Skip to main content

COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS AND STAAD-PRO

Page 1

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 05 | May 2022 www.irjet.net p ISSN: 2395 0072

COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS AND STAAD-PRO

Omkar S. Kalase1, Adityara B. Dange2, Shubham P. Thorat3 , Adil A. Jamadar4, Pranil S. Patil5

1,2,3,4,5 Diploma Student, Department of Civil Engineering, Rajarambapu Institute of Technology, Rajaramnagar, India ***

Abstract - Duetotheriseindemandinsteelstructuresin recentyears,therearenumberofsoftwarethatareavailable inengineeringfieldfordesignofsteelstructures.

Thisstudydealswithcomparisonofmanual methodsand softwaretofindtheaccuratedesignofthestructure.Inthis studythedesignoftrussisfirstdonebymanualcalculation andsecondbytheuseofSTAAD Pro.

Theresultsobtainedarethencomparedtoobtainthebest andmostefficienttrussforsteelstructure.

Key words: Design, Analysis, Fink Truss, Design, STAAD PRO, Steel take off

1. INTRODUCTION

Inallpartsoftheworldsteelindustryisrisingrapidly.Steel roof trusses have a broad range of application in industry involving of good load transfer mechanism without negotiatingwiththestructuralappearance.

Nowadays,numberofapplicationsoftwareareavailablein marketfordesignsincivilengineeringfield.software’sare developedonbasisofadvancedanalysiswhichincludesthe effectofloads,earthquakeeffectsetc.inthepresentwork,to studytheefficiencyofcertaincivilengineeringapplication softwareanattemptwasmade.

The study of this paper reviews to analysis and design of steel member /section to be used in construction of steel structure, and its comparative study of properties using softwareandmanualcalculations

2. OBJECTIVE

1.Todesignaneconomicaltruss. 2.Tostudythepropertiesofdesignedtruss.

3.TocomparetheresultsofdesignoftrussfromSTAADPRO andmanualcalculations.

3. SCOPE OF THE PROJECT

Increase the load carrying capacity of truss without optimizingthematerialsused

Modification in design methods which help in easy designofTruss 

Decrease the materials and change in design used withoutoptimizingtheloadcarryingcapacityoftruss.

4. MANUAL DESIGNS

4.1 Methodology in Manual design 1]Trussconfiguration 2]LoadsConfiguration 3]Memberforces 4]Reactions 5]Resultants

4.2 Description of data in manual design

Riseoftruss 1/4ofspan

Self weightofPurlins 318N/m

Roofing

Asbestoscementsheet(dead weight =171N/m2)

HeightofBuilding 11M

C/CSpacingoftruss 8M

WidthofBuilding 16M

4.3 Truss Configuration

LetɑBetheInclinationofTheRoofwithTheHorizontal Tanɑ=4/8=½ ɑ=26o34’ =26.566o

LengthOftheRafter =

LengthOfEachPanel=8.94/4=2.235M

Page3547
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 05 | May 2022 www.irjet.net p ISSN: 2395 0072

=6700/2=3350N=3.35KN

Fig No. 1 Truss Configuration

4.4 Loads on Panel Points

1]Dead Load

AssumeWeightofBracing=12N/M2 DeadWeightofAcSheetSheets=171N/M2 Self WeightofPurlin=318N/M2 =318x8=2544N

PanelLength=2.235m

ThePanelLengthinPlan =2.235Cos260 34’=2.00m.

LoadOnEachIntermediatePanelDuetoDeadLoad =(12+171+110)X(8X2)+2544=7232N ≌7.4KN

LoadOnEndPanelPointsoftheRafter =7.4/2=3.7KN

2] Live Load

Fig No. 2 Dead Loads on Truss

ɑ=26o 34’=26.566o

AssumeNoAccessProvidedtoTheRoof.TheLiveLoadIs ReducedBy20N/M2

ForEachOneDegreeAbove10o Slope LiveLoad=750 20X(26.566 10) =418.68N/M2

TheLoadOnEachIntermediatePanel =418.68*8*2 =6698.88N=6700N=6.7KN

TheLoadOnEachPanelPoint

Fig No. 3 Live Loads on Truss

3] Wind Load

ExpectedTheLifeoftheIndustrialBuildingis50Years andTheLandisPlainandSurroundedbynumberSmall Building

K1 = 1.0

K2 = 0.89

K3 = 1.0 Vb = 47 M/S

Design Wind Speed Vz =K1 *K2 *K3 *Vb = 1.0*0.89*1.0*47

Design Wind Pressure, Pd = Vz 2 =0.6*41.832=1049.8N/M2

HeightOfBuildingColumnAboveGroundLevel,H=11m

WidthOfBuilding,W=16m

InThisPresentExampletheRoofAngleΑIs26.566oFor WhichtheCoefficientsAreTabulatedBelow

TheWindForceIsGivenBy

TheValuesofCoefficientCpeforVariousConditionsinThe TableHaveBeenCalculatedbyTheInterpolationfor AppendixXvIs800 PartIII

1) Windward Side

F1 = = ( 0.8 0.2) X 1.05 X (8 X 2.235) = 18.77≌ 18.8kn

2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified

©
| Page3548
Journal

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 05 | May 2022 www.irjet.net p ISSN: 2395 0072

F2 = 18.8/2 = 9.4 KN [ Intermediate Panel Points]

2) Leeward Side

F3 = = ( 0.731 0.2) X 1.05 X (8 X 2.235) = 17.48≌ 17.5kn

F4 = 17.5/2= 8.75 KN [Intermediate Panel Points]

Horizontalcomponent = 75.2sin 26.566o = 33.63 KN →

Nethorizontalcomponent = 33.63 31.30 = 2.33kN →

Horizontalforceateachfaceshoe = 2.33/2 = 1.165kN →

5. Truss design on STAAD PRO

MethodologyusedindesignonSTAAD

1]Snapnode/beam

2]Supports

3]Properties

4]Loading[DL,LL,WL]

5]LoadEnvelope

6]SteelDesign ApplyIScodes

4.5 Reactions

Fig No. 4 Wind loads on Truss

Thetrussissymmetricalandtherefore,thedeadloadand live reactions will be the same on both supports but the reactions due to wind load will be different on the two supports

Dead Load Reaction

Taking Moment at Lo 7.4 X 2 + 7.4 X 4 +7.4 X 6 + 7.4 X 8 + 7.4 X 10 + 7.4 X 12+ 7.4 X 14 + 3.7 X 16 = R15 X 16

Rl0 = 29.6KN

By Symmetry, Rl0 = Rl5= 29.6KN

Live Load Reactions

Taking Moment at L0 6.7 X 2 + 6.7 X 4 +6.7 X 6 + 6.7 X 8 + 6.7 X 10 + 6.7 X 12+ 6.7 X 14 + 3.35 X 16 = R15 X 16

Rl0 = 29.6kn

By Symmetry, Rl0 = Rl5= 29.6 KN

Components of results

Force: 70.0 KN

Verticalcomponent = 70.0 cos 26.566o =62.60kN ↑

Horizontalcomponent = 70.0 sin 26.566o =31.30 KN ←

Force:75.2kN

Verticalcomponent = 75.2 cos 26.566o = 67.26 KN ↑

7]SteelTake off 8]Analysisofloads

9]Results

STAADDesign:

Use of figures has been done to explain the design process

Figno5AssigningNode/beam

FigNo.6AssigningSupports

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

Page3549
International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 05 | May 2022 www.irjet.net p ISSN: 2395 0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page3550 FigNo.7Selectionofmaterials FigNo.8Assigningofmaterialstothetruss FigNo.9AssigningofLoads FigNo.10LoadCombinations FigNo.11SelectionofISCodes FigNo.12AssigningSteeltakeoffcommand FigNo13.Analysis Results From STAAD-PRO and manual design *NOTE: HIGHLIGHTED SECTIONS ARE RESULTS BASED ON MANUAL DESIGN REULTS WHILE THE NON HIGHLIGHTED ARE RESULTS FROM STAAD PRO STRESS Rafter DL LL WL L 0 U 1 10 58 52.5 125.8848 38.869 35.192 93.870 U 1 U 2 9 56 50.3 125.8848 36.648 33.181 88.617
International Research Journal of Engineering and Technology
© 2022, IRJET | Impact
| ISO
Certified Journal | Page3551 U 2 U 3 8
U 3 U 4 5
U 4 U 5 15
U 5 U 6 14
U 6 U 7 13
U 7 U 5 4
STRESS Main tie DL LL
L 0 L 1
L 1
2 17
L
L
L
STRESS Struts DL LL WL U1 L1 18 6.2 5.6
6.619 5.993
U2 L2 20 12.4 11.2
13.238
U3 M1 22 6.6 6
6.619 5.993
U3M2 23 6.6 6
6.619 5.993
U6 L3 25 12.4
13.238 11.985 33.630 U7 L4 27 6.2 5.6 21.2064 6.619 5.993 16.815 STRESS Minor Slings DL LL WL U2 L1 19 7 6.3 23.688 7.4 6.7 17.5 U2 M1 21 6 5.4 23.688 7.4 6.7 17.5 U6 M2 24 6 5.4 23.688 7.4 6.7 18.8 U6 L4 26 7 6.3 23.688 7.4 6.7 18.8 STRESS Minor Slings DL LL WL U4 M1 11 20.3 18.4
54.605 49.439
L2 M4 6 13.8 12.5 47.376 14.8 13.4
U4 M2 7 20.3
22.20
L3 M2 12 13.8
51.295
Graphical representation of loads on Rafters Graph1 MaxDeadloadonRafters
(IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 05 | May 2022 www.irjet.net p ISSN: 2395 0072
Factor value: 7.529
9001:2008
51.4 46.5 125.8848 34.426 31.170 83.365
48 43.5 125.8848 32.205 29.159 78.112
48 43.5 125.8848 32.205 29.159 79.868
51.4 46.5 125.8848 33.350 30.195 82.775
55.6 50.3 125.8848 36.648 33.181 91.154
58 52.5 125.8848 38.869 35.192 96.796
WL
1 52 47 115.5072 10.637 9.631 24.141
L
45 40.7 92.2704 3.237 2.931 6.641
2 L 3 2 31.1 28.2 44.8944 11.563 10.469 28
3 L 4 3 45 40.7 92.2704 3.237 2.931 9.241
4 L 5 16 52 47 115.5072 22.20 20.10 52.5
21.2064
15.652
42.128
11.985 31.305
21.064
15.652
21.064
16.815
11.2 42.4128
71.064
135.819
35.0
18.4 40.9464
20.10 56.400
12.5 47.376
46.443 129.411

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 09 Issue: 05 | May 2022 www.irjet.net p ISSN: 2395 0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page3552 Graph2 MaxliveLoadinRafters Graph3 MaxwindloadonRafters Graphical representation of load on Main Ties Graph4 MaxDeadloadonmainties Graph5 MaxliveLoadonTies Graph6 Maxwindloadonmainties Graphical representation of load on Struts Graph7 MaxDeadloadinStruts

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 05 | May 2022 www.irjet.net p ISSN: 2395 0072

©
Journal | Page3553
8 Max
Load
Struts
9 Max
10 Max
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified
Graph
live
in
Graph
windloadonstruts Graphical representation of load on Minor Slings Graph
DeadloadinSlings
Graph11 MaxliveLoadinSlings
Graph12 MaxwindloadonSlings
Graphical representation of load on Minor Slings
Graph13 MaxDeadloadinSlings

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056

Volume: 09 Issue: 05 | May 2022 www.irjet.net p ISSN: 2395 0072

CONCLUSION

1. Fromtheaboveresultsweconcludethattheaxial forcesinMANUALDESIGNaremoreascomparedto STAAD PRO.

2. From the above results we conclude that the STAAD PROismoreeconomictouseaslessforces arerequired.

3. From the above results we conclude that STAAD PRO model is more economical and suitable for buildingaslessmaterialarerequiredascanresista greaternumberofforcesthanmanualdesign

© 2022,
Certified Journal | Page3554
IRJET | Impact Factor value: 7.529 | ISO 9001:2008
Graph14 MaxliveLoadinSlings Graph15 MaxwindloadonSlings Graphno.16 Steeltake off GraphNO.17 CostComparison
REFERENCES [1]Limitstatedesignof
structureby
[2]ISCODE
PART
CODEPRACTICEFOR DESIGNLOADS [3]ISCODE875 PART2
(LIVELOADS) [4]ISCODE
(DEADLOAD)
steel
S.K.Duggal
875
1 1987
1987
875 PART3 1987

Turn static files into dynamic content formats.

Create a flipbook