International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
![]()
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
1,2,3,4Dept of mechanical engineering, Rao Bahadur Y. Mahabaleswarappa engineering college Ballari-583104, Karnataka, India ***
Abstract - An Investigation project done with the objective to analyse the emission and performance of single cylinder four stroke diesel engine at different load conditions fueled with Mahua biodiesel blended with diesel (B20 Biodiesel). The project consists of two phases .First one is to modify the the inlet manifold using swirl booster to generate the swirl of air so that efficient combustion is achieved . Next one is to blend the Mahua biodiesel with diesel in B20 form(20% biodiesel and 80% diesel) in the same engine setup so that emission levels are reduced and performance is enhanced.
Key Words: Diesel engine, Swirl enhancer, Performance, Emissions, Combustion process, Biodiesel, B20 form.
In todays world pollution is the major problem caused by emissions of harmful gases from different sources like automobiles and industries which pollutes the environment. The harmful gases may be CO,HC,CO2 and NOx etc. NOx emissions are greatly reduced by generating swirling air. Swirling air causes rapid mixing of fuel and air. Swirl is the ordered rotation of air entering the engine cylinder. Swirl can be generated in different ways, in our experent it is generated using swirl enhancer installed in inlet air manifold. Our project consists of two phases first one is to generate theswirlandthenextoneistoreplacingthedieselwithbiodiesel
SwirlEnhancerof28mmdiameterisinsertedinsidetheInletairportoftheenginehead.Themodificationisdoneto createswirling.Itseffectonperformanceandemissionarediscussedintheresultssection.Itismadewithsheetmetalby cuttingthebladeonthefrontpartwhichfacesthecombustionchamber.
1.2 Engine specification 1. Enginetype:Computerizedsinglecylinderfourstrokedieselengine 2. Model:Makekirloskar,TV1
Coolingtype:Watercooled
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
5. Stroke:110mm 6. Bore:87.5mm 7. Compressionratio:17.5 8. Fueltank:15litcapacitywithmeteringcolumn 9. Loadsensor:Loadcelltypestraingauge,range0-50 10. Loadindicator:Digital,Range0-50kg 11. Rotameter:Caloriemetercooling25-250LPH;Engine40-400LPH.
1. Sheetmetalisusedformakingswirlboosterasitisdeformableinnature.
2. Itcan easilytaketheshapeof theinletairport.
3. Sheeetmetaloperationsrequirelessequipmentsandareeasierthanmachining
1. A 15x15mmsteelsheetmetalisselectedformakingtaperedswirlenhancer.
2. Asheetmetalisselectedbecauseitiseasytoperformoperationswhilemakingaswirlenhancer.
3. Sheetmetalworkingtoolsareusedformakingswirlenhancer.
4. AswirlenhancermadeupofsheetmetalcaneasilytaketheshapeoftheInletairport.
5. Initiallyadevelopmentofconemethodisusedtodrawthedevelopmentof taperedswirlenhancer.
6. Thedevelopmentispastedonsheetmetalandcuttedaccordingly.
7. Thecuttedsheetmetalisrolledtoformataperedswirlbooster.
8. Theswirlenhancerisinsertedinsidetheinletairportofthecylinderhead.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
1. MahuaBiodieselisselectedfortheexperiment. 2. 20%ofMahuabiodieselismixedwith80%ofdiesel. 3. TheblendofMahuabiodieselanddieselisstirredfor4minutes.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
Fig-8: Computeriseddieselenginetestrig
Testrigconsistsof 1. Computeriseddieselengine(1cylinder4stroke) 2. Fueltankfilledwithfuelwithameasuringunitattached. 3. Coolingmeasurementisdonethroughrotameters. 4. Transmittersforfuelflowandairflowmeasurementnts. 5. dynamometerforloadingtheengine 6. AVL5emissiontestunit.
1. Engineisfilledwithdieselandbiodieselasrequired. 2. Ensuringthecoolingwaterflow. 3. Ensuringtheengineisat0kgload. 4. Checkformainssupply. 5. Ensurealltherequiredconnectionsoftheenginearerightwiththecomputerandemissiontestkit. 6. Starttheenginewith0kgloadandrunfor25minutesand slowlyrisetheload. 7. Loadisincreasedby2kg,4kg.6kg,8kgand12kgandreadingsaretabulated. 8. Sameexperimentisconductedfordifferentbiodieses.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
1. Load vs Brake thermal efficiency
20.00
15.00
10.00
5.00
BTHE in % Load in Kg
25.00 0 2 4 6 8 12
BTHE 1(%)
0.00
Chart-1: LoadvsBrakethermalefficiency
Brake thermal efficiency depends on Brake power and specific fuel consumption. Here Specific fuel consumption is increasinginanenginewithmodifiedinletmanifoldastheflowoffuelismorethanair.Hencebrakethermalefficiencyis increasingwithincreasingloadBrakethermalefficiencyofkaranjaB20Biodieselwillbesameasthatofdieselat8kgload.
2. Load vs Indicated thermal efficiency
100
80
60
40
120 0 2 4 6 8 12
ITHE in % Load in Kg
20
ITHE 1(%)
ITHE 2(%)
ITHE 3(%) ITHE 4(%)
BTHE 2(%) BTHE 3(%) BTHE 4(%) 0
Chart-2: LoadvsITHE
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
Indicated thermal efficiency depends on the indicated power which inturn depends on the indicated mean effective pressure.Indicated mean effective pressure is the average pressure in the cylinder for a complete engine cycle. As indicatedmeaneffectivepressureisincreasingfordieselenginewithmodifiedinletmanifoldindicatedthermalefficiency isalsoincreasingbyutilizingbiodiesels.
Mech efficiency in %
50
40
30
20
10
0
60 0 2 4 6 8 12
Load in Kg
Chart-3: LoadvsMechanicalefficiency
Mechanicalefficiencyisobtainedbytheratioofbrakepowertotheindicatedpower.Astheindicatedpowerisincreasing inanenginewithmodifiedinletmanifoldhencemechanicalefficienyisdecreasing.
4. Load vs Specific fuel consumption
SFC in Kg/kWh
1.2
1
0.8
0.6
0.4
0.2
1.4 0 2 4 6 8 12
Mech eff 1 Mech eff 2 Mech eff 3 Mech eff 4 0
Load in Kg
Chart-4:LoadvsSFC
SFC 1 SFC 2 SFC 3 SFC 4
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
Thespecificfuelconsumptionofconventionaldieselengineislowerthanthatofenginewithmodifiedinletmanifold.This isbecauseofthedisturbedairpassageintheairinletportandalsoduetothehigherviscosityandpoormixtureformation ofbiodiesel.
A/F Ratio
0 10 20 30 40 50 60 70 80 0 2 4 6 8 12
A/F Ratio 1
A/F Ratio 2
Load in Kg
Chart-5: LoadvsA/FRatio
Theairfuelratioismoreinconventionaldieselengineanditisreducinginanenginewithmodifiedinletmanifoldbecause oflessairflowresultinginrichmixture
1. Load vs CO emission
CO in PPM
A/F Ratio 3 A/F Ratio 4 0 0.5 1 1.5 2 2.5 3 3.5 4 0 2 4 6 8 12
Load in Kg
Chart-6: LoadvsCOemission
Conventional diesel engine
Modified inlet manifold with diesel fuel
Modified inlet manifold with mahua B20 biodiesel
Modified inlet manifold with karanja B20 biodiesel
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
HC in PPM
140
120
100
80
60
40
Modified inlet manifold with diesel
Modified inlet manifold with Mahua B20 biodiesel
20
160 0 2 4 6 8 12
0
Load in Kg
Chart-7: LoadvsHCemission
Higher fuel/air ratio causes the emission of HC and CO. During the initial loads the CO and HC emissions are comparatively small and there is slight difference between difference setups. But at higher loads it is increasing because with increase in the load the fuel/air ration increases and also there is disturbance for air flow due to modification if an inlet manifold. This causes rich fuel/air mixture hence resulting in Carbon monoxide and hydrocarbon emissions. Even theemissionsathigherloadsaredecreasingathigherloadsbyusingMahuaB20and karanjaB20Biodiesels.
CO 2 in %
Conventional diesel engine
Modified inlet manifold with diesel
Modified inlet manifold with Mahua B20 biodiesel
Modified inlet manifold with karanja B20 biodiesel
Modified inlet manifold with karanja B20 biodiesel 0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 12
Load in Kg
Chart-8: LoadvsCO2 emissions
Thecombustionprocesscausesamixingofcarbonwithoxygeninairresultingintheformationofcarbondioxide.The changeofCO2emissionisalmostsameinallthesetups.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
4. Load vs O2 emission
O 2 in %
20
15
10
5
0
25 0 2 4 6 8 12
Conventional diesel engine
Modified inlet manifold with diesel
Modified inlet manifold with Mahua B20 biodiesel
Load in Kg
Chart-9: LoadvsO2 emission
Withincreasingloadoxygenemissionisreducingindifferentsetupswhichresultsingoodcombustionoffuel.O2emission isalsonearlysamefordifferentsetupsandfuels.Biodieselscontainsoxygenwithit,consequentlyO2 emissionsare somewhatincreasingbyusingbiodiesels.
NOxin PPM Load in Kg
Modified inlet manifold with Karanja B20 biodiesel 0 100 200 300 400 500 600 700 800 0 2 4 6 8 12
Chart-10: LoadvsNOxemission
Conventional diesel engine
Modified inlet manifold with diesel fuel
Modified inet manifod with Mahua B20 Biodiese
Modified inlet manifod with karanga B20 biodiesel
NOx emissions increases with increase in load because it causes increased fuel supply resulting in longer combustion durationcausingincreasein temperaturehenceitcausesNOxformation.TheNOxemissionsaredecreasinginanengine with modified inlet manifold because of rich mixture burning and in an engine with B20 biodiesel NOx is decreasing becauseoflowercombustiontemperatureinsidethecylinderbecauseofmodifiedinletmanifoldandlowerCalorificvalue ofthebiodiesel.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
60
50
Smoke in PPM
40
30
20
10
0
0 2 4 6 8 12
Load in kg
Chart-11: LoadvsSmokeemission
Modified inlet manifold with diesel
Modified inlet manifold with mahua B20 biodiesel
Modified inlet manifold with karanja B20 biodiesel
Smoke emission is the part of combustion process.Smoke is increasing with increasing load because of rich air/fuel mixtureandalsoduetothebiodieselblend.
1. TheexperimentalresultsshowstheimprovementinthePerformanceandemissionparametersofsingle cylinder four stroke diesel engine with modified intake manifold by using Mahua B20 and Karanja B20 Biodiesel
2. TheswirlgeneratedbymodifiedInletmanifoldhasgoodimpactonCO,HC,NOx,CO2andO2Emissionsat thelowerloadsbutincreasingathigherloadsbecauseofhigherfuel/airratiocausedduetodisturbance ofairpassageintheinletmanifold.
3. Brake thermal efficiency, Indicated thermal efficiency and Specific fuel consumption of engine with modifiedinletmanifoldisimprovedWithMahuaB20andKaranjaB20BiodieselcomparedtoDiesel
4. Mechanical efficiency of an engine with modified inlet manifod by using Mahua B20 Biodiesel is nearly samebyusingdieselfuelandreducesnegligiblywithkaranjaB20Biodiesel.
1. Vinod Kumar Sharma, Man Mohan and Chandra Mouli, Effect of inlet swirl on performance of single cylinderdirectinjectiondieselengine.2017IOPConf.
2. JayashriNarayananNair,Jdeepthi,k sivakalyani,Study ofbiodiesel blendsandemissioncharacterstics ofbiodiesel.Vol2,Issue8,August2013.
3. Abdel hafiz, Adel hegazy, Nader S Koura & SM Rabia, Performance and emissions of a traditional diesel engineoperatedwithesterifiedwastevegetableoilbiodiesel blends.Researchgate,Journalofengineering andtechnology,Vol37(No.1)(139-148)
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
4. R Tamil selvan, I karthi keyan & P Vijian, Performance and emission characterstics of Mahua biodiesel blends.2020Vol 932,IOPConf
5. Arul prakasha jothi Mahalingam, Yuvarajan Devarajan, Santhana Krishnan Radhakrishnan, Suresh vellaiyan and bheem kumar Nagappan, Emission analysis on mahua oil biodiesel and higher alchohol blendsindieselengine.Alexanderiaengineeringjournal,Vol57,Issue4,December2018
6. ICenginesbyVGanesan4th edition