COMPARATIVE STUDY ON G+10 STOREY RCC BULDING WITH AND WITHOUT SHEAR WALL USING 25%, 50% & 75% OPENIN

Page 1

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072

COMPARATIVE STUDY ON G+10 STOREY RCC BULDING WITH AND WITHOUT SHEAR WALL USING 25%, 50% & 75% OPENINGS IN SHEAR WALL UNDER SEISMIC LOADING

1M. Tech, Structural Engineering, Ghousia College of Engineering, Ramanagara, Karnataka, India 2Assistant Professor, Dept. of Civil Engineering, Ghousia College of Engineering, Ramanagara, Karnataka, India 3Prof. & HOD, Dept. of Civil Engineering, Ghousia College of Engineering, Ramanagara, Karnataka, India ***

Abstract - Shear walls are vertical structural elements designed to withstand lateral loads suchasthoseinduced by wind and earthquakes. Shear walls are a type of construction in which they provide all of the horizontal load resistance. Shear walls provide the required lateral strength and stiffness to resist horizontal forces, making them a structurally effective option for stiffening a structure. Shear walls are often built at the foundation level and run the length of the building. The current thesis project's goal is to investigate seismic reactions (storey displacements, storey drift, the fundamentaltime period and base shear) of a typical G+10 residential complex with and without shear wall and with various percentages of openings (25%, 50% and 75% ) in shear wall located in different seismiczones(forZoneII,III,and IV) by Equivalent lateral force analysis and Response Spectrum Method using ETABS.

Key Words: Shear wall, storey displacements, storey drift, base shear, ETABS, etc

1.INTRODUCTION

Shear walls are vertical structural elements designed to withstandlateralloadssuchasthoseinducedbywindand earthquakes.Shearwallsareatypeofconstructioninwhich they provide all of the horizontal load resistance6. Shear wallsprovidetherequiredlateralstrengthandstiffnessto resisthorizontalforces,makingthemastructurallyeffective optionforstiffeningastructure.Shearwallsareoftenbuiltat thefoundationlevelandrunthelengthofthebuilding.They are frequently supplied along the length and breadth of a structure,andarelocatedonthesidesor organizedinthe shapeofacore.Shearwallsmayhaveoneormoreapertures forpracticalpurposes[1]

In terms of size and placement, shear walls are critical. Structures must be symmetrically constructed in plan to reduce the effect of twisting. Buildings with adequately planned and specified shear walls have performedwellinpriorearthquakes[2].Strongearthquakes in the past have indicated that shear wall damages and certainfailureprocessesarereliantonanumberoffactors, including the plan shape, wall and opening dimensions,

reinforcement and openings arrangement, site condition, earthquake type, and strain rates. Even if certain failure mechanisms have been thoroughly researched, there are always more to be discovered [3]. In terms of size and placement, shear walls are critical. They must reduce the effectoftwistinginbuildings.

Shearwallsaremostcommonlyfoundonthesides ofbuildingsorintheformofacorethathousesstairwells and elevators. Building shear walls provide the essential lateral strength and stiffness to resist horizontal stresses, makingthemastructurallyviableoptionforstrengthening thestructure[4].Theycanbeseenonboththeoutsideand inside of structures, and they usually run the length and width of the structure. Shear walls are vertical structural components that are used to protect tall structures from lateralloadsinducedbywindandearthquakes.Toprotect againstearthquakes,thestructurehasreinforcedconcrete shear walls. These can be used to improve the seismic responseofastructure.Theemploymentofashearwallina constructiontoproduceabendingmoment.

Forpracticalreasons,shearwallsmayhaveoneor moreapertures,suchasdoors,windows,andothertypesof openings.Thesizeandplacementoftheaperturesmaydiffer depending on their function. Shear barriers are critical in terms of size and location. Buildings with adequately plannedand specifiedshear wallshaveperformed well in priorearthquakes[5]

Shear barriers require extra consideration in seismically active areas. Previous earthquakes protected evenstructureswithasufficientnumberofwallsthatwere notspeciallyconstructedforseismicperformance(buthad adequatewidelydispersedreinforcement).Shearwallsare effectiveinreducingearthquakedamagetostructuraland non structural elements, both in terms of cost and effectiveness(likeglasswindowsandbuildingcontents)[6].

Page2931
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

Fig 1Differenttypeofopeningsinshearwall

2. MODELING DETAILS

Foranalysisandstudypurpose15Modelsarecreated withcorrespondingdimensionandanalyzedforZoneII,III, andIVinETABS.

Fig 3ArchitectureplanofRegularMODEL SL.NO Properties Dimension

BuildingPlan 33.7mx26.47m

ColumnC1 300mmx900mm

ColumnC2 300mmx750mm

BeamB1 300mmx750mm

BeamB2 300mmx600mm

Fig 2openinginshearwall

1.1 OBJECTIVES OF THE PROJECT

ToAnalyzethestructureusingETABS. 

Themainobjectiveofthisstudyisto comparethe regularRCCbuildingwithandwithout shear wall andwith25%,50%,and75%openinginshearwall underseismicloading. 

Tostudythebaseshear,storeydisplacement,storey drift, and time period under “Equivalent lateral force”&“Responsespectrumanalysis” 

Tostudythebaseshear,storeydisplacement,storey drift, and time period of the building with and without shear wall and with 25%, 50% and 75% openings in shear wall for Zone II, III, and IV in ETABS. 

Comparisonofeffectofopeningsinregularmodel, model without opening in shear wall, model with 25%opening,50%opening&75%openinginshear wallmodel.

2.1 MATERIALS

Gradeofconcrete M25

Gradeofsteel Fe500

Densityofconcrete 25KN/m3

Densityofbrick 11KN/m3

Modulusofelasticityofconcrete 28.5KN/mm2

ModulusofelasticityofSteel 210,00N/mm2

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
©
Journal | Page2932
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified
3
4
5
1
2
6 Shearwallthickness 200mm 7 StoreyHeight 3.2m 8 Widthofshearwall 3.2m 9 Soiltype IIType 10 25%openings 1.2mx2m 11 50%openings 1.8mx2.8m 12 75%openings 2.5mx2.9m Table 1 : DetailsaboutRCCBuilding

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072

Design loads : The loads which have been used for the modellingareasfollows: 

Self weightofthestructure

Floorfinish

Wallload

Typicalliveload

Roofliveload

Seismicload

1. DeadloadasperIS:875(PartI) 1987

2. Frommasonrywalls 4.3kN/m 3

3. LiveloadasperIS:875(Part II) 1987

i)Liveloadonfloor 3.00kN/m2

ii)Liveloadonroof 1.50kN/m2

3. Earthquakeload.IS:1893 2016

i) Zonefactor 0.1

ii) Zonefactor 0.16 iii) Zonefactor 0.24

Soiltype II

Importancefactor 1

TimeperiodinXdirection 0.6second

TimeperiodinYdirection 0.67second

Fig 5EtabsRegular3DMODEL

Fig 4 Etabs plan of Regular MODEL

Fig 6 Etabsplanofregularmodelwithshearwall

2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified

| Page2933
©
Journal

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072

Fig 7 Etabs 3Dmodelof regularmodelwithshearwall

Fig 9 Etabs 3Dmodelwith50%openinginshearwall

Fig 8Etabs 3Dmodelwith25%openinginshearwall

Fig 10 Etabs 3Dmodelwith75%openinginshearwall

3 RESULTS AND DISCUSSION

Thischaptergivestheseismicanalysisresultsforallofthe modelsthatwereevaluatedinthemodelstudypresented

2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal

Page2934
©
|

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072

inChapter3.Withthehelpofrelevanttablesandfigures, theresultsandcommentsarethoroughlyexamined.

3.1 Results

3.1.1 Displacement

BycomparingtheXandYdirections,themaximumvaluesof displacements are recorded. The displacement values of variousmodelsareacquiredbyexposingthemtoEquivalent lateralforceanalysisandresponsespectrumanalysis,which reveals the maximum displacement. The tabulated results arealsoshowninagraph,asseeninFig.11

Table1:MaxDisplacementfordifferentEarthquakeZones inXdirectionEquivalentlateralforce(EQXinmm)

ZONE S

REGU LAR MODE L

WITHO UT OPENI NGIN SHAER WALL

25% OPENI NGIN SHAER WALL

50% OPENI NGIN SHEAR WALL

75% OPENI NGIN SHEAR WALL

ZONE II 32.8 18.5 19.9 26.1 28.1

ZONE III 52.5 29.3 31.8 41.7 45.4

IV 78.7 44.4 47.7 62.5 67.4

Table 2:MaxDisplacementfor differentEarthquake ZonesinYdirectionEquivalentlateralforce(EQYinmm)

ZONES REGU LAR MODE L

WITHO UT OPENI NGIN SHAER WALL

25% OPENI NGIN SHAER WALL

50% OPENI NGIN SHEAR WALL

75% OPENI NGIN SHEAR WALL

Fig 11Displacementvariationgraph

Thebiggestreductioninlateraldisplacementisshowninthe model without opening in the shear wall model along X direction,accordingtothedisplacementdata.

80

70

60

50

40

30

20

10

ZONE 2 ZONE 3 ZONE 4

Fig 12Displacementvariationgraph

RB SW 25 50 75

ZONEII 28.90 18.5 19.2 23.6 25.1 ZONEIII 46.2 29.8 30.7 37.8 40.6 ZONEIV 69.3 44.3 46 56.7 60.2 0

Thebiggestreductioninlateraldisplacementisshowninthe model without opening in the shear wall model along Y direction,accordingtothedisplacementdata.

Table3:MaxDisplacementfordifferentEarthquakeZones (ResponsespectruminXdirection)(SPECXinmm)

ZONE S

REGU LAR MODE L

WITHO UT OPENI NGIN SHAER WALL

25% OPENI NGIN SHAER WALL

50% OPENI NGIN SHEAR WALL

75% OPENI NGIN SHEAR WALL

ZONE II 30.1 15.7 16.5 21 23

ZONE III 48.1 24.9 26.5 33.7 37.1

ZONE IV 72.3 37.6 39.7 50.5 55.3

Page2935
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |
ZONE
0 10 20 30 40 50 60 70 80 90 ZONE 2 ZONE 3 ZONE 4 RB SW 25 50 75

International Research Journal of Engineering and Technology (IRJET)

e ISSN: 2395 0056

Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072

Thebiggestreductioninlateraldisplacementisshowninthe model without opening in the shear wall model along Y direction,accordingtothedisplacementdata.

3.1.2 Storey drift

Table5:MaxStoreyDriftvaluesfordifferentZonesinX directionEquivalentlateralforce(EQXinmm)

ZON ES REGULA R MODEL

WITHO UT OPENIN GIN SHAER WALL

25% OPENIN GIN SHAER WALL

50% OPENIN GIN SHEAR WALL

75% OPENIN GIN SHEAR WALL

ZON EII 0.00125 0.00064 0.00067 0.00088 0.00096

Fig 13Displacementvariationgraph

Thebiggestreductioninlateraldisplacementisshowninthe model without opening in the shear wall model along X direction,accordingtothedisplacementdata.

Table4:MaxDisplacementfordifferentEarthquakeZones (ResponsespectruminYdirection)(SPECYinmm)

ZONES REGU LAR MODE L

WITHO UT OPENI NGIN SHAER WALL

25% OPENI NGIN SHAER WALL

50% OPENI NGIN SHEAR WALL

75% OPENI NGIN SHEAR WALL

ZONEII 22.8 15.1 15.6 18.9 20 ZONEIII 36.5 24.7 24.9 30.3 32.4 ZONEIV 54.8 36.2 37.3 45.4 48.1

ZON EIII 0.00199 0.00101 0.00107 0.00140 0.00154

ZON EIV 0.00299 0.00153 0.00160 0.00210 0.00231 0

Fig 15Storeydriftvariationgraph

According to the storey drift data, the model without opening in the shear wall along the X direction has the greatestreductioninstoreydrift.

© 2022,
|
Certified Journal | Page2936
IRJET
Impact Factor value: 7.529 | ISO 9001:2008
0 10 20 30 40 50 60 70 80 ZONE 2 ZONE 3 ZONE 4 RB WSW 25 50 75
0 10 20 30 40 50 60 zone 2 zone 3 zone 4 rb sw 25 50 75 Fig 14Displacementvariationgraph
0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 ZONE 2 ZONE 3 ZONE 4 RB SW 25 50 75

International Research Journal of Engineering and Technology (IRJET)

e ISSN: 2395 0056

Table6:MaxStoreyDriftvaluesfordifferentZonesinY directionEquivalentlateralforce(EQYinmm)

ZON ES

REGULA R MODEL

WITHO UT OPENIN GIN SHAER WALL

25% OPENIN GIN SHAER WALL

50% OPENIN GIN SHEAR WALL

75% OPENIN GIN SHEAR WALL

ZON EII 0.00099 0.00062 0.00064 0.0008 0.00086

ZON EIII 0.00158 0.00099 0.00103 0.00128 0.00138

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

rb wsw 25 50 75

0

0.003

0.0025

0.002

0.0015

0.001

0.0005

ZONE 2 ZONE 3 ZONE 4

Fig 16Storeydriftvariationgraph

RB SW 25 50 75

ZON EIV 0.00238 0.00149 0.00154 0.00192 0.00206 0

zone 2 zone 3 zone 4

Fig 17Storeydriftsvariationgraph

According to the storey drift data, the model without opening in the shear wall along the X direction has the greatestreductioninstoreydrift.

Table8:MaxStoreyDriftvaluesfordifferentZones (ResponsespectruminYdirection)(SPECYinmm)

ZON ES

REGULA R MODEL

WITHO UT OPENIN GIN SHAER WALL

25% OPENIN GIN SHAER WALL

50% OPENIN GIN SHEAR WALL

75% OPENIN GIN SHEAR WALL

ZON EII 0.00084 0.00052 0.00054 0.00066 0.00072

ZON EIII 0.00134 0.00085 0.00086 0.00106 0.00115

According to the storey drift data, the model without opening in the shear wall along the Y direction has the greatestreductioninstoreydrift.

Table7:MaxStoreyDriftvaluesfordifferentZones (ResponsespectruminXdirection)(SPECXinmm)

ZON ES

REGULA R MODEL

WITHO UT OPENIN GIN SHAER WALL

25% OPENIN GIN SHAER WALL

50% OPENIN GIN SHEAR WALL

75% OPENIN GIN SHEAR WALL

ZON EII 0.00125 0.00056 0.00059 0.00076 0.00087

ZON EIII 0.00199 0.00089 0.00095 0.00122 0.00138

ZON EIV 0.003 0.00136 0.00143 0.00182 0.00209

ZON EIV 0.00201 0.00125 0.00129 0.00159 0.00173

0.0025

0.002

0.0015

0.001

0.0005

0

zone 2 zone 3 zone 4

Fig 18Storeydriftsvariationgraph

rb sw 25 50 75

Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

Page2937

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072

According to the storey drift data, the model without opening in the shear wall along the Y direction has the greatestreductioninstoreydrift.

3.1.3 Time period

Table9:TimeperiodvaluesforModelsdifferentzones (inseconds)

ZON ES

REGUL AR MODEL

WITHO UT OPENIN GIN SHAER WALL

25% OPENI NGIN SHAER WALL

50% OPENI NGIN SHEAR WALL

75% OPENI NGIN SHEAR WALL

ZON EII 1.736 1.29 1.321 1.484 1.548

ZON EIII 1.736 1.295 1.321 1.484 1.553

ZON EIV 1.736 1.29 1.321 1.484 1.548 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

zone 2 zone 3 zone 4

Fig 19 variationintimeperiod.

RB SW 25 50 75

Table10:BaseshearvaluesforZoneII,III,IValongX direction(EQXinKN)

ZON ES

REGULA R MODEL

WITH OUT OPENIN GIN SHAER WALL

25% OPENIN GIN SHAER WALL

50% OPENIN GIN SHEAR WALL

75% OPENIN GIN SHEAR WALL

ZON EII 2886.47 3109.93 3046.35 2843.78 2822.89

ZON EIII 4618.17 4922.84 4883.9 4549.48 4530.75

Accordingtothenaturaltimeperioddata,themodelwithout openingintheshearwallhasthegreatestreductionintime periodforoneoscillation

3.1.4 Base shear

Base shear is a measurement of the highest predictedlateralforcecausedbyseismicgroundmotionat thestructure'sbase.Theregularmodelhasfewerloadsthan the other models since the base shear value is exactly relatedtotheweightofthebuilding.Thesoilconditionsat the site, as well as the proximity to probable seismic sources, are used to calculate base shear. The base shear valuesforthebestmodelareshowninthetablebelow.

ZON EIV 6932.79 7463.82 7325.85 6824.04 6787.84 0 1000 2000 3000 4000 5000 6000 7000 8000

zone 2 zone 3 zone 4

Fig 20Graphofvariationinbaseshear.

rb s w 25% 50 75

Thehighestreductioninbaseshearisshowninthe modelwitha75percentopeningintheshearwallalongthe Xdirection,accordingtotheresultsofbaseshear.

Table11:BaseshearvaluesforZoneII,III,IValongY direction(EQYinKN)

ZON ES

REGULA R MODEL

WITH OUT OPENIN GIN SHAER WALL

25% OPENIN GIN SHAER WALL

50% OPENIN GIN SHEAR WALL

75% OPENIN GIN SHEAR WALL

ZON EII 2585.35 2784.51 2734.10 2547.02 2528.76

ZON EIII 4136.56 4480.10 4374.56 4074.07 4070.96

ZON EIV 6209.82 6682.83 6561.84 6112.83 6077.81

2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal

Page2938
©
|

International Research Journal of Engineering and Technology (IRJET)

e ISSN: 2395 0056

Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072

3.2.1 Displacement (for both Equivalent lateral force analysis and Response Spectrum Method)

Asthepercentageofopeninginshearwallincreases thedisplacementofthebuildingwillalsoincreases. 

The maximum displacement is less for the model without opening in the shear wall in X and Y directionscomparedtotheotheropenings.

Themaximumdisplacementobtainedforthemodel withoutopeningintheshearwallinXdirectionis 18.5mmandformodelwith25%openinginshear wallis19.9mm. 

Fig 21variation graphforbaseshear.

Thehighestreductioninbaseshearisshowninthe modelwitha75percentopeningintheshearwallalongthe Xdirection,accordingtotheresultsofbaseshear.

3.2 Discussion of Result

Inthisstudy,aG+10storeystructurewithregular andshearwallopeningswasexaminedfordifferentzones (zoneII,zoneIII,and zoneIV)forEquivalentlateralforce analysisand ResponseSpectrumMethod 

ForzonesII,III,andIV,aregularmodelwithdead load,liveload,andearthquakeloadingisused. 

For zones II, III, and IV, a shear wall model with deadload,liveload,andearthquakeloadingisused. 

For zones II, III, and IV, a model with a 25% apertureintheshearwallincludesdeadload,live load,andearthquakeloading.

The displacement of the building increases with increaseinzonefactors.

3.2.2 Time period

Theconstructionwithshearwallwithoutopening hasashortertimeperiod,asshowninthegraphsandtables oftimeperiodsinthefindingssection.Itisworthnotingthat inabuildingwiththeshearwallmodel,thetimeperiod of the building is around 25.69% shorter than in a regular modelforzoneII.

3.2.3 Storey drift (for both Equivalent lateral force analysis and Response Spectrum Method)

Thehighestreductioninlateraldriftisshowninthe model with shear wall without opening in shear wallmodelalong XandYdirections,accordingto thedriftdata.

The drift value is more for zone IV compared to zoneIIandzoneIII.

Aszonefactorincreasesdriftvaluealsoincreases.

For zones II, III, and IV, a model with a 50% apertureintheshearwallincludesdeadload,live load,andearthquakeloading.

It also increases with increase in percentage of openinginshearwall.

ForzonesII,III,andIV,amodelwitha75percent apertureintheshearwallincludesdeadload,live load,earthquakeloading.

For displacement, storey drift, time period, and base shear, all of the above models with three zones were examinedforEquivalentlateralforceanalysisand Response SpectrumMethod.Thefollowingresultswereobtainedafter acomparisonwasmadebetweenthem.

3.2.4 Base Shear

The base shear value along X and Y direction for 25%openingintheshearwallislesscomparedto withoutopeningintheshearwall.

Base shear values decreases with increase in the percentage of opening in shear wall for different earthquakezones.

We canobservedthatthemodel without opening shows higher base shear values compared to the modelwithvaryingpercentageofopenings.

©
|
Certified Journal | Page2939
2022, IRJET
Impact Factor value: 7.529 | ISO 9001:2008
0 1000 2000 3000 4000 5000 6000 7000 8000 ZONE 2 ZONE 3 ZONE 4 RB SW 25 50 75

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072

4. CONCLUSIONS

By studying the behavior of models with distinct zones in dynamic earthquake loading. The model with shear wall withoutopeningsshowntoproducethebestresults.When compared to a regular model, it tends to shorten the time period,lateraldisplacement,andstoreydriftinboththeX andYdirectionsbyasignificantmargin.

In all zones, the model without openings in the shear wall results in less displacement, drift, and timeperiodthantheothermodels.

BIOGRAPHIES

KIRAN S, CompletedBachelordegree in Civil Engineering from Ghousia CollegeofEngineering,Ramanagara, Karnataka under VTU in the year 2020,PresentlypursuingM.techin Structural Engineering in Ghousia CollegeofEngineering,Ramanagara, Karnataka,UnderVTU.

Modelswithahigherpercentageofopeningshave less base shear than models with a lower percentageofopenings.

Thebuilding'sdisplacement,drift,andtimeperiod aredirectly relatedtotheopeningintheshearwall.

REFERENCES

[1] Swetha,K.S.,andP.A.Akhil."EffectofOpeningsinShear Wall." International Research Journal ofEngineeringand Technology (IRJET) Volume 4(2017).

[2] Khatami,SeyedM.,AlirezaMortezaei,andC.Barros Rui."Comparingeffectsofopeningsinconcreteshear wallsundernear faultgroundmotions."In 15th World Conference on Earthquake Engineering.2012.

[3] AarthiHarini,T.,andG.SenthilKumar."BehaviorofRC Shear Wall with Staggered Openings under Seismic Loads."International journal for research in emerging science and technology 2,no.3(2015):91 96.

[4] Kankuntla, Ashok, Prakarsh Sangave, and Reshma Chavan."Effectsofopeningsinshearwall." IOSRJournal of Mechanical and Civil Engineering (IOSR JMCE) 13,no. 1(2016):1 6.

[5] Mohan,Abhija,andS.Aarathi."ComparisonofRCShear Wall with Openings in Regular and Irregular Building." International Journal of EngineeringResearch & Technology (IJERT) Vol 6(2017).

[6] Borbory,Ehsan."Openingseffectsinreinforcedconcrete shear walls; a literature review on experimental and finiteelementstudies."(2020).

[7] Itware,VishalA.,andDrUttamB.Kalwane."Effectsof openings in shear wall on seismic response of structure."Journal of Engineering Research and Applications 5,no.7(2015):41 45.

Mr. UMMER FAROOQ PASHA, B.E from BMSECE, M.tech structural Engineering., from SKSJIT, Assoc. Mem.IEI.,Asst.ProfessorinDept.of civilEngineering,GhousiaCollegeof Engineering. Previously worked as Structural Design Engineer in Span Design, Bangalore. Published 7 internationaljournalpapers.

Dr. N S KUMAR, Graduated in the year1985fromMysoreUniversity, M.E.inStructuralEngineering.,inthe year1988fromBangaloreUniversity and earnedhisPhD fromBangalore University during the year 2006 under the guidance of Dr. N Munirudrappa, the then Chairman and Prof. UVCE, Faculty of Civil Engineering, Bangalore University. Presently, working as Prof. & HoD, Department of Civil Engineering, Ghousia College of Engineering, Ramanagaram and completed 31 yearsofteaching.Heisinvolvedinthe Research field related to the behaviour of Composite Steel Columns and Nano Materials for a decade. To his credit, over 150 publications,andtravelledabroadfor hisresearchpresentationsincluding world conferences too. Also, more than3PhD'scompletedandongoing 5are working under hisguidance.

Also,authoredmorethan 8books to hiscredit.

©
Certified Journal | Page2940
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008
2nd Author Photo 3rd Author Photo

Turn static files into dynamic content formats.

Create a flipbook