnVerlagGmbH&Co.KG.Published2020byErnst&SohnVerlagGmbH&Co.KG.

Fig.1.1 Developmentofenergydemand [1].
Fig.1.2 Gaspricedevelopmentssince2000 [1].

Fig.1.3 Regionaldistributionofnaturalgaspotential[1].
involumemakestransportinshipseconomicallyviable.Theentiretyofthe elementsrequiredfortransportingLNGinshipsisknownasthe“LNGchain”, whichconsistsoftheliquefactionplantinthecountrysupplyingthegas,LNG tanksforintermediatestorageoftheliquefiedgas,jettiesasberthsforthespecial LNGtransportvessels,tanksfortheintermediatestorageatthereceiving(i.e. import)terminalandaregasificationplantinthecountryimportingthegas.
Itiscommonpracticethesedaystobuildfullcontainmenttanks,whichconsist ofanouterconcretesecondarycontainersurroundinganinnersteelprimarycontainer.Theprestressedconcreteoutercontainerservestoprotectthethin-wall steelinnercontaineragainstexternalactionsandalsofunctionsasabackupcontainerintheeventofthefailureoftheprimarycontainer.Theoutercontainer mustpreventuncontrolledleakageofvapoursintotheenvironmentandmust alsobeabletocontaintheliquefiedgasandwithstandanyoverpressure.
ThegreathazardpotentialofLNGistheriskoffire.IfLNGchangestoits gaseousstateandmixeswithair,theresultisacombustiblegasthatcanexplode, andcertainlyburnsveryfiercely.SafetransportandstoragearethetechnicalchallengesofLNG.Attheselowtemperatures,thematerialsnormallyusedinthe constructionindustryexhibitadistinctlybrittlebehaviourandfailabruptly.Duringnormaloperation,thesteelinnercontainertakesonthetemperatureofthe liquefiedgasandcoolsto-165∘ C.Inordertoguaranteesufficientductilityatthis temperature,theinnercontainermustbemadefrom9%nickelsteelorstainless steel.Thermalinsulationabout1mthickisplacedbetweenthesteelinnerand concreteoutercontainers.
Betweentheundersideofthesteelinnertankandthebaseslaboftheconcrete outertank,thethermalinsulationconsistsofloadbearingcellularglass(often calledfoamglass).Theannularspacebetweentheinnerandoutercontainersis filledwithperlite,andalayerofelasticmaterial(resilientblanket)isinstalledto compensateforthehorizontalthermaldeformationoftheinnercontainer.The insulationonthealuminiumroofoftheinnercontainerismadefromglassfibre orperlite.Whatatfirstsightseemtobeverygenerousdimensionsarenecessary inordertokeeptheboil-offratebelow0.05%byvol.perday.Shouldtheinnercontainerfail,theinsidefaceoftheconcreteoutercontainercoolsto-165∘ C,andthat callsfortheuseofspecialreinforcementthatcanresistsuchlowtemperatures. Thedynamicdesignfortheseismicloadcasemusttakeintoaccounttheaction ofthesloshingoftheliquidandtheinteractionwiththeconcreteoutercontainer. Thetankmustbedesignedtowithstandaso-calledoperatingbasisearthquake (OBE),i.e.isnotdamagedandremainsoperable,andalsoforaso-calledsafe shutdownearthquake(SSE).
Reference
1 FlüchtigeZukunft.Wirtschaftswoche,No.32,2012,pp.58–65.
HistoryofNaturalGasLiquefaction
Historyshowsushowthepresentcircumstanceshaveevolved;everynewdevelopmentbuildsonprevioussituations.Thedemandforgashasdevelopedwiththe demandforenergyingeneral.Technicalprogressledtothedevelopmentofthe liquefactionofgases,andafterthisprocesshadbeenrealisedforvariousgases,so itbecamepossibletoliquefynaturalgas,too.Thatwasfollowedbythedevelopmentofstorageandtransportmethodsfortheliquefiednaturalgas(LNG),which inturnevolvedintoaglobalLNGmarket.ThehistoryofLNGoutlinedinsections 2.1to2.4belowisessentiallybasedonthebookbyMatthiasHeymann: Engineers, marketsandvisions–Theturbulenthistoryofnatural-gasliquefaction [1].
2.1IndustrialisationandEnergyDemand
Theprocessoftheindustrialisationoftheproductionofenergy,ironandsteel, whichbeganinEnglandandreachedtherestofEuropeintheearly19thcentury, requiredatransitionfromwood-firedovensandwaterwheelstocoalandoilas theenergysources.Thestartofthe20thcenturysawanotherconsiderablerise inthedemandforoilandgas;oilwasusedasafuelformanydifferentmeans oftransport,asafuelforheatingandasarawmaterialforthepetrochemicals industry.Thewidespreaduseofnaturalgasdidnotcomeaboutuntilpipeline technologyhadbeenestablished,whichthenledtoanincreaseingasconsumptionintheUSAduringthe1930sandinEuropeafter1945.
Atfirst,gaswasusedforlightingonly.Thedestructivedistillationofcoalproducedgasandcoke.Thissyntheticgaswasthereforeknownascoalgasor,indicatingitsusage,towngas.Itgaveoffamuchbrighterlightandbroughtabout aconsiderablechangetopeople’slivingandworkingconditions,astheywere nolongerreliantondaylightalone.Theoperationofgaslightingwas,inmany respects,uncharteredterritory.Itcalledforacomplexinfrastructurethatwas linkedwithhighcosts,arestrictiontojustonesupplierforadefinedarea,politicalapprovalsandalsosociety’sacceptanceofthisnewformofenergy.Economic operationsrequiredthesigningoflong-termcontractssothatthecostlyinvestmentscouldberecouped.Municipalornationalbodiesweresetupinorderto preventmonopoliesfrombeingabused.
ThefirstgasworkswerebuiltinEuropein1812(LondonandAmsterdam)and intheUSAin1816(Baltimore);thefirstGermangasworksfollowedin1826
DesignandConstructionofLNGStorageTanks, FirstEdition.JosefRötzer. ©2020Ernst&SohnVerlagGmbH&Co.KG.Published2020byErnst&SohnVerlagGmbH&Co.KG.
2HistoryofNaturalGasLiquefaction
(BerlinandHannover).Duringthesecondhalfofthe19thcentury,competition forthegasworksappearedintheformofpetroleumandelectriclighting,towhich thegasworksrespondedbycreatingnewusageoptionssuchasheating,cooking andtheprovisionofhotwater.Asthetypeofusageshiftedfromlightingtoheating,soverypronouncedfluctuationsinconsumptionappearedbetweensummer andwinter(whichexceededafactoroffive).Inthe1920sanewweldingmethod enabledtheuseofseamlesspipesforpipelines,meaningthatitwasnowpossible totransportnaturalgasovergreaterdistances.Pipelinenetworkswerebuiltin theUSAwhichconnectedthegasfieldsofTexasandLouisianawiththecentres ofpopulationinthenorth-eastofthecountry.
GasconsumptionintheformerWestGermanyincreasedfrom2billionm3 in1964to16billionm3 in1970.Thisriseisconnectedwiththechangeover(or “conversion”)fromtowngastonaturalgas.MatthiasHeymann[1]callsthisa “complexsystemicchange”,becauseitinvolvedmuchmorethanjustchanging thetypeofgas.Insteadofsmall,localgasnetworksrunbythemunicipalities, therewasnowasupraregionalnetworkwithnewpipelinesthatjoinedthelocal networkstogether.Thesenewnetworksalsoneededhigh-pressurepipelinesto bringthegasfromthesupplyingcountriesandintermediatecompressorstations togeneratethepressuregradient.Andlastbutnotleast,theappliancesoftheend consumershadtobeconvertedorrenewed.ConversionworkintheformerWest Germanywascarriedoutbetween1967and1972.
Thereasonsforchangingovertonaturalgaswereitsbettergrosscalorificvalue (roughlytwicethatoftowngas)anditsmuchcleanercombustionwithfewer pollutantsandlesscarbondioxide.Duringthisprocessofgrowthandindustrialisation,twoopposingrequirementsemergedforoperatorsaimingtoguaranteeavailability:baseloadandpeakload.Thebaseloadproblemwasthatconsumptionwasgrowingfasterthannewsourcesofgascouldbebroughtonline orpipelineslaid.However,thisdisparityeasedovertime.Thepeakloadproblem aroseduetotheuseofgasprimarilyforheatingandtheassociated,verydistinct, seasonalfluctuations.Suppliershadtoexpandtheirexistingandcreatenewstoragecapacities.OneoptionwastoliquefythegasandstoreitintheformofLNG.
2.2TheBeginningsofGasLiquefaction
Wehavetogobackafewcenturiestofindthebeginningsofgasliquefaction.By theendofthe18thcenturyithadbecomepossibletoconvertgasesintotheir liquidstatethroughacombinationofpressureandcooling.Inthefirsthalfofthe 19thcentury,allknowngases–withtheexceptionofoxygen,hydrogen,nitrogen, nitrousoxide,carbonmonoxideandmethane–couldbeliquefied.Around1860, theprevailingviewwasthatagascouldonlybeliquefiedwhenitstemperature droppedbelowatemperaturespecifictothatgas–itsboilingpoint.Theliquefactionofoxygenwasfirstachievedin1877byLouisCailletetinFranceandRaoul PictetinSwitzerlandworkingindependentlyofeachother.Cailletetdiscovered aphysicalphenomenonofgaseswhichwecallexpansion.Thismeansthatthe temperatureofagassubjectedtoahighpressuredropsconsiderablywhenits
2.2TheBeginningsofGasLiquefaction 7 volumeisincreasedandhencethepressureissuddenlyreduced.Itwasalready generallyknownthatgasesheatupwhensubjectedtohighpressure.
Ifthetwomethodswerenowcombined,i.e.firstpressurisingthegas,then waitinguntilthegashadcooledtotheambienttemperatureand,inathirdstep, increasingitsvolume,thegascouldbecooledbelowtheambienttemperature. Thecoolingachievedisproportionaltothepressureapplied.Cailletet’smethod wasbasedonthefactthatbycontrollingthemagnitudeofthepressure,itwas possibletoachievethecoolingrequiredfortheparticulartypeofgas.Usingthis methoditwaspossibletoliquefysmallamountsofoxygenat-183∘ Candnitrogenat-196∘ C.Pictet’smethodwasbasedonthesamephysicalprinciples.Hisidea wastoarrangethecoolingprocessesinseries,asacascade.Indoingso,hemade useofthedifferentboilingpointsofdifferentgases.Inthefirststage,acombinationofpressure,coolingandexpansionwasusedtoliquefysulphurdioxide.This liquidsulphurdioxidewasthenusedasacoolantforcarbondioxide,whichwas subsequentlyexpandedandhenceliquefied.Inthefollowingcascadestage,the carbondioxidewasusedasacoolanttoliquefyoxygen.AlthoughPictet’smethod requireddifferentcoolants,itworkedwithalowerpressure.Overthecoming years,nofurthermethodsweredeveloped,insteadindustrialusageandapplicationswereimproved.TheprecursorstoLindeAGandAirLiquidewerefounded.
Naturalgas,themainconstituentofwhichismethane,wasfirstliquefied byGodfreyCabotintheUSAin1915.However,naturalgasconsistsofother constituentsapartfrommethanewhichliquefyorsolidifyattemperatures muchhigherthantheboilingpointofmethane(-162∘ C).Therefore,naturalgas liquefactionplantsrequirevariousstagestopurifythegasbyremovingthese constituents,whichwouldotherwiseimpairtheliquefactionprocessandclog theplant.Itwasmanyyearsbeforenaturalgasliquefactioncouldbeoperated onanindustrialscale.
In1937H.C.Cooper,presidentoftheHopeNaturalGasCompany,initiated studiesoftheliquefaction,storageandregasificationofnaturalgas.Asmallpilot plantwasbuiltinCornwell,WestVirginia,totestthemethod.Acascadeprocess waschosen,withwater,ammoniumandethyleneasthecoolants.Trialoperationsbeganinearly1940andcontinueduninterruptedforfourmonthswithout anyproblems.Atthesametime,north-easternUSAexperiencedaverycoldwinter,whichpresentedmanysupplierswithdifficultiesintryingtocoverthepeak load.Therefore,theEastOhioGasCompany,asubsidiaryofHopeNaturalGas, decidedtobuildanaturalgasliquefactionplant,storagetanksandaregasificationplantinCleveland,Ohio.Threedouble-wallsphericaltanks,withcorkas insulation,werebuilttostorethegas;eachtankwas17mindiameterandthus hadacapacityof2500m3 .TheClevelandplanthadatotalcapacityof41million m3 ofnaturalgasandwasthereforethefirstlargenaturalgasliquefactionplant intheworld;itwentintooperationatthestartofFebruary1941.Attimesoflow gasdemand,LNGwasproducedandstored,andwhendemandincreased,the LNGwasregasifiedandfedintothenetwork.Nomalfunctionsoccurredduring thefirstyearofoperationandsoitwasdecidedtoincreasethetotalcapacity bybuildingafurthertank.ThenewtankNo.4wasplannedwithacapacityof 4500m3 ,whichwouldincreasethecapacityoftheplantby80%.Aspherical tankwasseenasunsuitableforatankofthissize,andsoa23mdia.x12m

Fig.2.1 ThesceneoftheClevelandaccidentwithtanks1and2stillintact.
highdouble-wall,cylindrical,flat-bottomtankwasdesigned.Likethespherical tanks,theinnercontainerofthisnewtankwasmadefrom3.5%nickelsteel,which exhibitedbettermaterialpropertiesatlowtemperatures.
OnFriday,20October1944,roughlyoneyearafterbeingcommissioned,aterribleaccidenttookplacewhichwascausedbythefailureofthenew,cylindrical tank.Howthiscatastropheactuallycameaboutwasneverabletobefullyresolved becausetheareaaffectedwassolargethatalleye-witnesseswerekilled(Fig.2.1). Thereconstructionofthedisasterresultedinthefollowingsupposedorderof events:ItstartedwiththefailureoftankNo.4,fromwhich2400m3 ofLNG leakedout,vaporisedandfloatedovertheslopinggroundintheformofawhite cloud4mdeep.Thismixtureofgasandairignitedandafirebrokeout.Some20 minutesafterthefirestarted,theneighbouringsphericaltankNo.3failedanda further2500m3 ofLNGescaped.Theensuingfirereachedaheightof800m.A maximumtemperatureof1650∘ Cwascalculatedbasedonthemoltenmaterials found.Notuntilthenextdaycouldthefirebebroughtundercontrolandmostof itextinguishedsothatinvestigatorscouldgetanideaofwhathadhappened.The damagewasspreadoveranareawitharadiusofabout400mfromtankNo.4, andeverythingwithinaradiusof200mhadbeenincinerated.Thetworemainingsphericaltankswerestillinoperation,butsmokewasrisingfromthemasthe insulationhadignited.Solidcarbondioxidewasusedtoextinguishthesefires.
ThequestionastowhatcausedtankNo.4tofailinthefirstplacewasneverable tobefullyandunequivocallyanswered.Theinvestigationsrevealedthatpriorto thefailureofthetank,patchesoffrosthadbeennoticedontheoutersurface. Frostappearswheneithertheinsulationisnotfunctioningproperly,andtheoutsidesurfaceisaffectedbythecoldliquidinthetank,orwhendefectsintheinner containerallowLNGtoleakintothespacebetweentheinnerandoutercontainers.Patchesoffrostarethereforeawarning,whichshouldbetakenveryseriously andinvestigatedimmediatelytodiscoverthecauses.Studiesundertakentoidentifythecauseofthedisasteralsolookedatthebehaviourofthebuildingmaterials
2.3TheFirstStepsTowardsTransportinShips 9 usedandledtotherealisationthatthe3.5%nickelsteelusedshouldbeclassedas unsuitableforLNGtanks.TheterribleaccidentatClevelandhadsuchmomentousrepercussionsthatthetopicofLNGtocoverthepeakloadwasnottakenup againduringthefollowingdecade.
2.3TheFirstStepsTowardsTransportinShips
WilliamWoodPrincewasthechairmanofUnionStockyards,abattoirsin Chicago,atthistimethecentreoftheUSA’smeatprocessingindustry.In theearly1950shehadaveryboldidea,which,ifsuccessful,wouldbevery promising.Themeatindustryrequiredagreatdealofenergytocoolitscold stores.Thecheapestenergyformatthattimewasnaturalgas,hugedeposits ofwhichwereavailableinthesouthofthecountry.Furthermore,anetworkof canals,theIllinoisWaterway,hadconnectedChicagototheMississippi,and hencetheGulfofMexico,since1848,andwasusedtotransportbulkgoods. Princeaskedhimselfthequestionofwhetheritwouldbepossibletotransport LNGtoChicagoinshipsviatheMississippi.Themissingpieceinhisjigsawwas theshipsthemselves.In1952heappointedWillardS.Morrison,anengineerand refrigerationspecialist,tocarryoutstudiestofindoutwhichmaterialswouldbe themostsuitablefortanksandinsulationatatemperatureof-165∘ C.
Therearetwobasicwaysofbuildingaship’stanktocopewithlowtemperatures: withalowtemperature-resistanttankmaterialorwithanormaltankmaterial. Inthecaseoftheformer,thetankmaterialisindirectcontactwiththeLNG, andtheinsulationisattachedtotheoutsideofthetank.Themaindifficulties resultfromthecombinationofmaterialandlowtemperature.Thematerialmust thereforebesuitableandexhibitsufficienttoughnessatlowtemperatures.As thetemperaturedrops,sothetankmaterialcontracts,whichleadstoproblems wherethetankisfixedtothestructureoftheship.
Whenusingtheotheroption,i.e.normaltankmaterial,theinsulationis attachedtotheinsideofthetank,sothetankmaterialisnotindirectcontact withtheLNG.Itisalsoeasiertofixthetanktotheship’shullbecauseonly minimalcontractiontakesplace.However,theinsulationnowplaysthemain role.Failureoftheinsulationnotonlyimpairstheserviceabilityofthetank,but alsoitsstructuralintegrity,andintheextremecaseleadstofailure,because neitherthetanknorthestructureoftheshiparesuitableordesignedforsuch lowtemperatures.Nevertheless,Morrisondecidedtooptforthismethodwith insulationontheinsideand,followingpreliminarytrials,selectedbalsawoodas theinsulatingmaterial.
Followingsuccessfultestsofthematerials,fivevertical,cylindricaltankswere installedonabargeandlinedwithbalsawoodatPascagoula,Mississippi.Before beinggrantedanoperatinglicence,theAmericanBureauofShipping,asthe approvingbody,calledforteststocheckthesystem’sfitnessforpurpose.Todo this,twoofthetankswerefilledwithLNGandleftfortwomonths.Duringthis trial,patchesoffrostappearedontheoutsideofthetank.Thetankswereemptiedandexamined.Theinnermostlayersofthebalsawoodexhibitedconsiderable

wearanddamage.Itseemedthattheprojectwasdoomedtofail.Butalongside thiswork,MorrisonhadalsoappointedtheJ.J.HenryCompany,consultantnaval architects,toconductafeasibilitystudyanddrawupdesignsforseagoingvessels. Experiencedcompanieswereappointedtoimprovethebalsawoodinsulationand prepareworkingdrawingsforthetanks.
Theseactivitiesweregenerallyknownthroughoutthegasindustryand arousedinterestandcuriosity.Therefore,thestategassupplybodyinthe UK,theBritishGasCouncil,decidedtosendanemployeetotheUSA,getin touchwiththosecarryingoutthisworkandgatherinformation.Thatmarked thestartofclosecooperationbetweenUnionStockyardsandtheBritishGas Council.Furtherinvestorsweresoughtandonewasfound–theContinental OilCompany.Theyear1956sawthefoundingoftheConstockLiquidMethane Corporation,inwhichContinentalOilhada60%stake,UnionStockyards 40%.WorkingtogetherwiththeBritishGasCouncil,theaimwastobuild anLNGtankerandtestLNGstoragetanks.Constockwasinchargeofthe engineering.Adecisionwastakentoconvertanexistingship(Fig.2.2)inorder tosavetimeandmoneyandthusconcentrateonthemainaspect,whichwasto developalowtemperature-resistantLNGtank.Woulditbebettertoplacelow temperature-resistantinsulationontheinsideortobuildthetankfromalow temperature-resistantmaterial,andwhichmaterialshouldbechosen?
Intheenditwasdecidedtobuildthetankfromlowtemperature-resistant material.Thethermalcontractionofthetankwouldhavetobecompensated forbymovementjointsinthestructure.Theclearadvantageofthiswasthatit protectedtheinsulationagainstdirectcontactwiththeLNG.Stainlesssteel,aluminiumand9%nickelsteelweretheoptionsconsideredforthetankmaterial. Althoughstainlesssteelexhibitedthenecessarypropertiesforsuchtemperatures,itwasveryexpensive.Aluminiumpresentedweldingdifficultiesand9% nickelsteelhadalreadybeenusedpreviouslyforaliquidoxygentank.
Therewerenoreliableprinciplesonwhichtobasethechoice.Therefore,Constockdecidedtocarryoutseriesoftestsonweldseamsbetweencomponents madefromaluminiumand9%nickelsteelinliquidairsubjectedtoimpactand
2.4AlgeriaBecomestheFirstExporter 11 bendingloads.Bothmaterialsfaredwellinthetests.GambleBrothers,aspecialist firmfromLouisville,Kentucky,carriedoutfurtherdevelopmentworkonthe balsawoodinsulation,whichinthisdesignwasnotindirectcontactwiththe LNG.ArthurD.LittlefromCambridge,Massachusetts,producedthedesignfor thetank.Hebuiltatesttankwithacapacityof75m3 ,whichwasthenfilled withliquidnitrogenandtestedunderthemostdiversescenarios.Thenextstep involvedconvertingthefreighter Nomarti andequippingitwithfivetankswitha totalstoragecapacityof2000m3 .Boththesignificanceandtherisksofthiswork werewellknown,andsogreatcarewastakentoachieveaveryhighquality.The balsawoodinsulationwasinstalledinanair-conditionedworkshopwithalow humidity.Allweldseamsweretestedunderpressureandinspectedusingx-rays. ItwasthentimetocarryouttestvoyagesintheGulfofMexicowithafilling ofLNG;afterwards,thetankswereemptiedandexamined.Allthoseinvolved expressedgreatconcernregardingtheweldseams,becauseweldingofthealuminiumtanksgaverisetosmallpits.Noonehadanyknowledgeaboutwhether thispitting,atthelowtemperatures,withfulltanksandunderwaveaction,might leadtocrackingorfailure.Despitethemanyconcernsandwarnings,anAtlantic crossingwasplanned.On25July1959the MethanePioneer ,fullyladenwith LNG,embarkedonitsvoyageacrosstheAtlantictotheUK.Fivefurthercrossingsfollowed,whichenabledmanymeasurementstobetakenandbroadenedthe knowledgebaseconsiderably.Themainthing,however,wastodemonstratethe feasibilityoftransportingLNGbyship.TheLNGchainhadthereforebeenclosed andtherewasnothingmorestandinginthewayofindustrial-scaleoperations.
2.4AlgeriaBecomestheFirstExporter
ThedevelopmentsintheUSAspreadtoothercountries.Inthemid-1950sseveralEuropeancountriesintensifiedtheirresearchintoLNG.Shellregardedthis researchworkassoimportantthatbothofitsheadoffices,inLondonandThe Hague,workedontheprojectatthesametime;thesignificanceandperspectives wereratedsohighthatbothcountrieswantedtobeinvolved.InFranceresearch workwascontrolledbythegovernmentinParis.Thevariousactivitiesweregiven aclearobjectiveandspeededupasitbecameclearthatAlgeriawasreadytoconcludelong-termsupplycontractswithEuropeancountries.Thosecontractswere signedbyAlgeria,FranceandtheUKin1962.Whereasallthepreviousprojects hadbeenmerelyfeasibilitystudiesorconcernedsmallerplants,thenewcontracts meantthatatrulyindustrialscalewasnowinvolved.
Forthefirsttime,anLNGchainwasnecessary,i.e.thewholeseriesofcomponentsandplantelementsrequiredforthepumping,liquefaction,storage,transportationandregasificationofnaturalgas: –naturalgasproductiononlandoratsea, –pipelinestotheexportterminal, –anexportterminalwithgaspurificationandliquefaction, –tanksforintermediatestorage, –jettiesforberthingtheships,
–LNGtankers, –areceivingterminal,withjetties,tanksandregasificationplant,forimporting andstoringtheLNG,and –connectionstogasnetworksorconsumers.
France’sstategassupplycorporation,GazdeFrance,hadalreadyinvestigated thepossibilityofgasimportsfromAlgeriaasearlyas1954.Workonthenewly createdresearchestablishmentatNantes–atestfacilitywithanLNGtankcapacityofjust500m3 –beganin1960.Theintentionwastoinvestigateallthematerials,processesandmethodsthatwouldbeneededtodevelopatransportchain. ThetestscarriedoutcoveredthesamegroundasthoseconductedintheUSA.
ConstockwasnotpreparedtograntlicencesorbuildandsellLNGtankers,and soFrancewasforcedtocarryoutitsowndevelopmentworkregardingthedesign ofsuchvessels.InFrancetheyoptedforajoint,coordinatedprocedureinwhich allinterestedpartiescouldtakepartandenjoyafullexchangeoftheknowledge gained.Afreighter, Beauvais,wasconvertedandfittedwiththreedifferenttanks developedbydifferentmanufacturers.Thetestvoyagesfinallytookplaceinthe springandsummerof1962.
ConchMethaneInternational,inwhichShellhelda60%stakeandConstock 40%,wasfoundedtoundertakeandcoordinatetheworkontheBritishside. AftertheAlgeriancontractshadbeensigned,theUKstartedbuildingtwoships, the MethanePrincess andthe MethaneProgress;shortlyafterwards,theFrench beganbuildingthe JulesVerne.TheBritishshipshadaluminiumtankswithbalsa woodinsulation,theFrenchshipa9%nickelsteeltankwithsyntheticinsulation. Thelengthsoftheshipsrangedfrom190to200mandallthreewere25m wide.ReceivingterminalstoimporttheLNGwerebuiltonCanveyIslandinthe Thamesestuary(Fig.2.3)andinLeHavreatthemouthoftheSeine.InAlgeria, pipelineswerelaidfromtheHassiR’MelgasfieldinthenorthernSaharatothe portofArzew,wherealiquefactionplant,storagetanksandothernecessary portfacilitieswerebuilt.Thefirstliquefactionplanthadacapacityof7000m3 LNGperday,i.e.2.5millionm3 LNGannually,whichwasequivalentto25times thevolumeoftheConstockplantatLakeCharles,Louisiana,or40timesthat oftheClevelandplant.ThefirstLNGfromAlgeriaarrivedintheUKinOctober 1964,inFranceinApril1965.
2.5FurtherDevelopmentwithPeak-ShavingPlants
ThenextstepintheongoingdevelopmentandspreadoftheLNGindustry beganintheearly1960s.Naturalgasproductionwasgrowingby10%every year.Consumption,however,exhibitedverylargeseasonalfluctuations.In1968 theBostonGasCompanycalculatedthattherelationbetweenpeakloadand minimumdailyconsumptionhadrisenfromafactorofthreetoafactorofsix overthepreviousdecadeandforecastafurtherrisetoafactorofninewithin thenextthreeyears.Thesemarkedpeakloadproblemscouldnotbesolved simplybybuildingadditionalpipelines,insteadrequiredadditionalgasstorage capacity.Initially,theobvioussolutionwastouseexistingcavernsanddepleted
2.6TheFirstGermanLNGTankinStuttgart

Fig.2.3 CanveyIslandreceivingterminal.
gasdepositsforintermediatestorage.Oncetheseoptionshadbeenexhausted, theuseofso-calledpeak-shavingplantsbecamethepreferredmethodofstoring LNG.Suchfacilitiesconsistofanaturalgasliquefactionplant,oneormore storagetanksandaregasificationplant.
Thefirstfourpeak-shavingplantswerecompletedintheUSAin1965.That wasfollowedbyadistinctivegrowthphase,whichresultedin61peak-shaving plantsinoperationintheUSAandCanadaby1978;Germanyhad10bythat time,thefirstofwhichhadbeenbuiltinStuttgartin1971.Nofurtherplants werebuiltafter1978.Thereasonsforthiswereadeclineingasconsumption, improvementstothesupplysituationandalsotechnicalproblemsatafewplants. Itwastheprocessengineeringthatpresenteddifficulties.Naturalgasconsists mainlyofmethane,butcontainstracesofmanyothergases.Aseachofthese gasesliquefiesatadifferenttemperature,theprocessengineeringmustbeexactly tunedtotherespectivegascomposition.
Manypeak-shavinginstallationswerebuiltneartoconsumers,insomecases incitycentres(e.g.Boston,NewYork,Portland,SanDiego,Stuttgart).Suchlocationsledtostrictersafetystipulations.AnaccidentlikethatinClevelandin1944 hadtobeavoidedatallcosts.
2.6TheFirstGermanLNGTankinStuttgart
ThetankinStuttgarthadacapacityof30000m3 andtheLNGwasstoredinan innercontainermadefrom9%nickelsteel(Fig.2.4).Theprestressedconcrete outercontainerwasdesignedandbuiltbyDYWIDAG.Priortocommissioning, theinnercontainerwastestedbyfillingitwithwatertotheintendedliquidlevel. Basedontheratiobetweenthedensitiesofthetwomaterials,thetestloadwas higherbyafactoroftwo.Theconcreteoutercontainerwasdesignedtowithstand theloadsduetoaleakinginnercontainer.Inaddition,thetankwassurrounded byan18mhighearthembankmentforsafety.

Fig.2.4 Peak-shavingplantinStuttgart,Germany.
2.7Wilhelmshaven–theAttempttoEstablishaGerman ReceivingTerminal
PlanningworkforaGermanLNGreceivingterminalatJadebusennearWilhelmshavenbeganinthe1980s.TheownerwastheDeutsche-FlüssigerdgasTerminal-Gesellschaft(dftg),themajorityshareholderofwhichwasRuhrgas AG(laterE.ON).Theirplansincludedthreestoragetankseachwithacapacity of80000m3 ofLNG(Fig.2.5),andtheterminalwasdesignedforanLNGintake capacityof12000m3 /handanaturalgasregasificationcapacityof1.2million m3 /h.Duringthe1980sthedesignandconstructionoflargeLNGtankswerestill undergoingdevelopment.Thetanksystemchosenhadaninnercontaineropen atthetopandaclosedprestressedconcreteoutercontainerthatwasprotected againstdirectLNGcontactbyalayerofpolyurethanefoamthatextendedacross thebaseslabandoverthefullheightofthewall.
Theinnercontainerwas62mindiameterand28mhigh,theoutercontainer66mindiameterand41mhighoverall.Thesystemwasdesignedfor anoperatingpressureof200mbar,withthesafetyvalvesbeingactuatedat300

Fig.2.5 Sectionthroughthe 80000m3 LNGtankin Wilhelmshaven,Germany.
2.8TheLiquefactionofGasinAustralia 15 mbar.Thegroundconditionscalledforpiles.Lindewasresponsibleforthe processengineering,NoellforthesteelinnercontainerandDYWIDAGforthe concreteoutercontainer.AtthattimetherewerenoGermannorinternational codesandspecificationsavailablewhichstipulatedtherequirementstobe metbytheconstructionmaterialsused,somanyexpertswereappointedin thecourseoftheapprovalprocedureandmanytestswereconductedonthe materials.Aspecialtestingregimewasprescribedforthematerialsinorderto verifytheirsuitabilityatcryogenictemperatures.
Acomparisonbetweenthetechnicaldocumentssubmittedforthebuilding approvalbackthenandthecalculationsandspecificationssometimesrequired thesedaysinmanycountriesleavesthisauthorwiththeimpressionthatthinkinginlinewithengineeringprinciplesandasenseofresponsibilityweremore pronouncedinthosedays.Inordertoachieveahighlevelofsafety,studieswere undertakentoassesshypotheticalactionsonthetanksystemsuchas“complete failureofthelinersystemandsimultaneousfloodingoftheannularspacewith LNG”.OwingtoalackofexperiencewiththestorageofLNGinlargetanks,there weremanymoreconcernsandmisgivingsregardingpotentialincidentsthanis thecasetoday.Inmanyrespectsthesewereunchartedwatersandnobodywanted totakeanyrisks.Safetyandprotectionwerethenumberonepriorities.
Overthefollowingdecades,theLNGmarketexpandedinstages;eitherthe capacityofanexportterminalorareceivingterminalwasincreasedoranew countrycameonlineasanexporterorimporter.
Inthisauthor’sopinion,therewerethreefurtherdevelopmentsthatresulted insignificantchanges:theextensiveuseofcoalseamgasbymeansofLNGfor exports,theuseofshalegas,primarilypromotedbytheUSA,andtheestablishmentofEmissionControlAreas(ECAs)intheNorthSeaandBalticSea.These pointswillbeconsideredindetailbelow.
2.8TheLiquefactionofGasinAustralia
Theinformationandquantitiesmentionedinthissectionhavebeentakenfrom theAustralianEnergyResourceAssessmentcompiledbytheAustralianBureau forAgriculturalandResourceEconomics(ABARE)[2]andthemarketanalysiscarriedoutbyEnergyQuest[3].Theconversionofenergyquantitiesinthe deposits[petajoule,PJ],gasvolumes[tcf],LNGvolumes[m3 ]andliquefaction capacities[Mtpa]arebasedonanaveragedgascomposition.TheconversionfactorsusedarelistedinTable2.1.
Extent,climate,locationandgeographyhavedeterminedtheboundaryconditionsforthecreationofAustralia’scoal,oilandgasreserves.Extensiveinlandcoal depositshaveformedinQueenslandandNewSouthWales,whereaslargesubsea depositswithconventionalnaturalgashavedevelopedoffthewestcoastinthe Carnarvon,BrowseandBonapartebasins.Thesethreebasinscontain92%ofAustralia’sconventionalgasreserves,whichcanbedividedintoso-calledeconomic demonstratedresources(EDR)andsubeconomicdemonstratedresources(SDR).
2HistoryofNaturalGasLiquefaction
Table2.1 Conversionofunitsofmeasurementforenergy.
Table2.2 LNGexportterminalsinAustraliainoperationasof2012.
Inordertoexploitthesereserves,thefirstexportterminalwasbuiltinWesternAustraliainthe1980s.Thishassincebeenextendedandnowhasfivelines (so-calledtrains)withacapacityof16.3MtpaLNG(2008figure).Exportsfrom Australia’ssecondLNGterminalatDarwinonthenorthcoastbeganin2006(see Table2.2).ThesetwofacilitieshaveallowedtheLNGexportcapacitytoreach thesameorderofmagnitudeasthedomesticdemand,whichis19.5Mtpaand correspondstoanenergyquantityof1100PJ.Asacomparison,in2012gasconsumptioninGermanywas84.4billionm3 ofgas,or3.21PJ[4],i.e.lessthan0.3% oftheAustralianfigure.
Coalseamgas(CSG)hasalsobeenproducedinQueenslandsincethe mid-1980s,butonlyusedasalow-pricesupplementtoconventionalgasforlocal consumption.Sincethen,severalnationalandinternationalcompanieshave carriedoutanumberofdifferentprojectswithmoreorlesssuccess.Onlyafter theAustraliansrealisedthepotentialofCSG,anditwasshownthatQueensland couldsupplymuchmoreCSGthanwasneededlocally,didtheyreallystart tosearchforotherusageoptions.Thisattractedtheattentionofinternational oilandgascompanieswhowerelookingforgasreservesintheAsia-Pacific regiontosupplythepopulationsinthatpartoftheworld.Thosecompanies werealsofamiliarwiththecharacteristicsofunconventionalgas,thelarge-scale useofwhichbeganintheUSA.Asaresult,severalinternationalcompaniesare participatinginCSGLNGprojects(seeTable2.3andFig.2.6).Thegasmarket ontheeastcoastisthereforetrackingthedevelopmentonthewestcoastandis graduallyaligningitselfwithglobaldemand.
Whereasconventionalnaturalgas,shalegasandcoalseamgasareidentical intermsoftheirtransportandusage,theydifferconsiderablywhenitcomesto reservesandthegeologyofthedeposits.Toillustratethis,thecharacteristicsof thevariousgasreserveswillbebrieflyoutlined.
Table2.3 CSGLNGexportterminalsplannedasof2012.
2.8TheLiquefactionofGasinAustralia 17
Storage
Fig.2.6 AustralianLNGprojects.

Thenaturalgasdepositsthatareeasiesttoexploit,andthereforethemost commontype,aretheso-calledconventionalgasreserves.Thesearedepositsof naturalgascontainedinporousandpermeablerockstratafoundbelowdenser, evenimpermeable,rockstrata.Inthesesituationsthegashasrisenfromgreater depthsbutbecometrappedinthepermeablerockstrataasitisprevented fromrisingfurtherbytheimpermeablestrataabove.Theprerequisiteforthe formationofsuchdepositsisgeologicalformationsthatpreventthegasfrom escapinglaterallyandbypassingtheoverlyingrocks.Suchformationsareknown asnaturalgastrapsandensueasaresultofsedimentationprocessesortectonic events(seeFig.2.7).
Owingtoitslowerdensity,naturalgasisfrequentlyfoundinthehighestregions ofcrudeoildeposits.Naturalgascanrise(migrate)intohigherrockstratamore easilythancrudeoil,whichmeansthatdepositscontainingnaturalgasonlyare thereforeverycommon.Wherenaturalgasisfoundindepositstogetherwithoil, thisgasisknownasconventional,associatednaturalgas;whereitisfoundalone, itisknownasconventional,non-associatednaturalgas.Depositsareknownas unconventionalwhenthenaturalgasisnotheldinnaturalgastraps,insteadis trappedinshaleandargilliteformationsorinsandstoneandlimestone,alsogas incoalseams.Thegastrappedinporoussandstoneandlimestoneformationsis knownastightgas.Suchstrataaregenerallymorethan3000mbelowthesurface. Theviabilityofasandstonereservoirisdeterminedbyitsporosity,i.e.theempty

Fig.2.7 Gasdeposits.
spacesbetweenthegrains,anditspermeability,i.e.howeasyitisforthegasto movethroughtherock[5].
Thetermshalegascomesfromthecolloquialuseofthewordshaleforargillite intheEnglishlanguage.Ingeologicalcircles,ontheotherhand,shaleisusedasa collectivetermformetamorphicrocks(which,asarule,donotcontaingas)and notforsedimentaryrockssuchasargillite.Shalegasisthenamegiventonatural gastrappedinargillite.Itensuesfromtheorganicsubstancescontainedinthe rockstratawhichhaveturnedintomethaneovertime.Generally,shaleand argillitestratadonotexhibitthepermeabilityneededtogenerateanadequate flowofgaswhenusingaverticalwellasisusedforconventionalsourcesof gas.Thegasistrappedinfissuresandjoints,containedinporesorbondedto organicconstituentsintheargillite.Inordertoreleaseit,wellsaredrilledinto theargillitestrataandcracksandfissurescreatedintherockbyapplyingvery highpressure.Thismethodisnotnew;ithasbeenemployedintheUSAsince 1949andinGermanysince1961.
Originally,verticalwellsweredrilledintothegas-bearingstrata.However, theyieldsobtainedwiththismethodweremostlylowandonlyafewdeposits wereeconomicallyviable.Drillingmethodsunderwentsignificantdevelopments aroundtheturnofthe21stcenturyandthisconsiderablyincreasedthepotentialapplicationsandquantitiesofgasthatcouldbeproducedeconomically. Theimprovementsinvolveacombinationofhorizontalwellcompletionand hydrauliccrackingintheshalegasstrata,so-calledhydraulicfracturing,or frackingforshort.
Horizontalcompletiontakesplaceatdepthsof1000–4500m,inthemiddleof theargillitestrataandhenceoften1kmormorebelowthegroundwater-bearing strata.Thenetworkofhorizontalwellsnotonlyavoidstheworkinvolvedwith andcostofmanymetresofunproductivewells,butalsoconsiderablyreducesthe interventionintherockstrataabovethegas-bearingstrata.Inthenextstep,the
2.8TheLiquefactionofGasinAustralia 19 shaleissplitapartbyhydraulicpressureandaspecialfrackingfluidisforcedinto theensuingcracks.
Thefluidconsistsofapprox.90%water,approx.9%sand,quartzorceramic particlesand0.5–2%chemicalsthatpreventbacteriagrowthandhelptoreduce thefrictionduringinjection.Thesolidconstituents(sand,quartzorceramic particles)areincludedtokeepthecracksopenoncetheburstingpressurehas droppedsothatthegascanescape.
Fortheenvironment,thedisadvantagesandpossibleconsequencesoffracking are[6]:
–ahugeconsumptionoffreshwater,becauseinordertoburstopentheargillite, fiveorsixtimesmorewaterisrequiredthanisthecasefortightgasinsandstone, –theuseofupto20differentchemicaladditives,someofthemtoxic, –thetreatmentofthereturnflowoutofthewell,whichbesidesthechemicals introduced,canalsoincludesubstances,heavymetalsandbenzenesthathave beendissolvedoutofthesoil,and –theriskstothegroundwaterreservoirsthataredrilledthrough.
Inordertocounteracttherisks,thecurrentstateoftheartincludesinstalling amultilayercasingofsteelpipesandcementinjection.Theaimofthisistoguaranteetheintegrityofthewellandthecasingaswellasthesurroundingrockformationandalsocreateanimpermeablebarrierbetweenthewellandthegroundwaterzones.TheAustriancompanyOMVhasformanyyearsbeenworkingon amethodtoreplacetheadditivesbysafe,biodegradableconstituentssuchas cornflour.ExxonMobilehasdevelopedandlaboratory-testedafrackingmixture whoseonlyadditivesarecholinechlorideandDEGmonobutylether;theformer isusedinanimalfeed,thelatterinhouseholdcleanersandpaints.TheGerman companyTouGasisdevelopingagelthatallowstheuseofsaltwaterinsteadof drinkingwater.Thiswouldenablethewatertobereusedandreducethewater consumptionsignificantly.Thesedevelopmentspromiseconsiderableimprovements,butfieldtestsarenecessarytomakeprogresswiththesemethods.
Naturalgasisalsofoundincoalseams.Considerablequantitiesofmethane areadsorbedonthelargespecificsurfaceareaofcoal.Aspressureincreaseswith depth,thecoalatsuchdepthscanalsoholdmorenaturalgas.Likeconventional naturalgas,coalseamgas(CSG)iscomposedmainlyofmethane,withtracesof carbondioxideandnitrogen.CSGhasbiogenicorthermogenicorigins.Biogenic methaneisgeneratedbybacteriafromtheorganicsubstancespresentinthe coal.Thermogenicmethane,ontheotherhand,formswhenorganicmaterial insidethecoalisconvertedintomethanethroughtheapplicationofheatand pressure.Biogenicmethaneisfounddowntoadepthof1km,thermogenic methaneatgreaterdepths[3].
Thenaturaljointsandfissuresincoalseamscreatealargesurfaceareaonwhich largerquantitiesofgascanaccumulatethanisthecasewithconventionalsandstonereservoirs.Forexample,1m3 ofcoalcanholdsixorseventimesmore naturalgasthan1m3 ofconventionaldeposits.ButtheproductionofCSGis moreinvolved,morecostlythantheproductionofconventionalgases.Atconventionalgasdeposits,thewellscanbeclosedoffandre-openedagainwithout
theneedtotakeanyadditionalmeasures.AtCSGdeposits,ontheotherhand,in ordertopumpoffthegas,drainageanddewateringmeasuresmustbecarriedout priortorecommencinggasproduction.Furthermore,CSGrequiresconsiderably moreproductionwellsthanisthecaseforacomparablequantityofconventional gas,albeitwithmuchlowercostsperwell.
OneprimereasonbehindthedecisiontoproceedwiththreelargeCSGliquefactionprojectsonCurtisIslandmoreorlesssimultaneouslywasabetterunderstandingofthelocalconditions,whichhelpedtheteamsinvolvedtoidentifythe resourcesavailableandunderstandhowtheycouldexploitthemtobesteffect [3].Theirworkwasbasedonaconstantincreaseintheamountofgeologicaldata obtainedfromtheproductionfieldsandalargenumberofwells–600newones in2008alone.Estimatesofgaspricedevelopmentsplayasignificantrole.The quantityofgasreservesissensitivetochangesinfuturegasprices.Astheprice ofgasrises,sowealsoseeanincreaseinthequantityofthereservesthatcanbe developedeconomicallyforthatprice.Moreover,theassessmentoftheeconomic demonstratedresources(EDR)isbasedontheassumptionthatmuchhighergas pricescanberealisedinthefuturebyexportingLNG.
OnemajordifferencebetweenconventionalandCSGLNGprojectsistheuse ofthegasinthestart-upphase.LNGprojectsrequireaconsiderableannual volumeofgasamountingtoabout200PJpertrain.Inthecaseofaconventional LNGproject,betweensixandeightwellsaresufficienttosupplythisquantity. Thewellscanbedrilledandsubsequentlyclosedoffuntiltheliquefactionplant goesintooperation.However,some500to700wellsareneededtoproduce thesamequantityofCSG!Thereasonsforthisarethelimitedcatchmentarea ofthewellsandthemuchlowerflowratesperwell.Thesewellstakeanumber ofyearstodrillandbringonline.Duringtheinitialphase,waterhastobe pumpedofffirstbeforegasproductioncanbegin;andonceCSGproduction hasstarted,itisgenerallydifficulttointerruptitorcloseitdownwithoutlater havingtogothroughthewholestart-upprocessonceagain.Theupshotofall thisisthatconsiderablequantitiesofCSGhadtobeproducedinadvanceof theQueenslandCSGprojectsgoingintooperation.Bythetimetheliquefaction plantwascommissioned,largequantitiesofgashadbeensoldatrelativelylow pricesforprivateconsumptionandforgeneratingelectricity.
Despitetheaforementioneddifficultboundaryconditions,thepreliminary studiesandthefrontendengineeringdesign(FEED),i.e.preliminarystructural designandsizingofcomponents,werecarriedoutforfourCSGliquefaction projects.Constructionofthreefacilities–QueenslandCurtis,Gladstone andAustraliaPacificonCurtisIslandnorthofGladstoneonAustralia’seast coast–beganin2009and2010.Costsforqualifiedpersonnelandmaterials,but alsoforaccommodationandgenerallivingexpenses,rosesignificantlyduring thecourseofthework.Thereupon,severalcompaniespostponedtheirCSG projectsinAustraliaindefinitely.However,manyconventionalLNGprojects remainatvariousstagesofdevelopment[7,8],seeTable2.4.
OtherCSGprojectsareexpectedtofollowinothercountries.Some10%of thenaturalgasintheUSAisobtainedfromcoalseams–about40billionm3 in 2002;thatrequiredabout11000wellstobedrilled!Reservesofnaturalgasincoal seamsworldwideareestimatedat100000–200000billionm3 .
Table2.4 LNGexportterminalsplannedinAustralia.
2.9PollutantEmissionsLimitsintheEU
Airpollutantsemittedbyshipsdonotjustremainintheskiesabovetheworld’s seasandoceans,insteadarecarriedovergreatdistancesandthuscontributeto airpollutioneverywhere.Inits ThematicStrategyonAirPollution [9]datingfrom 2005,theEUcametotheconclusionthatby2020,withintheEU,sulphuremissionsfromshipswillexceedthosegeneratedonland.Forthisreason,further measurestoprotecthumanhealthandtheenvironmentwereseenasnecessary andwereinstigated.
Thefirststepwastorevisedirective1999/32/EC[10],whichregulatessulphur emissionsfromshipsbylimitingthemaximumsulphurcontentofmarine fuels.Inthesubsequentdirective2005/33/EC,theBalticSea,NorthSeaand EnglishChannelweredeclaredsulphuremissioncontrolareas(SECAs)where considerablystricteremissionsrequirementsapplythanisthecaseforallother seasandoceansaroundtheworld(seeFig.2.8).Thesestipulationsalsoapplyto passengervesselsoperatingregularscheduledservicesoutsidetheSECAs.Even asthedirectivewasbeingpassed,theensuingreductionsinemissionswereseen

Fig.2.8 Emissioncontrolareas(ECAs).
2HistoryofNaturalGasLiquefaction
bymanytobeinsufficient.Owingtotheinternationalnatureoftheshipping branch,allenvironmental,protectionandsafetystandardsaredrawnupbythe InternationalMaritimeOrganisation(IMO),aspecialisedagencyoftheUnited Nations.Besidesmakingshipsandseatravelsafer,anotheroftheIMO’stasksis topreventshippingoperationspollutingourseasandoceans,oratleastreduce thatpollution.
OneimportantregulationproducedbytheIMOisthe InternationalConventionforthePreventionofMarinePollutionfromShips (MARPOL).The conventionassuchcontainsonlygeneralwording;themorepreciseprovisions andfiguresarelaidoutinsixannexes,withannexVIcoveringairpollution.
Theupdateddirective1999/32/ECimplementstheprovisionsofMARPOL annexVI.TheEuropeanCommissiondemandedadditionalmeasurestoreduce emissionsyetfurther.Tothisend,anamendedannexVIwasadoptedinOctober 2008,whichfurtherreducesthemaximumsulphurcontentofmarinefuels insideandoutsidetheSECAs.
TheEuropeanParliamentandCounciloftheEuropeanUnionaskedthe EuropeanCommissiontomonitortheimplementationofthedirective,producereportsand,ifnecessary,totightentherules.Thatresultedindirective 2012/33/EU,whichwaspublishedinthe OfficialJournaloftheEuropeanUnion on17November2012.MemberStateshadtobringtheirlegislationintoline withthisby18June2014.Thestrictersulphurdirectivecameintoforceon 1January2015(Fig.2.9).
Theemissionslimitsvalidfrom1January2015andtheworldwidechangesin thepriceofLNGhavecreatedtheboundaryconditionsthathavegeneratedadditionaldemandforLNGonatotallynewscale.Yearsbeforethedirectivecameinto forcein2015,itseemedcertainthatLNGwouldreplacealargeproportionofthe heavyoilthatisusedasmarinefuel.ThequestionwasnotwhetherLNGwould beused,butrather,howmuchwouldbeneeded[11].
Asthisdevelopmentgetsunderway,soourprimeconcernshouldbesafety.The large,internationaloilandgascompaniesthathavebeenactiveintheLNGsector fordecades,andhaveinvestedhugesumsintheirprojects,requireandfulfilthe existing,highsafetystandards.However,thenew,smalltanksandterminalscall formuchlowerlevelsofinvestment.Itisobviousthatthesedevelopmentswill

Fig.2.9 Developmentofthemaximumpermissiblesulphurcontent.
Another random document with no related content on Scribd:
