International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
![]()
International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
1 , Arimanda Chaitanya Sri2 , Saranu Charitha Sri3 1,2,3 Student of Dept. of CSE, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, India ***
Abstract - BrainTumorSegmentationisacrucialtaskinmedicalimageprocessing.Braintumorsmustbedetectedearlyin ordertoimprovetreatmentoptionsandincreasepatientsurvivalrates.Achallengingandtime consumingtaskisdetecting tumorfromalargenumberofclinicalMRIimagesforcancerdiagnosis.Deeplearningalgorithmsforautomaticsegmentation haverecentlygainedtractionduetothefactthatthesemethodsproducecutting edgeresultsandarebettersuitedtothis problemthanotherapproaches.Deeplearningapproachescanalsobeusedtoefficientlyandobjectivelyprocessmassive amountsofMRI basedimagedata.SeveralreviewpapersonclassicMRI basedbraintumorimagesegmentationalgorithmsare available.BecauseSemanticSegmentationassignsaclasslabeltoeachpixelinagivenimage,itcanbeusedtosegmentbrain tumorimagesfromtheprovidedimages..Intheproposedmethodology,weperformabatchtrainingwhereeachrandomly created batch is passed to the variation of UNet, a popular Segmentation model. In this model, we have added batch normalizationsfollowingeveryconvolutionlayerwiththehopethatadeepernetworkhelpsextractingthebetterfeatures whichturnedouttobetrue.HereweprefertousethemetricasIntersectionoverUnion(IoU)[1]ratherthanaccuracybecause it is less influenced by the inherent class imbalances in foreground/background segmentation tasks. With the proposed methodology,weachieveanaveragedIoUof84.3anddicecoefficientvalueis91.4.
Key Words: BrainTumor,Segmentation,SemanticSegmentation,U Net,IntersectionoverUnion(IoU),Dicecoefficient
Cancerisdefinedasuncontrollableandabnormalcelldivisionandproliferationinthebody.Abraintumorisanabnormalmass ofunnaturalcellgrowthanddivisioninbraintissue.Braintumorsareoneofthemostfatalcancers1,despitetheirrarity.
Braintumors[2]areclassifiedaseitherprimaryormetastaticbasedonwheretheyoriginate.Primarycancercellsoriginatein braintissue,whereasmetastaticcancercellsbecomecancerouselsewhereinthebodyandspreadtothebrain.Gliomasare brain tumors that develop from glial cells. While these modalities are used in conjunction to provide the most detailed information,becauseofitshighsofttissuecontrastandwidespreadavailability,MRIisroutinelyusedtoobtaininformation regardingbrainmalignanciesTheconventionalmethodMRI(magneticresonanceimaging)isanon invasivein vivoimaging techniquethatemploysradiofrequencypulsestoexcitetissues.
Weusesegmentationtoefficientlylocateandsegmentbraintumorsinordertoperformsuccessfulsurgery.Braintumorscan beclassifiedintotwotypes.Thefirstismanualsegmentation,whichisasubjectivedecisionthatdoesnotproducethedesired resultsbecausecompletelyremovingbraintumorswithoutdestroyinghealthybraintissueisdifficult.Asaresult,automatic segmentationfortreatmentplanningandquantitativeevaluation,thesecondmethodisrequired.Itquicklyandaccurately diagnosesbraintumors.
Sinceboththelocationandsizeofthetumorsarerequiredtobeidentified,theproblemcomesunderthetaskofsegmentation anditparticularlycomesundersemanticsegmentation.SegmentationissomethingbeyondthetaskslikeImageclassification,
International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
localizationandobjectdetection.Inimageclassification,wejustrequirethegivenimagetobeclassifiedintooneoftheclasses (binaryormulti).
1.2:
LocalizationisabitadvancementtoclassificationasWelocatetherequiredobjectintheprovidedimage.Objectdetection islikecombinationofbothofthosebecausehereweperformboththetaskslikeclassifyingtheobjectandlocatingit.Here locatingtheimageistojustcomeupwithaboundingboxandhenceitisnotthecasetobeusedwhenweneedtheexact shapeoftheImage..
Sincethisbraintumorsegmentationisrelatedtothe,manyresearchersgetattractedtothiswork.Aspartoftheinitialstageof researchinthistopic,theresearchersusetoconsiderthehandcraftdifferentfeatureextractorsandusetheoutputsofthemfor theanalysisofthebraintumorimages.OneapproachisthemethodproposedbyNagashreeNandPremjyotiPatil[3].This system'smainideaistoworkontheencodinganddecodingphasesofUNet[4]modellingforefficientsegmentationofbrain images.Theinputimageisdividedintoseverallayerscalledconvolutionsinthismethodology,andtheCNNmethodisused. The process's convolution filter is the feature extraction of individual image layers. In the UNet approach, each layer is representedasanetworkencoderlayer.Alphabetpruning,anAIoptimizationalgorithmfordimensionalityreduction,was proposedasamodifiedformofUNet.Theprocessentailsbuildinga treenetworkoutofallthelayersoftheinputimage, retainingonlytheessentialimages.Theremainingimagelayersareprunedtosavetime..Theworkflowoftheirapproachisas follows:
Figure2.1: Workflow of Nagashree N and Premjyoti Patil
International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
Convolutionalneuralnetworkshavebeenwidelyusedinthefieldofmedicalpicturesegmentationsincetheintroductionof deep learning for their great feature extraction capabilities, and have achieved good segmentation performance and robustness.Convolutional neural networkswereoriginallyusedinbraintumorsegmentationbyZikicetal.Thenetwork comprisesofaconvolutionlayer,amaximumpoolinglayer,afullconnectionlayer,andasoftmaxlayer.Ronnebergeretal suggesttheUnetnetwork,whichusesanencoder decodertopology.Convolutionwithsizeof33andstridesizeof1isusedfor 4timesdown samplinginthecodingphase;deconvolutionwithsizeof22andstridesizeof2isusedforup samplinginthe decodingphase.High resolutionandlow resolutioninformationareequallyrelevantduetothesimilarityofmedicalimaging andthefuzzinessoftumorregionboundaries.QingJunRuandGuangZhuChen[5]proposeanimprovedM Unetstructureto increasetheperformanceoffeaturefusionandtheaccuracyofnetworksegmentation.Thisapproachcanbeimprovedinthe followingways:
1.Amulti scalefeatureextractionmoduleisaddedtotheUnetnetwork'sfeaturefusionparttobetterextractthehigh leveland low levelfeaturesoftumorimages,whileredundantfeaturesareavoidedfrombeingintroducedintotheup samplingfeature map,furtherimprovingnetworksegmentationperformance.
2.Toacquirethebestnetworkweight,acosineannealinglearningrateattenuationapproachisutilisedinthetrainingphaseto makethenetworkjumpoutofthelocaloptimalsolution.
Thisarchitectureoftheproposedmodel,trainingapproachandtheothertechnicaldetailsarediscussedinthissection.The proposed architecture is derived from the UNet architecture. Many changes like the number of filters at each layers, introductionofBatchNormalizationoperations,weremadetotheoriginalscore.ThedatasetusedforthisworkwaslggMRI segmentationdataset.Thisdataset[6]comprisesof3762imagesofsize256×256.Outofthe3762images,80%ofthemwere usedforthetrainingpurposeandtherestoftheimages(20%)wereusedfortestingpurpose.
Asshowninthefigure3.2,thetrainingimagesandthecorrespondingmaskswereloadedandasavisualizationtechnique.In theproposedmethodology,weareusingrandom2828imagesfortrainingand708forvalidationand393fortesting.
TheperformanceofthemodelismonitoredinformofthemetricIntersectionofUnion(IoU),whichwasthemostcommon metricusedforthesegmentationtasks.CallbackslikeEarlyStoppingandModelCheckpointarefurtherimplementedonthe basisofaverageIoUofevery50batches.Thesecallbackshelpstosavethebestmodelandstopthetrainingprocessiftherewas nofurtherimprovement.Attheend,savethemodelweightssothattousethemlater.Therearemanyothercountlessefforts likeaugmentation,usingdifferentarchitecturesweremadebutnoneofthemprovedtobesuccessful.
TheproposednetworkisderivedfromtheUNetarchitecture.UNet,beingapopularapproachtobeusedforsegmentationtask, appliesclassificationoneachandeverypixelinthegiveninputimageandtherebyproducingamaskofsamesizeasinput.
International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
Thenetworkshownabovetakesaninputofsize(256×256×3).Itfeaturesanencoder decoderstructure,andintheencoder part,weapplypoolingtechniquestoreducethesizeoftheimage.sothatwecanextracttheinformationof"what"ispresentin theimage.Weincreasethepicturesizeinthedecoderphasetoextracttheinformationof"where"inthegivenimage.Each blockinthecontractingpathhasthefollowingstructure:
Twoconvolutionallayersareusedinthefirstblock,followedbypoolingandbatchnormalizationprocesses,andthechannel countisincreasedfromonetoeight.Sincetheprocessofconvolutionincreasesthedepthoftheimage,therearefoursuch blocksintheentirecontractionpath,andbytheendofallfourblocks,thechannelcounthasincreasedto64channels.The imagesizeisreducedtobytheconclusionofthefourblocks(8,8)thankstothemaxpoolingprocedure,whichdecreasesthe imagesize..Fromhere,theexpansivepathwillbegin,inwhichtheimagesizeissteadilyraisedthroughupsamplingwhilethe channelcountisreduced.
International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
Transposedconvolutionisemployedhereasanupsamplingtechniquetoincreaseimagesize.Ontheinitialimage,apadding operationisdone,followedbyaconvolutionaction.Therearefoursuchblockshere,justlikeinthecontractionpath,andbythe endoftheseblocks,wewillhavetheoriginalsizeimage.Thefinalpredictionisobtainedbyapplyinga1Dconvolutionwith1 kernelandasigmoidactivationontheoutputofthelastblock.The1Dconvolutionreducesthenumberofchannelsnecessary forthenetworkoutput,whilethesigmoidactivationfunctionmapseverypixelintheoutputblocktotherangeoftherequired networkoutput(0,1).Theresultswillberoundedtothenearestinteger.
Themodelweightsareretainedattheendofthetrainingandusedinthetestingprocedure.Weusethesharpeningtechnique inthefinalstageofthetestingprocedure,aftertheoutputmaskprediction.Asapost processingapproach,sharpeningallows foragreaterviewofthesaltdepositspresentintheprojectedmask,resultinginahigherIoUscore.Lowpassandhighpass filtersarecommonlyusedonphotographstoimprovetheirviewingcapabilities.Smoothingisthetermusedtodescribetheuse ofalowpassfilter,whereassharpeningisthetermusedtodescribetheuseofahighpassfilter.Lowfrequenciesarefrequently attenuatedbyahighpassfilter,whichallowshighfrequenciestoflowthrough.Asaresult,thesaltpixelsintheexpectedmask passthroughthefilter,yieldingasuperioroutcome.Thekernelforsharpeninginoursuggestedmethodologyisrepresentedby thefollowingarray.
Inthetestingphase,weloadtheremaining20%datawithimagesandmasks.Theweightsthataresavedearlierareloadedinto themodelandthemodelisusedforthepredictionofthemasksforthegivenimages.Bycomparingtheanticipatedandoriginal masks,wecannowdeterminetheIoU(IntersectionoverUnion)value.TheaverageofIoUwasthencalculatedforarangeof criteriarangingfrom0.5to0.95,witha0.05stepbetweeneachisreported.IoUonathresholdtellsthataparticularIoUvalue hascrossedthatthreshold.ForExample,apredictedoutputmaskisconsideredtobevalidoverathresholdof0.7ifthevalueof IoUisabove0.7forthatparticularmask.ThefollowingistheinterpretationofIoUbetweengenuinesegmentationpixels,Y,and asimilarsetofpredictedsegmentationpixels,
Fig5.1: IOU Formula
WhichcanalsobeexpressedasafunctionoftheY Yconfusionmatrix
Fig5.2: General Confusion Matrix
IOUisthencalculatedas:(TP=Truepositives,FP=Falsepositives,etc.)
Fig5.3: IoU Formula in terms of confusion Matrix
HencetheresultsofthedifferentmethodsonvariousthresholdsandtheaverageIoUoverallthethresholdsfrom0.5to0.95 withastepvalueof0.05andthelossoftrainingisreportedinthefollowingtable.
International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
Table5.1:
Table5.2: Comparison of results with citations TheInputimagealongwiththetruemaskandthepredictedmaskareplottedhereforvariousimages.
Figure5.4: Predicted Masks comparison with the original mask
Weperformbatchtrainingintheproposedmanner,whereeachrandomlyformedbatchissubmittedtoavariantofUNet,a popularSegmentationmodel.Weaddedbatchnormalizationsaftereachconvolutionlayerinthismodelinthehopesthata
International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
deepernetworkwillassistextractbetterfeatures,whichprovedouttobeaccurate.Insteadofaccuracy,weopttoutilisethe measureIntersectionoverUnion(IoU)[1],Thisislessinfluencedbytheinherentclassimbalancesinforeground/background segmentationtasks.Weget anaveragedIoUof84.3and a dicecoefficientvalueof91.4usingtheprovided methods.The proposedmodelwillbeimprovedinthefuturebyemployingdifferentfiltersizesandincludingallmodalitiesofMRIimagesin tumorsegmentation.Byraisingthemini batchsizefrom16to64andthemax epochfrom80to120,thesegmentationresult willbeimprovedevenmore.
[1] Rezatofighi, Hamid, et al. "Generalized intersection over union: A metric and a loss for bounding box regression." ProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition.2019.
[2]ILong,J.,Shelhamer,E.,&Darrell,T.(2015).Fullyconvolutionalnetworksforsemanticsegmentation.InProceedingsofthe IEEEconferenceoncomputervisionandpatternrecognition(pp.3431 3440).
[3]AlphaBetaPrunedUNet AModifiedUNetFrameworktoSegmentMRIBrainImagetoAnalysetheEffectsofCNTNAP2Gene towardsAutismDetection.In20213rdInternational ConferenceonComputerCommunicationandtheInternet(ICCCI)(pp.23 26).IEEE. 240).IEEE.
[4]Kermi,A.,Mahmoudi,I.,&Khadir,M.T.(2018,September).DeepconvolutionalneuralnetworksusingU Netforautomatic braintumorsegmentationinmultimodalMRIvolumes.InInternationalMICCAIBrainlesionWorkshop(pp.37 48).Springer, Cham.
[5]Ru,Q.,Chen,G.,&Tang,Z.(2021,August).BrainTumorImageSegmentationMethodBasedonM UnetNetwork.In20214th InternationalConferenceonPatternRecognitionandArtificialIntelligence(PRAI)(pp.243 246).IEEE.
[6] Datased Used in The Discussed Model [Online]. Available: https://www.kaggle.com/datasets/mateuszbuda/lgg mri segmentation.
[7] Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder Decoder Architecture for Image Segmentation.IEEETrans.PatternAnal.Mach.Intell.2017,39,2481 2495.[GoogleScholar][CrossRef][PubMed]
[8]Guo,Meng Hao, Tian XingXu, Jiang JiangLiu,Zheng NingLiu,Peng Tao Jiang,Tai JiangMu, Song HaiZhang, RalphR. Martin,Ming MingCheng,andShi MinHu."Attentionmechanismsincomputervision:Asurvey."ComputationalVisualMedia (2022):1 38.
[9] Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE InternationalConferenceonComputerVision(ICCV),Boston,MA,USA,7 12June2015;IEEE:Piscataway,NJ,USA,2015;pp. 1520 1528.
[10] Wu, X.; Liang, L.; Shi, Y.; Fomel, S. FaultSeg3D: Using synthetic data sets to train an end to end convolutional neural networkfor3Dseismicfaultsegmentation.Geophysics2019,84,IM35 IM45
[11]Ronneberger,O.;Fischer,P.;Brox,T.U Net:Convolutionalnetworksforbiomedicalimagesegmentation.InLectureNotes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:Cham,Switzerland,2015;Volume9351,pp.234 241.
[12]McCaffrey,J.(2014).UnderstandingNeuralNetworkBatchTraining: ATutorial.VisualStudioMagazine.
[13]Daimary,Dinthisrang,etal."BraintumorsegmentationfromMRIimagesusinghybridconvolutionalneuralnetworks." ProcediaComputerScience167(2020):2419 242
[14]Rehman,MobeenUr,etal."Bu net:Braintumorsegmentationusingmodifiedu netarchitecture."Electronics9.12(2020): 2203
[15]Deb,Daizy,andSudiptaRoy."BraintumordetectionbasedonhybriddeepneuralnetworkinMRIbyadaptivesquirrel searchoptimization."Multimediatoolsandapplications80.2(2021):2621 2645
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal
International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056
Volume: 09 Issue: 07 | July 2022 www.irjet.net p ISSN: 2395 0072
Heena Kousar
DepartmentofComputerScience&Engineering
Vignan’sFoundationforScience,Technology&Research
Arimanda Chaitanya Sri
DepartmentofComputerScience&Engineering
Vignan’sFoundationforScience,Technology&Research
Saranu Charitha Sri
DepartmentofComputerScience&Engineering Vignan’sFoundationforScience,Technology&Research
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal