International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
![]()
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
1PhD Scholar, UIT RGPV, Bhopal, India, 2 Professor, UIT RGPV, Bhopal, India, 3 Professor, RGPV, Bhopal, India. ***
ABSTRACT In this research program, high volume ultra fine fly ash concrete mixes produced with OPC 53 grade cement for higher grade M40, M50 and M60. Initially control mix was produced with 100 % OPC cement. Further 40% of cement content was replaced with ultra fine fly ash with Alccofine (Metakaolin) and fresh properties were found. The Metakaolin (alccofine) were used in 5, %, 10%, 15% and 20 % to enhance the concrete properties and to reduce cement content for M40, M50 and M60. In such a way overall cement content was reduced up to 60 %. Replacement of cement by UFFA with Metakaolin results in more improved and economical concrete. Workability, density and water absorbtion of produced concrete were determined in the laboratory. Combination of UFFA and Metakolin shows use of Metakoline reduces the workability of concrete and density of concrete. In comparison to control mix, concrete containing fly ash and Metakoline shows less segregation, a lower rate of waster absorbtion and greater cohesion.
Keywords:Ultra fineflyash,metakaolin,ordinaryportlandcement,workability,density,waterabsorbtion.
Cementbothinmortarandconcrete,isthemostessentialelementoftheinfrastructureandhasbeenknownasa long lasting constructionmaterial[16,17].Reuseofrecycledorwastematerialsfortheconstructionofcivilstructuresisanissueofgreat importance in this century. Mixing of mineral admixtures in concrete and mortar improves compressive strength, pore structure and permeability. Some of this materials, known as pozzolana, which by themselves have no cementitious properties,however,whenusedwith portlandcementreactstoformcementitiousmaterials.Partialreplacementof portland cementinconcretereducesthevolumeofportlandcement.Thisreductionincementvolumefurtherreducestheconstruction cost,energylossandwasteemissionssuchascarbondioxide(CO2)emission. Thisalso,reducestheenergyconsumptionand thus,reducestherateofglobalwarming[17,18,and19].
Theuseofsupplementary cementitious material inhighstrength concreteand highperformance concreteis commonnowa days. Providing alternative material to reduce cement consumption in concrete is quite challenging task. Although a no of studieshavebeenconductedonuseofSCMsuchasclasscflyashinHVFAconcrete[1,3,5,14]andinhighstrengthconcrete [4], class F fly ash [13], Fly ash in HVFA concrete [2, 6, 8, 11], to provide economical, ecological , green concrete and to minimize environmental problem. These studies shows excellent properties such as workability, density and compressive strength, flexural strength, split tensile strength, abrasion resistance etc. Among all the SCM in concrete fly ash plays an importantroleinreducingcostandprovidingalternativesupplementarycementitiousmaterialtoconstructionindustry.The performanceofflyashcanfurtherbeimprovedusingmineraladmixturesuchasGGBSandsilicafumeinconcrete[11,13]and alccofine in ultra HPC [12]. Use of alccofine with UFFA shows improved performance of concrete. Previous research do not show much literature in this regard and there is a research gap in use of UFFA in construction application especially using alccofine.Thereforeit canbesaidthat there isa needofresearchandinvestigation inthisparticulararea to understandthe mostbeneficialandeconomicalfeaturesoftheUFFAwithmetakaolin(alccofine)inconcreteforcementreplacement.
Theresearchwasaimedtoinvestigateeffectoffreshpropertiesofconcreteusingultrafineflyashwithalccofine(metakaoline) forcementreplacement.
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
OPC53gradecementofUltratechwasusedforthisresearchprogram.
Natural Sand
Locallyprocurednaturalsandwasusedasfineaggregateinconcrete.LocallyavailableNarmadasand(zone II)wasused
A combination of 20mm nominal size aggregate and 10mm nominal size aggregate is used as coarse aggregate in this experimentalprogram.Bothtypesofcoarseaggregatewerelocallyprocured.
ThewaterusedwasordinarytapwaterfromtheBhopalcity.
Ultra Fine Fly ash
FlyashusedinthisstudywascollectedfromSarnithermalpowerplant.
Metakaolin
CommerciallyavailableBagsofMetakaolinwereusedinvariousproportionsinthisstudy.
To conduct experimental program various trials were prepared using metakaoline and ultrafine fly ash and metakaolin for gradeM40,M50andM60.
Variousconcretemixeswereproducedinthelabusingultra fineflyash(40to45%)incombinationwithmetakaolin(5%,10 %, 15% and 20%) for M40, M50 and M60. Control mix with 100 % OPC and concrete mix with 50%UFFA were casted and testedinthelaboratory Freshpropertiesweredeterminedandcomparedwithcontrolled100%OPC concreteand50%UFFA concrete.
Table(6.1,6.2and6.3)showsworkability,(6.4,6.5and6.6)densityand(6.7,6.8and6.9)waterabsorptionforgradeM40, M50andM60.
Table 6.1 Workability of UFFA modified concrete M40
Mix W/C Ratio Cement + UFFA (%) Metakaolin (%)
Slump value (mm)
M40(Controlmix) 0.38 100%OPC 00% 40
Decrease in slump value (%) as compared to OPC concrete
M40UFFA50MK0 0.32 50%OPC+50%UFFA 00% 45 +12.5
M40UFFA45MK5 0.30 50%OPC+45%UFFA 05% 38 5.26
M40UFFA40MK10 0.30 50%OPC+40%UFFA 10% 36 11.11
M40UFFA45MK15 0.30 40%OPC+45%UFFA 15% 34 17.64
M40UFFA40MK20 0.30 40%OPC+40%UFFA 20% 32 25
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
5 10 15
0
Fig.6.1WorkabilityofUFFAmodifiedconcreteM40grade
ItisclearfromtheabovechartthatworkabilityofconcreteincombinationwithUFFAandMetakaolinedecreasesascompared to OPC concrete as well as UFFA concrete for grade M40. Workability of 50% UFFA concrete is found to be 12.5% more as comparetoOPCconcrete.Maximumreductioninslump25%isfoundat40%UFFAand20%MK.Thedecreaseofworkability could be interpreted due to the high surface tension of Metakoline, while the quantity of cement plays a reverse role, due to theamountofpasteinthebatches,whichincreasestheconsistencyofconcretebyitsgelatinousproperty.
Table 6.2 Workability of UFFA modified concrete M50
Mix W/C Ratio Cement + UFFA (%) Meta kaolin (%) Slump value (mm) Decrease in slump value (%) as compared to OPC concrete
M50(Controlmix) 0.33 100%OPC 00% 35
M50UFFA50MK0 0.30 50%OPC+50%UFFA 00% 40 +14.28
M50UFFA45MK5 0.28 50%OPC+45%UFFA 05% 32 9.37
M50UFFA40MK10 0.28 50%OPC+40%UFFA 10% 30 16.67
M50UFFA45MK15 0.28 40%OPC+45%UFFA 15% 28 25.00
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
Workability of UFFA modified concrete M50 grade Slump (mm)
0 5 10 15 20 25 30 35 40 45
Fig.6.2WorkabilityofUFFAmodifiedconcreteM50grade
ItisclearfromtheabovefigthatworkabilityofconcreteforM50gradeisalsofoundtobereduced.Itwasfoundthatincrease in Metaoline content results in reduction in slump. Maximum decrease in slump was 34.61% for concrete blended with 40%UFFAand20%MK.Workabilityof50%UFFAconcreteisfoundtobe14.28%moreascomparetoOPCconcrete.
Table 6.3 Workability of UFFA modified concrete M60
Mix W/C Ratio Cement + UFFA (%) Meta kaolin (%) Slump value (mm)
M60(Controlmix) 0.28 100%OPC 00% 30
Decrease in slump value (%) as compared to OPC concrete
M60UFFA50MK0 0.26 50%OPC+50%UFFA 00% 35 +16.67
M60UFFA45MK5 0.24 50%OPC+45%UFFA 05% 28 7.14
M60UFFA40MK10 0.24 50%OPC+40%UFFA 10% 26 15.38
M60UFFA45MK15 0.24 40%OPC+45%UFFA 15% 24 25.00
M60UFFA40MK20 0.24 40%OPC+40%UFFA 20% 22 36.36
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
Workability of UFFA modified concrete M60 gradeSlump (mm)
0 5 10 15 20 25 30 35 40
Fig.6.3WorkabilityofUFFAmodifiedconcreteM60grade
AbovefigshowsthatworkabilityofconcreteforM60gradeisalsofoundtobereduced.ASpercentageofmetakoline increases workability decreases. Maximum reduction 36.36% in slump is found at 40%UFFAand 20%MK. Workability of 50% UFFA concreteisfoundtobe16.67%moreascomparetoOPCconcrete.
Table 6.4 Density of UFFA modified concrete M40
Mix
W/C Ratio Cement + UFFA (%) Meta kaolin (%) Average weight of cubes in gram
Density of cubes kg/m3
M40(Controlmix) 0.38 100%OPC 00% 8630 2557.03
M40UFFA50MK0 0.32 50%OPC+50%UFFA 00% 8580 2542.22
M40UFFA45MK5 0.30 50%OPC+45%UFFA 05% 8560 2536.29
M40UFFA40MK10 0.30 50%OPC+40%UFFA 10% 8540 2530.37
M40UFFA45MK15 0.30 40%OPC+45%UFFA 15% 8520 2524.44
M40UFFA40MK20 0.30 40%OPC+40%UFFA 20% 8450 2503.37
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
Density of UFFA modifed concrete M40 grade (Kg/m3)
2470 2480 2490 2500 2510 2520 2530 2540 2550 2560 2570
Fig.6.4DensityofUFFAmodifiedconcreteM40grade
It is clear that the density of UFFA and MK concrete decreases as compared to OPC concrete. Variation in density of various concrete mix are shown in fig. 6.4. Maximum density 2557.03 kg/m3is found at 100% OPC concrete while lowest density 2503.37kg/m3isfoundat40%UFFAand20%MK.
Table 6.5 Density of UFFA modified concrete M50
Mix W/C Ratio Cement + UFFA (%) Meta kaolin (%) Average weight of cubes in gram
Density of cubes kg/m3
M50(Controlmix) 0.33 100%OPC 00% 8732 2587.25
M50UFFA50MK0 0.30 50%OPC+50%UFFA 00% 8612 2551.70
M50UFFA45MK5 0.28 50%OPC+45%UFFA 05% 8590 2545.18
M50UFFA40MK10 0.28 50%OPC+40%UFFA 10% 8560 2536.29
M50UFFA45MK15 0.28 40%OPC+45%UFFA 15% 8530 2527.40
M50UFFA40MK20 0.28 40%OPC+40%UFFA 20% 8540 2503.37
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
Density of UFFA modified concrete M50 (kg/m3)
2460 2480 2500 2520 2540 2560 2580 2600
Fig.6.5DensityofUFFAmodifiedconcreteM50grade
It is clear that the density of UFFA and MK concrete decreases as compared to OPC concrete. Variation in density of various concrete mix are shown in fig. 6.5. Maximum density 2587.25 kg/m3is found at 100% OPC concrete while lowest density 2503.37kg/m3isfoundat40%UFFAand20%MK.
Table 6.6 Density of UFFA modified concrete M60
Mix W/C Ratio Cement + UFFA (%) Meta kaolin (%) Average weight of cubes in gram
Density of cubes kg/m3
M60(Controlmix) 0.28 100%OPC 00% 8735 2588.14
M60UFFA50MK0 0.26 50%OPC+50%UFFA 00% 8710 2580.74
M60UFFA45MK5 0.24 50%OPC+45%UFFA 05% 8680 2571.85
M60UFFA40MK10 0.24 50%OPC+40%UFFA 10% 8650 2562.96
M60UFFA45MK15 0.24 40%OPC+45%UFFA 15% 8615 2552.59
M60UFFA40MK20 0.24 40%OPC+40%UFFA 20% 8590 2545.18
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
Density of UFFA modifed concrete M60 (Kg/m3)
2520 2530 2540 2550 2560 2570 2580 2590 2600
Fig.6.6DensityofUFFAmodifiedconcreteM60grade
It is clear that the density of UFFA and MK concrete decreases as compared to OPC concrete. Variation in density of various concrete mix are shown in fig. 6.6. Maximum density 2588.14 kg/m3is found at 100% OPC concrete while lowest density 2545.18kg/m3isfoundat40%UFFAand20%MK.
Table 6.7 Water absorption test of UFFA modified concrete M40
Mix W/C Ratio Cement + UFFA (%) Metakaolin (%)
Dry weight of cubes in (gram)
Wet weight of cubes in (gram)
Water absorbtion (%)
M40(Controlmix) 0.38 100%OPC 00% 8630 8728 1.35
M40UFFA50MK0 0.32 50%OPC+50%UFFA 00% 8580 8734 1.76
M40UFFA45MK5 0.30 50%OPC+45%UFFA 05% 8560 8745 2.16
M40UFFA40MK10 0.30 50%OPC+40%UFFA 10% 8540 8720 2.10
M40UFFA45MK15 0.30 40%OPC+45%UFFA 15% 8520 8787 3.13
M40UFFA40MK20 0.30 40%OPC+40%UFFA 20% 8450 8765 3.72
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
Water absorbtion (in %) of UFFA modified concrete M40
0 0.5 1 1.5 2 2.5 3 3.5 4
Fig.6.7WaterabsorptionofUFFAmodifiedconcreteM40grade
It is clear that the water absorbtion of UFFA and MK concrete decreases as compared to OPC concrete. Fig. 6.7 shows water absorptionofvariousconcretemixes.Maximumwaterabsorption 3.72%isfoundat40%UFFAand20%MK.
Table 6.8 Water absorption of UFFA modified concrete M50
Mix W/C Ratio Cement + UFFA (%) Meta kaolin (%)
Dry weight of cubes in (gram)
Wet weight of cubes in (gram)
Water Absorbtion (%)
M50(Controlmix) 0.33 100%OPC 00% 8732 8850 1.35
M50UFFA50MK0 0.30 50%OPC+50%UFFA 00% 8612 8760 1.71
M50UFFA45MK5 0.28 50%OPC+45%UFFA 05% 8590 8762 2.00
M50UFFA40MK10 0.28 50%OPC+40%UFFA 10% 8560 8745 2.16
M50UFFA45MK15 0.28 40%OPC+45%UFFA 15% 8530 8720 2.22
M50UFFA40MK20 0.28 40%OPC+40%UFFA 20% 8540 8760 2.57
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
Water absorbtion (in %) of UFFA modified concrete M50
0 0.5 1 1.5 2 2.5 3
Fig.6.8WaterabsorptionofUFFAmodifiedconcreteM50grade
It is clear that the water absorption of UFFA and MK concrete decreases as compared to OPC concrete. Fig. 6.8 shows water absorptionofvariousconcretemixes.Maximumwaterabsorption 2.57%isfoundat40%UFFAand20%MK.
Table 6.6 Water absorption of UFFA modified concrete M60
Mix W/C Ratio Cement + UFFA (%) Meta kaolin (%)
Dry weight of cubes in (gram)
Weight weight of cubes in (gram)
Water absorption (%)
M60(Controlmix) 0.30 100%OPC 00% 8735 8860 1.43
M60UFFA50MK0 0.28 50%OPC+50%UFFA 00% 8710 8854 1.65
M60UFFA45MK5 0.24 50%OPC+45%UFFA 05% 8680 8840 1.84
M60UFFA40MK10 0.24 50%OPC+40%UFFA 10% 8650 8840 2.19
M60UFFA45MK15 0.24 40%OPC+45%UFFA 15% 8615 8810 2.26
M60UFFA40MK20 0.24 40%OPC+40%UFFA 20% 8590 8820 2.67
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056
Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
Water absorbtion (in %) UFFA modified concrete M60
0 0.5 1 1.5 2 2.5 3
Water absorbtion (in %) of UFFA modified concrete M60
Fig.6.9WaterabsorptionofUFFAmodifiedconcreteM60grade
It is clear that the water absorption of UFFA and MK concrete decreases as compared to OPC concrete. Fig. 6.9 shows water absorptionofvariousconcretemixes.Maximumwaterabsorption 2.67%isfoundat40%UFFAand20%MK.
Inthisstudyconcretemixesofvariousproportionswithw/cratio0.38to0.24werepreparedinthelaboratorytodetermine workabilityanddensity.Onthebasisofresultsobtainedinthelaboratoryitcanbe concludedthatuseofMetakolinereduces theworkabilityofconcreteanddensityofconcrete.Incomparisontocontrolmix,concretecontainingflyashandMetakoline showslesssegregation,alowerrateofwasterabsorbtionandgreatercohesion.
1. Yash Shrivastava and Ketan Bajaj., “Performance of Fly Ash and High Volume Fly Ash Concrete in Pavement Design” 2012 IACSITCoimbatoreConferencesIPCSITvol.28(2012),Singapore.
2.NikhilT.R.,“DesignandEvaluationofHighVolumeFlyashConcreteforRigidPavements WhiteTopping”,IndianJournalof AppliedResearch,Volume:1|Issue:12|September2012,
3. P. Sravana, P. Srinivasa Rao, “ Effect of Thermal Cycles on Compressive strength of High Volume Fly ash Concrete”, 31st ConferenceonOurWorldinConcrete&Structures:16 17August2006,Singapore.
4.GunavantK. Kate, PraneshB.Murnal,Effect ofAdditionofFlyashonshrinkage characteristicsinhighstrengthconcrete”, InternationalJournalofAdvancedTechnologyinCivilEngineering,ISSN:2231 5721,Volume 2,Issue 1,2013.
5. D.K. Soni and Jasbir Saini, “Mechanical Properties of High Volume Fly Ash (HVFA) and Concrete Subjected to Evaluated 1200C Temperature”, International Journal of Civil Engineering Research. ISSN 2278 3652 Volume 5, Number 3 (2014), pp. 241 248©ResearchIndiaPublications
6.S.Lokesh,M.G.RanjithKumar,S.Loganathan,“EffectiveUtilizationofHighVolumeFlyashwithLightWeightAggregatein ConcreteforConstructionIndustry”,InternationalJournalof AdvancedStructuresandGeotechnicalEngineering ISSN2319 5347,Vol.02,No.04,October2013.
International Research Journal of Engineering and Technology (IRJET) e ISSN:2395 0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN:2395 0072
7. Luigi Coppola, Denny Coffetti, and Elena Crotti, “Plain and Ultrafine Fly Ashes Mortars for Environmentally Friendly ConstructionMaterials”,19March2018JournalSustainability.
8. T. P. Singh., “FIELD PERFORMANCE OF HIGH VOLUME FLY ASH CONCRETE THE INDIAN EXPERIENCE by, MCD ROAD PROJECT,NEWDELHI,2007.
9.SarathChandraKumar.Bendapudi,,P.Saha,“ContributionofFlyashtothepropertiesofMortarandConcrete”,International JournalofEarthSciencesandEngineering,Volume04,No06SPL,pp1017 1023,October2011.
10. Vanita Aggrawal., S. M. Gupta., S. N. Sachdeva, Concrete Durability through High Volume Fly ash Concrete (HVFC) A Literaturereview,InternationalJournalofEngineeringScienceandTechnologyVol.2(9),2010,4473 4477.
11.Jeong EunKim,Wan ShinPark,Young IlJang,Sun WooKim,Sun WoongKim,Yi HyunNam,Do GyeumKim,andKeitetsu Rokugo, “Mechanical Properties of Energy Efficient Concretes Made with Binary, Ternary, and Quaternary Cementitious BlendsofFlyAsh,BlastFurnaceSlag,andSilicaFume”, InternationalJournalofConcreteStructuresandMaterialsVolume10, Number3Supplement,pp.S97 S108,September2016.
12. Indu Lidoo, Sanjeev Naval, Rajeev Sharda, “Design of High Performance Concrete (HPC) M100 Using Mineral Admixture (Alccofine 1203) and Fly Ash”, International Interdisciplinary Conference on Science Technology Engineering Management PharmacyandHumanitiesHeldon22nd 23rdApril2017,inSingapore.
13. Alaa M. Rashad*, Hosam El Din H. Seleem, and Amr F. Shaheen, “1315 Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete”, International Journal of Concrete Structures and Materials Vol.8, No.1, pp.69 81,March2014.
14L.Krishnaraj,P.T.Ravichandran, “Characterisation ofultra fineflyashassustainablecementitiousmaterial formasonry construction”, Articlehistory:Received4March2020Revised4July2020Accepted12July2020Availableonlinexxxx.
15. S. Abbas, M. L. Nehdi, and M. A. Saleem, “Ultra High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges”, International Journal of Concrete Structures and Materials Vol.10, No.3, pp.271 295,September2016.
[16] Amin N. “Use of Bagasse Ash in Concrete and Its Impact on the Strength and Chloride Resistivity “J. OF MAT. IN CIVIL ENGG.,May2011,P.717 720,
[17]SujivorakulC.,JaturapitakkulC.andTaotipA.”UtilizationofFlyAsh,RiceHuskAsh,andPalmOilFuelAshinGlassFiber ReinforcedConcrete”J.OFMAT.INCIVILENGG.,Sep.2011,P.1281 1288.
18]VanikarS.N.“THEADVANCESANDBARRIERSINAPPLICATIONOFNEWCONCRETETECHNOLOGY”,Int.W/SonSus.Dev. andCon.Tech.,Beijing2004,P.25 33.
[19]MehtaP.K.“HIGH PERFORMANCE,HIGH VOLUMEFLYASHCONCRETEFORSUSTAINABLEDEVELOPMENT”,Int.W/Son Sus.Dev.andCon.Tech.,Beijing2004,P.3 14.