International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
e ISSN: 2395 0056
p ISSN: 2395 0072
![]()
International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
e ISSN: 2395 0056
p ISSN: 2395 0072
1M.Tech, Civil Engineering, Suyash Institute of Information Technology, Gorakhpur, Uttar Pradesh
2Assistant Professor, Civil Engineering, Suyash Institute of Information Technology, Gorakhpur, Uttar Pradesh
***
Abstract - The goal of this article is to determine the seismic variation in a circular shape building by placing a shearwall atadifferentlocation withinareinforcedconcrete structure. The first model shear wall is supplied at the building's exterior wall, the second model shear wall is provided in the middle of the building, and the third model shear wall is provided at the building's inner wall in this article. The programme used to analyse all of these models is Etabs, and the method utilised to analyse them is dynamic analysis (time history analysis). IS(Indian Standard) 1893 part 1: 2016 was utilised for this dynamic study, and all models are in seismic zone four. After assessing all models, we will compare the seismic parameter values (lateral storey force, storey displacement, periods and frequency, storey stiffness) for all models to see which one is the most stable in comparison to the other two.
Key Words: Dynamic analysis, time history, RC building,ShearWall,Circularbuilding,Etabs
Nowadays,everyRCCbuildingisdesignedtobeearthquake resistantbecausetheheightofthebuildingisincreasingday by day, increasing the overturning moment, causing the building to fail in the overturning. If the height of the building is low, the value of the overturning moment and baseshearislow,becausethevalueofthebaseshearand overturning moment is dependent on the structure's self weight.
The fundamental reason for employing a circle form structure is to reduce the impact of dynamic forces (wind andseismic)onthestructure,andweplacedtheshearwall in a different location in this circular shape structure. We know that the circular shaped structure uses 15 to 18 percent less material than the rectangular shaped construction.Makingajunctionbetweenacirclecolumnand a rectangular beam is not difficult in a circular form construction. Because Courtyards circular building gave openspaceinside,allmodelsofthisarticlefallunderit.
WeemployedDynamicAnalysis,EtabsSoftware,andIndian Standard code 1893 part 1:2016 for the analysis of these threemodels.AccordingtotheIScode1893part 1:2016, clause 7.7, dynamic analysis is a technique of structural analysiswheretheloadfluctuationovertimeisgreater. 3 dynamicanalysisisdividedintotwocategories:
i. TimeHistoryMethod
ii. ResponseSpectrumMethod
Thestructuralreactiontobrief,nondeterministic,transient dynamic events is estimated using response spectrum analysis. Earthquakes and shocks are examples of such phenomena. It's difficult to undertake a time dependent analysissincetheload'sexacttemporalhistoryisunknown.
The time history approach must be based on adequate ground motion and executed using the acknowledged concept of earthquake structural dynamics, according to clause 7.7.4 of IS code 1893 part 1: 2016. "EL CENTRO" providedthedataforthetimehistory.Whenthevariationof the lateral force with respect to time is greatest, the time history technique belongs to dynamic analysis; if the
Shahid Khan1, Sandhya Sahani2
International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
variationofthelateralforcewithrespecttotimeislittle,the staticanalysismethodshouldbeused. EtabssoftwareisdevelopedbytheCSIcompanyandisused forbothanalysisanddesigningofthestructure.
In this paper, there are three models in the first model (Model 01) shear wall provided on the outer side of the building, in the model second (Model 02) shear wall providedatthemid wallofthebuilding,inthethirdmodel (Model 03) shear wall provided at the inner wall of the building.
Allparameter(material,buildingconfiguration,seismic)of thiscircularshapebuildingisgivenbelowindetail:
In this parameter, we give the details about the material whichisusedinthisRCCcircularbuildingandthematerial parameterisgivenbelowinthetable:
Table 1: MaterialParameter.
S. No Material Grade
1.0 Concrete M30&M25
2.0 LongitudinalBar Fe415
3.0 StirrupBar Fe250
In this parameter, we provide the information about structureparametersuchassizeofbeam,column,shearwall andslabisgivenbelowintable:
Table 2: BuildingParameter
S.No Building Parameter Value
01. Beam 0.250mX0.400m
02. Column 0.400mdiameter 03. Slab 0.160m
04. SpanofBeam 4000mm 05. Heightofbuilding 33000mm
e ISSN: 2395 0056
p ISSN: 2395 0072
06. Floorheight 3000mm
07. Groundstorey 3000mm
08. ShearWall 0.23.0m
09. ExternalDiameter 72000mm
10. InternalDiameter 32000 mm
11. Area 4380m2
Inthisfactor,weweregiventhefactoroftheseismicwhere the model is assumed to construct such as seismic zone factor,Importancefactor,etc
Table -3: SeismicParameter
S.No Seismic Parameter Value
01. SeismicZoneFactor(Z) 0.24(Forth Zone)
02. ResponseReductionFactor (R) 5.0
03. Importancefactor(I) 1.20
04. Soiltype 2nd 05. Eccentricratio 0.05
TheloadwhichisactingonthemodelsuchasImposedload isgiveninthetable:
S.No Load Parameter Value
01. Liveload 3.0KN/m2
02. Partitionwall 7.0KN/m 03. Loaddistributionwall 14.0KN/m
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified
3670
International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
The plan, elevation and three dimensional view of the model 01(wheretheshearwallisprovidedattheouterwall ofthebuilding)aregivenbelow:
e ISSN: 2395 0056
p ISSN: 2395 0072
The plan, elevation and three dimensional view of the model 02(whereashearwallisprovidedatthemid wallof thebuilding)aregivenbelow,theelevationofthemodel 02 isthesameasmodel 01.
After analyzing all these three model, there are following result come out and we have taken some parameter to comparethevalueofthesethreemodels,suchparameteris thenaturalperiod,baseshear,storeystiffness,storeydrift, andmaximumstoreydisplacement.
From clause 7.2.1 in Indian Standard code 1893 part 1: 2016,thebaseshearisdefinedasthelateralforceswhichact on every floor due to seismic effect on the structure. The followinggraphrepresentsthebaseshearofallmodelsin the X direction due to applying the seismic effect in the X direction:
The plan, elevation and three dimensional view of the model 03(wheretheshearwallisprovidedattheinnerwall ofthebuilding)aregivenbelow,theelevationofthemodel 03isthesameasmodel 01.
Fromtheabovegraph,wecanseethatthevalueofthebase shearismaximuminmodel 01.Andtheminimumvalueof thebaseshearinmodel 03(wheretheshearwallisprovided attheinnerwallofthecircularRCbuilding).
International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
Storeystiffnessisdefinedastheratioofthestoreyshearto the storey drift of the structure. The graph of the storey stiffnessofallmodelsisgivenbelow:
From the above graph, we can see that the value of the storey stiffness is maximum in Model 01 (shear wall providedattheouterwalloftheRCcircularbuilding).
From clause 3.18 the natural period in the mode of oscillation is defined as the time (in second) taken by the structure to complete one cycle of the oscillation in its naturalmodeofoscillation.Thefollowinggraphrepresents thevariationofthenaturalperiod:
value:
e ISSN: 2395 0056
p ISSN: 2395 0072
FromtheIndianInstituteofTechnologyKanpur,earthquake tipsnumber10givesthereferencethat“storeyonetostorey 20storeybuildingsareusuallyintherange0.05 2.00sec.” fromthisourmodelisinasafecondition.
Maximumstoreydisplacementisdefinedasthemaximum displacement of the floor from the ground surface due to lateral force which acts on the structure. The value of the maximumstoreydisplacementdoesnotmeasurefloorlevel. Thegraphofdisplacementofallmodelsisgivenbelow:
Fromtheabovegraph,thevalueofthestoreydisplacement inmodel 01isverylessascomparedtothetwomodels.
From the above dynamic analysis of all models, we have takensomeseismicparameterstochoosethestablemodel, andwefoundafewconclusionsafteranalyzingallmodels, whicharegivenbelow:
I. Whenweprovidetheshearwallatthemid wallor centre wall of the Circular RC building then the value of the natural period is low ascompared to the model when the shear wall is provided at the outerwallorinnerinthecircularbuilding,andfrom theresult,wecanchoosetheCircularRCbuilding byprovidingtheshearwallatthecentrewallinthe buildingonthecasetoreducethenaturalperiod.
II. The value of the lateral force due to applying seismicintheXdirectionislowinmodel 03(where theshearwall is providedattheinner wall ofthe circularRCbuilding)becausethedeadloadofthe
International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
Model 03 is less as compared to the other two models.
III. The value o the maximum storey displacement in themodel 01(wheretheshearwall isprovidedat theouterwallofthecircularRCbuilding)because thelateralforceduetoseismicisdirectlyactingat the outer wall of the circular building and we providedshearwallattheouterwallofthecircular RCbuildingbecausethemainpurposeoftheshear walltoreducetheeffectofthelateralforcesonthe RCstructure.
IV. Inthemodel 03(wheretheshearwallprovidedat theinnerwallofthecircularRCbuilding)thevalue storey stiffness is minimum as compared to the other two models, it’s because of the value of the storeydriftmaximumandvalueofthebaseshearis lowinthemodel 03.
V. Fromtheaboveconclusion,wefoundthatwhenthe shear wall provided in the mid or centre of the building is more stable because the shear wall resists the outer forces and inner forces, but in model 02 the storey displacement is high as comparedtothemodel 01.
[1] G. Mathiyazhagan “Finite Element Analysis on Curved Beams of Various Sections”2013.
[2] Shaikh A. Aijaj, G.S. Deshmukh “Seismic Analysis of Vertically Irregular Building” 2013, (https://sites.google.com/site/researchjournalofsrtmun /).
[3] Philip Steadman “Architectural Doughnuts: Circular Plan Buildings, with and without Courtyards” Nexus NetwJ(2015)17:759 783,DOI10.1007/s00004 015 0270 8.
[4] Mohaiminul Haque,Sourav Ray“Seismic Performance Analysis of RCC Multi Storied Buildings with Plan Irregularity” 2016; 4(2): 52 57, DOI: 10.11648/j.ajce.20160403.11.
[5] Anju Nayas “seismic analysis of irregular RC frame buildingswithspecialcolumns” Volume 4, Issue 6, June 2017, InternationalJournalofAdvanceEngineeringand ResearchDevelopment.
[6] Sanisha Santhosh “Seismic Analysis of Multi Storied Building with Shear Walls of Different Shapes” Vol. 6 Issue 06, June 2017, International Journal of EngineeringResearch&Technology(IJERT).
[7] YaseenTarique,VijayalaxmiGajare“SeismicBehaviorof Circular Building with Mass Irregularity” Volume: 05 Issue:05|May 2018,IRJET.
[8] IS 456 2000 “Code practice for plain and reinforced concrete”.
e ISSN: 2395 0056
p ISSN: 2395 0072
[9] [24] IS:875(Part2) 1987“CodeofPracticefordesign loadsforbuildingsandstructures”
[10]IS1893 2016,Criteriaforearthquakeresistantdesign ofstructures,BureauofIndianStandard,NewDelhi.
[11]L.C.M.Eberhardt,H.Birgisdottir,M.Birkved,Potentialof circular economy in sustainable buildings, IOP Conf. Ser. Mater.Sci.Eng.471(2019),https://doi.org/10.1088/1757 899X/471/9/092051.
[12] A. Kylili, P.A. Fokaides, Policy trends for the sustainability assessment of construction materials: a review, Sustain. Cities Soc. (2017), https://doi.org/ 10.1016/j.scs.2017.08.013.
[13] C. Panteli, A. Kylili, L. Stasiuliene, L. Seduikyte, P.A. Fokaides,Aframeworkforbuildingoverhangdesignusing buildinginformationmodelingandlifecycleassessment,J. Build. Eng. (2018), https://doi.org/10.1016/j.jobe.2018.07.022.
[14]M.R.Munaro,S.F.Tavares,L.Bragança,Towardscircular and more sustainable buildings: a systematic literature reviewonthecirculareconomyinthebuiltenvironment,J. Clean. Prod. 260 (2020), https://doi.org/10.1016/j. jclepro.2020.121134.
[15] P. Nú˜ nez Cacho, J. G´orecki, V. Molina, F.A. Corpas Iglesias, New measures of circular economy thinking in construction companies, J. E. U. Res. Bus. (2018), https://doi.org/10.5171/2018.909360.
[16] N.B. Jacobsen, Industrial symbiosis in Kalundborg, Denmark: a quantitative assessment of economic and environmental aspects, J. Ind. Ecol. 10 (2008) 239 255, https://doi.org/10.1162/108819806775545411.
[17]L.C.M.Eberhardt,M.Birkved,H.Birgisdottir,Building designandconstructionstrategiesforacirculareconomy, Architect. Eng. Des. Manag. (2020) 1 21, https://doi.org/10.1080/17452007.2020.1781588
[18]EllenMacArthurFoundation,Circulareconomyschools of thought. https://www. ellenmacarthurfoundation.org/circular economy/concept/schools of thought,2016.(Accessed28 February2021).
[19]P.Ghisellini,C.Cialani,S.Ulgiati,Areviewoncircular economy:theexpectedtransitiontoabalancedinterplayof environmental and economic systems, J. Clean. Prod. 114 (2016) 11 32, https://doi.org/10.1016/j. jclepro.2015.09.007
[20] J. Korhonen, A. Honkasalo, J. Sepp al a, Circular economy: the concept and its limitations, Ecol. Econ. 143 (2018) 37 46, https://doi.org/10.1016/j. ecolecon.2017.06.041.
[21] J. Rockstrom, W. Steffen, K. Noone, Ă…. Persson, F.S. Chapin, E. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber,B.Nykvist,C.A.deWit,T.Hughes,S.vander Leeuw, H. Rodhe, S. S orlin, P.K. Snyder, R. Costanza, U. Svedin,M.Falkenmark,L.Karlberg,R.W.Corell,V.J.Fabry,J. Hansen,B.Walker,D.Liverman,K.Richardson,P.Crutzen,J. Foley, Planetary boundaries: exploring the safe operating space for humanity, Ecol. Soc. (2009), https://doi.org/10.5751/ES 03180 140232
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page3673
International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 04 | Apr 2022 www.irjet.net
[22]N.M.P.Bocken,I.dePauw,C.Bakker,B.vanderGrinten, Productdesignandbusinessmodelstrategiesforacircular economy, J. Ind. Prod. Eng. (2016), https://doi.org/10.1080/21681015.2016.1172124
[23]E.Leising,J.Quist,N.Bocken,CircularEconomyinthe buildingsector:threecasesandacollaborationtool,J.Clean. Prod. (2018), https://doi.org/10.1016/j. jclepro.2017.12.010
[24]A.Ajayabi,H.M.Chen,K.Zhou,P.Hopkinson,Y.Wang,D. Lam, REBUILD, Regenerative buildings and construction systems for a circular economy, in: IOP Conf. Ser. Earth Environ. Sci., Institute of Physics Publishing, 2019, https://doi.org/10.1088/1755 1315/225/1/012015.
[25]M.U.Hossain,S.T.Ng,P.Antwi Afari,B.Amor,Circular economy and the construction industry: existing trends, challenges and prospective framework for sustainable construction, Renew. Sustain. Energy Rev. (2020), https://doi.org/10.1016/j.rser.2020.109948.
[26]J.Hart,K.Adams,J.Giesekam,D.D.Tingley,F.Pomponi, Barriersanddriversinacirculareconomy:thecaseofthe built environment, in: Procedia CIRP, 2019, https://doi.org/10.1016/j.procir.2018.12.015
[27]Z.Yuan,J.Bi,Y.Moriguichi,Thecirculareconomy:anew development strategy in China, J. Ind. Ecol. (2006), https://doi.org/10.1162/108819806775545321.
[28]G.L.F.Benachio,M.doC.D.Freitas,S.F.Tavares,Circular economy in the construction industry: a systematic literature review, J. Clean. Prod. 260 (2020) 121046, https://doi.org/10.1016/j.jclepro.2020.121046.
[29] Ellen MacArthur Foundation, Towards a Circular Economy:BusinessRationaleforanAcceleratedTransition, Ellen MacArthur Found, 2015, p. 20. https://www. ellenmacarthurfoundation.org/publications/towards a circular economybu siness rationale for an accelerated transition.(Accessed20February2020).
[30] P. Lacy, J. Rutqvist, Waste to Wealth: the Circular Economy Advantage, 2016, https://doi.org/10.1057/9781137530707.
[31] F. Pomponi, A. Moncaster, F. Pomponi, A. Moncaster, Circular economy for the built environment: a research framework, J. Clean. Prod. 143 (2017) 710 718, https://doi.org/10.1016/J.JCLEPRO.2016.12.055.
[32]M.Geissdoerfer,P.Savaget,N.M.P.Bocken,E.J.Hultink, The Circular Economy a new sustainability paradigm? J. Clean. Prod. 143 (2017) 757 768, https://doi. org/10.1016/j.jclepro.2016.12.048.
e ISSN: 2395 0056
p ISSN: 2395 0072