COMPARATIVE STUDY OF DIFFERENT SHEAR WALL ON IRREGULAR STRUCTURE

Page 1

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN: 2395 0072

COMPARATIVE STUDY OF DIFFERENT SHEAR WALL ON IRREGULAR STRUCTURE

1M. Tech Student of Structural Engineering, Department of Civil Engineering, RGEC, Meerut 250004, U.P, INDIA 2 Assistant Professor, Department of Civil Engineering, RGEC, Meerut 250004, U.P, INDIA

Abstract A shear wall is a rigid vertical member. the lateral forces acting in a structure. These walls are mostly used in an earthquake zone. RCC structures are transferring lateral forces slab to beam, beam to column, column to the foundation, and foundation to soil. These walls are especially used high rise buildings subject to earthquake and wind forces. These walls have more vigor, and rigidity, and resist in plane loads that are applied along with their height. The special region for this wall used devastation is the destruct During the earthquake, the reduction of lateral stability and strength in the man made structure for the special reason for the extermination. The present investigation is to study about effects of the shear wall materials in a typical high rise building to repair earthquake resistance. This report determines bonzer materials of shear walls. G+12 residential building modeling, analysis and determine the results. In the present study, seven models were prepared. Case 1. Original building plan. Case 2. uses 300mm thickness of RCC walls. Case 3 thickness of shear walls 500mm. Case 4. 22mm thickness of steel plate shear wall. Case 5. 24 mm thickness of steel plate shear wall. Case 6. The thickness of the steel plate is 26mm. Case 7 without shear walls in the original plan. The behaviors of the structure by using the response spectrum method for dynamic analysis. The present study has been done by E TAB 2018. The determine the resultant shear force and bending moments diagram, shear stress, and displacement, base sear, time period, etc. property of the structure. This present research paper completes the assessment of the earthquake performance of the shear walls.

Keywords: Shear Wall, Irregular Building Plan, Story Drift, Displacement, Time period, Base Shear, Materials, Response Spectrum Method

1. INTRODUCTION:

In high rise buildings, a shear wall isa primary element. it resists the later forces. Past research indicated that loss in lateral capacity in the case of reinforced concrete shear walls exhibits a sudden loading case. In this condition the wall corner and web crushing in the plastic zone. Shear walls may give rise to low energy extravagance capacity due to these reasons. Ductile failure mechanism and high energyabsorptiontodisplacementcontrolsteelplateshear

wall system and given substantial stiffness and control ductile failure mechanism, the higher energy of steel plate shearwall.TheConstitutesoftwo boundary columns and a horizontal floor connected to a steel plate. The steel plate reduces energy, dissipation capacity, and decreases shear strength, and drops the stiffnessofthesystem.

1.2 FUNCTION OF SHEAR WALL:

The behavior of the shear wall depends upon the different categories like the thickness of the wall, the position of the wall, using materials property, shape,andsizeofthewall. 

Shear wall transfers the loads into the foundation oftherigidverticaldiaphragm. 

Theshearwallisresistedwindandgravityload. 

Thebuildingstructureshearwallprovidesgeneral strengthandinertiafortheconstruction. 

These walls reduce the lateral loading of the building.

1.3 OBJECTIVES:

Theobjectivesofthisstudyareasfollows 

In the case of an irregular building plan the main objective is the find the optimal position for the shearwall. 

In the case of an irregular building plan the most importantobjectiveisthedeterminewhichhunky dorymaterialoftheshearwall. 

In the condition of different thicknesses and different materials evaluate the story force diagram, story drift, story shear, period, and displacement using the response spectrum method.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page651
--------------------------------------------------------------------*** ------------------------------------------------------------------

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN: 2395 0072

2. ANALYTICAL STUDY:

The present study has been carried out on G+12 residentialbuildingswiththeshearwalls.

GEOMETRICAL PROPERTIES:

Heightofthebuilding=44.94m

Xdirectiondistance=47.53m

Ydirectiondistance=36.08m

Concretegrade=M30,M35,M40,M45.

Rebargrade=500HYSD

Steelgrade=Fe250,345.

ISMB=350,400,450.

Columnsize

C1=400mmx600mm

C2=600mmx400mm

C3=600mmx600mm

Beamsize

B1=900mmx500mm

B2=230mmx300mm

B3=300x500mm

Slabthickness=200mm

LOADS

Dead load:

AllspecificationsaregivenasI.S875(part1):1987

UnitweightofRCC=25KN/m

Unitweightofplaster=20KN/m

Unitweightofbrickmasonry=19.2KN/M

Unitweightofsoil=17KN/m

200thicknessofRCCslaband400mmfloor finishing.

Live load:

AllspecificationsaregivenasI.S875(part2):1987

Allroomandkitchen=2.0

Toiletandbath=2.0

Balconies=3.0

Corridors,passages=3.0

Stair caseincludingtimeescapesandstoreroom= 3.0

Wind load:

AlltheparametersgivenasI.S875(part 3):1987.

Windspeed=47m/s

Terraincategory=3

Riskcoefficient(k1)=1

Topography(K3)=1

Seismic loading:

AlltheparametersgivenasI.S1893(part 3):1987.

Seismiczone=IV

Seismiczonefactor=0.24

Soiltypes=mediumsoftsoil

Storyrange=baseto12

Importancefactor(I)=1

Timeperiodxdirection=0.6733

Timeperiodydirection=0.5866

3. METHODOLOGY:

In this work, seven models of different materials and thicknesses are considered to be under gravity and lateral loading. Case 1 original building plan modeling case 2 in this case 300 mm thickness of RCC shear wall. Case 3 500mm thickness of RCC shear wall. Case 4 thickness of steelplateshearwall22mm.case524mmthickness.Case 6 thickness of steel plate 26mm. case 7 without a shear wallintheoriginalplan.Usingthesestepsformodelingand analysisofstructure.

Step 1. Setup the standard country codes.

We selected the new model template open and mention countrycodesanddisplayunits.

Step 2.

Create grid line according to plan:

The crate grid dimension and story dimension define the masterstoryaccordingtoplan.

Step

3. Define Materials property:

Wedefinethematerialpropertyandgotothedefinemenu, Material properties template. we add a new material definedasconcrete,rebar,andsteel.

Step 4. Define Section Property:

Gotodefinemenuandgosectionpropertytemplated.Crate beam, column, slab, and shear wall size according to the buildingplan.

© 2022,
|
7.529 | ISO 9001:2008 Certified Journal | Page652
IRJET
Impact Factor value:

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN: 2395 0072

Step 5. Create structure elements:

After defining section properties next step is to start the modelingprocess.Placebeam,column,slab,andshearwall.

Step 6. Assign supports:

Go to the assign menu and apply joint/ frame /fixed reaction.Selectthebaseareaandapplyfixedsupports.

Step

7. Assign dead load:

Gravity load is frame loads available in the structure. Calculated dead load value and assign outer walls and internal walls. We have gone to assign menu, frame loads, distributedandabsolutedistance,applyloadthenok.

Step 8. Assign live load:

As per I.S code for given the all specification value. apply liveload.Gotoshellload,uniform,applythenok.

Step 9. Assign earthquake load:

ItdefinesI.S1893:2016.Allparametersaregivenliketime period,seismiczonefactor,soilprofile,etc.properties.

Step 10. Assign wind load:

Using I.S 875(part3): 1987, this code is given wind speed, risk coefficient, terrain roughness, topography factor, importancefactor,etc.properties.

Step 11. Crate load combination:

The Combinationis defined as it applies to the result for every object in the structure. Go to define menu, loadcasestemplate,andaddnnewcombination

Step 12. Define p delta, mass source, and response spectrum method:

Apply response spectrum method and define p delta value sand,masssourcesvalue.

Figure: 1. 3DModellingoriginalplan, Case1

Step 13. Analysis of the model:

After the completion of all the modeling steps. We have performed the analysis process and checked errors. Go to the analysis menu and the first step is to apply the check model. The next step is the active degree of freedom, set loadcaserun,automeshsettingforfloorandwall,andthen run analysis. These are analysis steps are completed and read the last analysis. In this list check the stability of the model, linear static case using for p delta readings, RITZ model analysis, response spectrum x, y, and z direction Severaljointswithrestraintsandmosssources

Figure: 2 plan,Case6

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page653

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN: 2395 0072

Thegraph4,5,6,7,8,and10 given belowdepictthe displacementalongthexandydirectionminimum steelplateshearwall.

The base shear for steel plate wall and RCC shear wallisdepictedintable2.

Figure: 3. 3DModelling, Case 6

RESULT DISCUSSION:

Figure: 4 case6 26mmthicknesswallmaterial

Whenthethicknessofthesteelplateisdecried,the steel plate wall case and the composite story drift isbeincreasing 

Figure 8. Depicts that the time periods shear slightly reduces. when the thickness of the RCC shearwalldecreases. 

Table2.Depictsthatthebaeshearisslightlywhen thicknessofsteelplate.

Whenthethicknessofthesteelplateisdecried,the steel plate wall andthe composite storydrift is be increasing.

Figure 5. X Direction Time Period Case

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page654
4.
1 2 3
4 5 6 7 8.27 5.42 5.13 4.882 3.751 3.664 3.584
1 2 3 4 5
Case
6 7
Figure 6 Y Direction Time Period 7.07 5.03 4.79 4.602 3.271 3.412 3.35

6.06 3.67 83.57 5 3.38 8 2.32 1 2.24 2.18 1 2 3 4 5 6 7 Case

1.213968 1.008931 0.967683 0.803141 0.619937 0.445971 0.000039 0.000038 0.000027 0.000006

EQ x EQ y EQX ( E.C) EQ Y ( E.C) EQX(+E.C)

9937 0.67 6917 0.57 6396 0.35 4436

8359 0.32 3872 1.27 6244 EQ (Y) 0.96 7683 1.07 1975 0.89 0181 0.49 1641 0.46 5721 0.44 2602 1.99 5065 E.Q X(+E C) 0.80 3141 0.87 3275 0.74 9098 0.47 4506 0.45 3696 0.43 4869 1.49 697 E.Q X( EC) 0.44 5971 0.50 4101 0.40 3693 0.23 4367 0.22 3022 0.21 2874 1.55 0734 E.Q Y(+E C) 1.21 3968 1.33 7798 1.20 798 0.64 3559 0.61 1245 0.58 2293 2.33 9465 E.Q Y( EC) 1.00 8931 1.11 1316 0.93 1937 0.54 3331 0.51 6175 0.49 1906 2.26 7242 Win dX 0.00 0006 0.00 0007 0.00 0006 0.00 0004 0.00 0003 0.00 0003 0.00 0022 Win dY 0.00 0038 0.00 0043 0.00 0035 0.00 0019 0.00 0018 0.00 0017 0.00 0099 Win d X 0.00 0027 0.00 003 0.00 0025 0.00 0014 0.00 0014 0.00 0013 0.00 01 Win d Y 0.00 038 0.00 0043 0.00 003 0.00 0019 0.00 0018 0.00 0017 0.00 0099

Table 1. MaximumDisplacement

Where, EQX=Earthquakex direction

EQ Y (+EC) Wind X Wind y Wind x Wind y 1.337798 1.111316 1.071975 0.873275 0.676917 0.504101 0.000047 0.000043 0.000007 0.000003

Figure 8. Displacement,mmincase1

EQX(+, EC)=Earthquakexdirectioneccentriccase(+, ) EQY(+, EC)=Earthquakeydirectioneccentriccase(+, ) EQY=Earthquakeydirection.

Figure 9. Displacement,mmincase2

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page655 DISPLACEMENT OF STRUCTURE(MM) Cond ition Cas e 1 Cas e 2 Cas e 3 Cas e 4 Cas e 5 Cas e
Cas e 7
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN: 2395 0072
6
EQ (X) 0.61
0.33
Figure 7. ZDirectionTimePeriod

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN: 2395 0072

1.20718 0.931937 0.890181 0.749098 0.573696 0.403693 0.000066 0.000039 0.000035 0.000025 0.64359 0.543331 0.491641 0.474506 0.354436 00.234367 0.000019 0.000018 0.000014 0.000009

Figure 10. Displacement, mm in case 3

Figure 12. Displacement, mm in case 4

0.582293 0.491606 0.442602 0.434869 0.323872 0.212874 0.000019 0.000017 0.000013 0.000009 0.611245 0.516175 0.465721 0.453696 0.338359 0.223022 0.000019 0.000018 0.000014 0.000009

2.339465 2.267242 1.995065 1.550734 1.496765 1.276244 0.000094 0.000024 0.000022 0.000006

Figure 13. Displacement, mm in case 6

Figure 14. Displacement, mm in case 7

Figure 12 Displacement, mm in case 5

© 2022,
| Impact
7.529 | ISO
Certified Journal | Page656
IRJET
Factor value:
9001:2008

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN: 2395 0072

TheRCCwallandsteelwallistraditionalinseismic behavior. 

The minimum displacement in 26mm thickness of steelplateshearwall. 

Intheoriginalplanwithoutashearwallwasgiven more displacement, time period, and story drift as tocomparedtotheplanwiththeoriginalplan. 

Calculation of the values manual and software almostsameresults.

REFERENCES:

[1] I.S 1893(Part 1):2016 Indian Standard Criteria for earthquake resistant design of structure general provision andbuilding(sixthrevision).

[2] I.S 875 (Part 3):2015 Indian Standard Design loads (other than earthquake)for buildingandstructure codeof practice(part3)windload(thirdrevision).

Base Shear ( maximum)

S.NO EQ X EQY RSZ Shear X dir Shear Y Shear Z

Case 1 0.05092 0.024001 0.7971006 580.0522 273.4041 386.7015

Case 2 0.08803 23931576 6370355 0.0001255 34110.93 0.666667

Case 3 0.00585 0.240707 0.9630144 55.167482 2269.565 0.666667

Case 4 0.10907 2419299 2501971 0.0003958 8779.972 0.666667

Case 5 0.00283 0.242372 2.5740292 9.968838 854.9764 0.666667

Case 6 0.02483 0.000099 0.2976071 757.47249 3.020493 0.666667

Case 7 7.5E-05 0.207288 0.3431188 1.9847353 5485.5 0.666667

Figure :15. Force/Stress Diagram Case 1 Table 2. Maximum Base Share

CONCLUSIONS:

The maximum time period is without the shear wallinoriginalplanandtheminimumtimeperiod isthicknessofsteelplatein26mm.

[3]I.S875(Part2):1987IndianStandardCodeofpractice for design loads (other than earthquake) for building and structurepart2ImposedLoad(secondrevision).

[4]I.S875(Part1):1987IndianStandardCodeofpractice fordesignload(other than anearthquakefor building and structures) Dead Load the unit weight of building materialsandstoredmaterials(secondrevision).

[5] I.S 13920: 2016 Indian Standard Ductile design and detailing of a reinforced concrete structure subjected to seismicforces Codeofpractice(secondrevision).

[6] Maksudul Haque, Hasibul Hasan Rahat, Rifat AL Saif, S. Reza Chowdhury. April 2018. Analysis of shear wall location due to the earthquake. Effect in high rise RCC structure(volume.5)

[7]C.j.GAN,X.L,Lu,W.Wong.October2018,Beijing, China. Seismic behavior of steel plate reinforced concrete shear wall.

[8] I.S 456:2000 Indian standard Plain and reinforced concrete codeofpractice(Fourthrevision).

[9] I.S 800: 2007 Indian Standard General Construction in Steel codeofpractice(Thirdrevision)

The time period slightly reduces when the thickness of the RCC wall and steel plate is decreased.

The story drift decreases in the case of RCC shear wall and increases in the case of steel plate shear wall.

[10] Youssef I. Agag, Mohamed E. El Madwy, Raghda I. Halima (vol. 7 issue 2, February 2019) the effect of shear wall positions and dimension variation on the analysis of themulti storybuilding.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page657

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 06 | June 2022 www.irjet.net p ISSN: 2395 0072

[11]DipanduBhunia,Vipul PPrakashandAshokDpadey. Aconceptualdesignapproachofcoupledshearwalls.2013.

[12]SeyedMohamadseyedkolbadi,NematMassani,Seyed Mahdi Kalbadi , and Masound Mirtaneri. “ Analysis parametericsensitivityonthecyclicBehaviorofsteel wall. (volume2021,ArticleI.D3976793).

©
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page658

Turn static files into dynamic content formats.

Create a flipbook