ACREAGE ESTIMATION OF SUGARCANE CROP IN SITAPUR DISTRICT, UTTAR PRADESH USING MICROWAVE SENTINEL DAT

Page 1

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

ACREAGE ESTIMATION OF SUGARCANE CROP IN SITAPUR DISTRICT, UTTAR PRADESH USING MICROWAVE SENTINEL DATA

1M.Tech Scholar, School of Geo-Informatics, Remote Sensing Applications Centre, Uttar Pradesh, India 2 Scientist-SE, Remote Sensing Applications Centre, Uttar Pradesh, India 3Scientist-SE and Head of School of Geo-Informatics, Remote Sensing Applications Centre, Uttar Pradesh, India ***

Abstract - Sugarcane is a high-value commodity farmed mostly in India during the Rabi season. The constant cloud cover during this season complicates the calculation of sugarcane crop area using space-borne remote sensing. Because of its capacity to gather photos under hazy conditions, microwave remote sensing can assist in resolving the problem. In the current study, temporal Sentinel-1B SAR data were used to distinguish the sugarcane crop from other competing Rabi season crops in the Sitapur area of Uttar Pradesh in 2021. To analyze the geographical distribution of sugarcane crop in the Sitapur area, the random forest classifier achieved an overall accuracy of 87.12 percent with the sugarcane classification accuracy of 86.60 percent.

Key Words: Microwave Remote Sensing; sugarcane crop; acreage estimation; temporal; random forest classifier

1. INTRODUCTION

Sugarcane is one of India's most significant cash crops, contributing Rs.75, 000 crore to the Budget each year. Advance predictions of sugarcane crop area and production rates are critical since 5 crore farmers and their families rely on this commodity.Finalproductionestimatesbasedoncomprehensiveenumerationofareaandyieldthroughcropcuttingtrialsare availableonlyafterthecropshavebeenharvested.However,thegovernmentrequiresoutputforecastsinadvanceinorderto makenumerouspolicydecisionsonprice,marketing,export/import,distribution,andsoon. Giventhetrueneedforcrop predictions well before the crops are harvested for different policy considerations, a timetable for publishing advance estimateshasbeendeveloped(Anonymous,2014).Cropestimatesaregeneratedandissuedatfourstagesduringtheyear,as listedbelowTheprioradvanceestimatesforboththeKharifandrabiseasonsarefirmedup/validatedusingdatafromtheState AgriculturalStatisticalAuthorities(SASA),remotesensingdata fromtheSpaceApplicationCentreinAhmadabad, andthe CWWGsessions(Anonymous,2008).Whenworkingwithextremelyvariedregionaldistributionsofgrowthcircumstances, estimatingsugarcanebiomassisproblematic.Accurateandup-to-datelandcoverchangedataisrequiredtocomprehendand analyzed the environmental repercussions of such changes (Kumar et al., 2012). The possibility of time-series Sentinel-1 backscatterdataforsugarcanecropmappingisinvestigatedinthiswork.Toassessthebackscatterbehaviourofthesugarcane crop,weanalyzedmulti-temporalC-bandVHpolarizedSentinel-1SARdatatofine-tunethesugarcanemapinSitapurdistrict, UttarPradeshstate.

1.1 Objective

TheprincipalobjectiveofthisstudyistofindtotalareaintheDistrictundersugarcanecropcultivationusingSARData.

2. STUDY AREA

SitapurisadistrictinUttarPradesh'sUpperGangeticMid-Plains,borderedonfoursidesbythedistrictsofLakhimpurKheri, Bahraich,Barabanki,andHardoiinthenorth.Thedistrictismadeupof19blocksandabout2,000settlements.Thedistrict encompassesanareaof5743squarekilometres.SitapurdistrictislocatedintheIndianstateofUttarPradesh,andthedistrict seatisSitapurtown.Thecityissituatedonthe'Sarayan'river'sbank.Sitapur,Biswan,Mishrikh,Laharpur,Mahmoodabad,and Sidhauliarethesixtehsilsthatmakeupthedistrict.Withtwoparliamentaryconstituencies(SC)inSitapurandMishrikhand nineassemblyconstituencies(SC)inSewta,Biswan,Mahmoodabad,andSidhauli,thedistrictisdividedinto19blocks. Theoverallpopulationofthedistrictis28.57lacs.Sitapurislocatedat27.57°N80.68°E.Theaverageelevationis138metres abovesealevel(452feet).ItislocatedontheGangeticPlain,withelevationsrangingfrom150metresto100metresabovesea levelinthenorthandsouth,respectively.Itisdividedbyseveralstreamsandravines,aswellasnumeroussmallpondsand naturalreservoirs.ThefiveriversthatgothroughSitapur'sdistrictaretheGomti,Kathana,Pirai,Sarayan,Ghaghra,andSharda.

©
Page448
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

TherainyseasonlastsfromJulythroughOctober,withanaverageyearlyrainfallofroughly975mm.Therestoftheyearwill befairlydry.

FIGURE -1: STUDY AREA MAP OF SITAPURDISTRICT 3.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page449
DATA USED TABLE-1: DATE WISE SENTINEL DATA USED FOR THE STUDY DATA ACQUISITION DATE MODE TYPE POLARIZATION TRACK ORBIT SENTINEL-1A 11-APRIL, 2021 IW GRD VH 56 37403 SENTINEL-1A 17-MAY,2021 IW GRD VH 56 37403 SENTINEL-1A 22- JUNE,2021 IW GRD VH 56 37403 SENTINEL-1A 16- JULY,2021 IW GRD VH 56 37403 SENTINEL-1A 21-AUGUST,2021 IW GRD VH 56 37403 SENTINEL-1A 14-SEPTEBER,2021 IW GRD VH 56 37403

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

METHODOLOGY

FIGURE -2: FLOW DIAGRAM OF METHODOLOGY USED

AcreageestimationofSugarcaneCropUsingSentinelSARdatainSitapurDistricthasbeencalculatedusingfollowingsteps. Initially,Sentinel1Aimagesof11April,17May,22June,16July,21August,and14SeptemberweredownloadedfromESA Website.pre-processingofSARdatahasperformedusingSNAPtoolforremovalofspeckleandradiometricandgeometric correction.WehaveusedVHIntensitydataofSARforthesugarcanestudy.

AfterPreProcessing,mosaickingoftheSARDATAconsistingtwofilesforsameareahasbeenachieved.Followingthis,asubset wasgeneratedtogeneratetheareaofinterest(Sitapur)usingthedistrictboundary.Afterthat,thesedataconvertedtodBform usingSNAPToolboxforeachmonth,latergotlayerstackedtomakeitColourCompositeform

As,wehavetocalculatetheacreageestimationmaskingofnon-agriculturelandhasbeendonealongwithgroundtruthof differentcropshasused.RANDOMFORESTclassificationhasbeendonewiththehelpofgroundtruthdatatocalculatethearea underSugarcanecultivationbyassigninggroundtruthandnon-agriculturemaskintheformofvectortoclassificationofimage byclassifiertrainedofvectors.

© 2022, IRJET |
| ISO 9001:2008 Certified Journal | Page450 4.
Impact Factor value: 7.529

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

FIGURE -3: SITAPUR DISTRICT, UTTAR PRADESH (STUDY AREA) COLOUR COMPOSITE MAP OF 03-DATES OF VH BACKSCATTER DATA

©
| Page451
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal
FIGURE -5: SITAPUR DISTRICT, UTTAR PRADESH (STUDY AREA) WITH NON-AGRICULTURE MASK SUPERIMPOSED ON COLOUR COMPOSITE OF 03- DATES OF VH BACKSCATTER DATA

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

5. RESULTS

SugarcanecropisidentifiedonthebasisofimageimageclassifiertrainedofvectorsusingRandomforestclassifiermethod wheregreencolorshowstheareaisundersugarcanecultivation.Toassignasamevalueforsugarcanecroplabelingofclasses hasbeenperformed.Areaintheimagehasbeenshownbypercentageoffrequency. Theacquiredgroundtruthdatawas utilizedtotestaccuracy.

% of Sugarcane in sitapur =28.772

Area of sitapur= 5, 73,619 hectare

Area calculated under sugarcane cultivation=1, 65,041.65hectare=1.65 lakh hectare (approx.).

CONCLUSIONS

ThepresentstudyexploredthepossibilityoftemporalSARSentinel-1AVHbackscatterforSugarcanecropclassificationin Sitapurdistrict,UttarPradesh.Paddyandothercrophasshownoverlapwithsugarcaneowingtosimilarphenologywhichhas loweredtheclassificationaccuracy.Randomforestclassifierwasexploitedtomapthesugarcanefieldswithaccuracyof86.60 alongwithoverallaccuracyof87.12percent.TheseResultsdemonstratethepossibilityforusingtemporalSentinel-1AVHand RandomforestclassificationtoSugarcanecropmappingframeworkatregionallevel.

REFERENCES

[1] B.Barrett,C.Raab,F.Cawkwell,S.Green,(2016).RandomForestswithopticalandradarsatellitedatawereusedto mapuplandvegetation.212-231inProceedingsofthe2ndInternationalConferenceonRemoteSensinginEcology andConservation.

©
Page452
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

[2] M.Belgiu,L.Drăguţ,(2016).Areviewofapplicationsandfuturedirectionsforrandomforestinremotesensing.114, 24-31,ISPRSJournalofPhotogrammetryandRemoteSensing.

[3] G.Forkuor,C.Conrad,M.Thiel,T.Ullmann,andE.Zoungrana(2014).ImprovingCropMappinginNorthwesternBenin, WestAfrica,byIntegratingOpticalandSyntheticApertureRadarImagery.RemoteSensing,6,6472-6499.

[4] J.Peters,F.V.Coillie,T.Westra,andRobertDeWulf(2011).Forobject-basedolivegrovemapping,acombinationof veryhighresolutionopticalandradardataisused 971-989inInternationalJournalofGeographicalInformation Science,Volume25,Number6.

[5] J.Reiche,(2015).TropicalforestmonitoringusingacombinationofSARandopticalsatelliteimagetimeseries.

2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

©
Page453

Turn static files into dynamic content formats.

Create a flipbook