SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLUID VISCOUS DAMPERS

Page 1

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

SEISMIC RESPONSE STUDY OF MULTI-STORIED REINFORCED CONCRETE BUILDING WITH FLUID VISCOUS DAMPERS

1M. tech Final Year Student, Dept. of Civil Engineering, GNIOT, Greater Noida, U.P, India 2Assistant Professor, Dept of Civil Engineering, GNIOT, Greater Noida, U.P, India ***

Abstract - When an earthquake occurs, it causes enormous damage in terms of property loss, human lives, and structural collapse. As a result, structural remodeling is a must. Damping Contributes significantly to Earthquake Resistant Structures' overall design by reducing their ability to deform when loaded from the sides. There are a variety of damper options available. Fluid viscous dampers (FVD) are employed in this study to gauge the reaction of reinforced concrete structures (RCB). The time period is reduced to 90% by employed FVD in Time History analysis. Structures' Base Shear is reduced by 70% while using FVD250.

Key Words: Damping,FVD,timeperiod,Baseshear

1. INTRODUCTION

One of the most common civil engineering disasters is earthquake.Seismicactivitycausesstructuraldeterioration in buildings. Earthquake-resistant systems may be implementedtoimprovethebuilding'scapacitytowithstand earthquakes. The damper is one of the most common and effectiveearthquakeresistancemeasures.Throughoutthe building. In a passive control system, seismic energy is dispersed. Inthecaseofan earthquake,thisdevice flexes. Dams absorb earthquake energy. dampens ground movement during earthquakes by dispersing it structure. Thereareseveraldampersonthemarketnow,includingpall friction dampers Stabilizer, such as a mechanical or hydraulicstrutora damper installedona strut.Aviscous liquid. The FVD damper is one of the most effective and easiesttoinstalldampers.

Energyisdispersedinthisdamperbytheuseofaviscous fluidcontainedwithinacylinder.Asaresultoftheirsimple installation, versatility, and collaboration with other components,viscousdampersmaybeusedinawiderange ofdesignandretrofitapplications.

1.1 Literature Review

Structural Analysis

Theprimarygoalofstructuralanalysisistodeterminean object'sresponsetoaforce.People,furniture,wind,snow, etc.canallcontributetothisactivity,butitcanalsobethe resultofanearthquake,anearbyexplosion,orsomeother type of stimulation. All of these loads, including the

structure'sownweight,areinherentlydynamicsincethey weren'tpresentatsomeearliermomentintime.Staticvs. dynamic analysis may be distinguished based on whether theappliedactionhassufficientaccelerationincontrastto thestructure'sinherentfrequency.Inertiaforces(Newton's first law of motion) can be neglected if a load is applied slowlyenough.Thissimplifiesthestaticanalysis.Asaresult, structuraldynamicsisasortofstructuralanalysisthatdeals with dynamic loads. It is possible to employ dynamic analysistofinddynamicdisplacements,timehistories,and modalanalysis.

Analysis using ETAB

B. S. Taranath in “Building Design for Tall Buildings" complex non-linear time is necessary for seismic ground movements,whicharethencomparedtothedesignsatisfies thespecifiedsafetylevel.

Liya Mathew & C. Prabha Itwasreportedin"EffectofFluid Viscous Dampers in Multi-Storied Buildings" in 2014 that new protection methods had been created to increase earthquake safety and minimize structural damage.1 The fluidviscousdamper(FVD)isprominentlyfeaturedinthis application. This work also studies reinforced concrete structures

1.2 Objective

1. Buildingswithsquareandrectangulardesigns,with andwithoutFVD,willbecomparedfortheirseismic reaction.

2. TodeterminetheeffectsofFVDonthestructure's displacements.Todeterminethereductioninbase shearinRCstructuresbytheuseofFVD.Structures thathaveanddon'thaveFVDcanbestudiedtosee howthetimeperioddiffers.

3. Compare FVD structures to Time History and Pushover.

2. METHODOLOGY

2.1 Modal analysis

In a modal analysis, the frequency modes or natural frequencies of a system are calculated, but the full-time historical response to an input is not always included. a

©
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page561

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

system's inherent frequency simply depends on the structure'sstiffnessandthemassitcontains(includingselfweight).Loadfunctionisn'tanissue.

Thisishowit'sdone:

1. Determine the inherent modes and natural frequenciesofastructure.

2. Calculateeachmode'sanswer.

2.2 Determined Analysis ETABS

TheETABScomputerapplicationisusedforthebuilding's studyanddesign.Someofthe mostessentialfacetsofthe modellingprocessarecoveredinthefollowingsections.

1. Definingtheslabsections

2. Staticevaluationofequality

3. The lateral load pattern in multimodal or SRSS systems

2.3 Time history analysis procedure

Step1:CalculationofModalMatrix

Step2:CalculationofEffectiveForceVector

Step3:CalculationofDisplacementResponseinNormal Co-ordinates

Step4:CalculationofDisplacementResponseinPhysical Co-ordinates

Step 5: Calculation of Effective Earthquake Forces at Each Storey

2.4 Pushover Analysis in ETABS

ATC 40 and FEMA 273 hinge properties are preprogrammedintotheETABS,butitalsoallowsyoutoenter custom material or hinge properties. There is a P-M2-M3 (PMM) hinge that yields based on the interaction of the columnaxialloadandbendingmomentwhenthebuildingis subjectedtolateralloading.ETABSonlydealswithbuildings whereuncoupledmomentM2andM3,TorsionT,axialforce pandV2andV3forcedisplacementrelationscanbedefined andthecolumnaxialloadchangesunderlateralloading

3. MODELLING

3.1 Design Data

SteelgradeFe500isutilizedforallofthebuilding'sslabs and beams, while concrete grade M25 is used for the columns

Thefollowingisalistofthemembers:

1. Asquarecolumnisonewithadimensionof600mm by600mm.

Factor value:

2. RectangularColumns:1200mm*300mm.

3. 230mm*600mmInteriorBeams.

4. 230mm*600mmExteriorBeams.

Therearetwoslabsizes:

1. PanelArea=6m*6m=36

2. 125mmthick

Table -1: Story Data

Name Height mm Elevation mm Master Story Similar to Splice Storey

Story10 3000 30000 Yes None No Story9 3000 27000 No Story10 No Story8 3000 24000 No Story10 No Story7 3000 21000 No Story10 No Story6 3000 18000 No Story10 No Story5 3000 15000 No Story10 No Story4 3000 12000 No Story10 No Story3 3000 9000 No Story10 No Story2 3000 6000 No Story10 No Story1 3000 3000 No Story10 No

Base 0 0 No None No

3.2 Loads

Applied Loads:-

Inthegravitydirection,the shellloadsactingonslabsare Dead=1.5kN/m2 and Live=4kN/m2. The Dead=5.25kN/m frameloadsaregiventothebeamsinaconsistentmanner.

CodeIS1893:2002providestheseismicloadsEQ-xand EQ-ydirectlyinloadpatterns.CodeIS875:1987isalsoused toprovidewindloadswind-xandwind-y.

Table -2: Load Patterns

Name Type Self-Weight Multiplier Auto Load

Dead Dead 1

Live Live 0

EQ-x Seismic 0 IS18932002

EQ-y Seismic 0 IS18932002

Wind-x Wind 0 IndianIS87:1987

Wind-y Wind 0 IndianIS87:1987

© 2022, IRJET | Impact
7.529 | ISO 9001:2008 Certified Journal | Page562

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

3.3 MODELLING OF DAMPERS

FVDwithbaseplateispickedhereforthemodellingofthe structuresinceitissimpletofit.Theclevis-baseplatelayout offluidviscousdampersandlock-upmechanismsisdepicted below.

4.1 Base Reactions

An estimate of the greatest lateral force that may be generated by seismic ground motion at the base of a structureisknownasbaseshear.

Table- 4 : Base Reactions of SBSC with FVD

Fig -1:Fluidviscousdampers&lock-updevicesclevis

4. RESULTS AND DISCUSSION

Responses when loaded in different directions

Table -3: Maximum PSA at Zero Damping

Table-5: Base Reactions of SBRC with FVD

©
Page
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |
563

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Table-6: Base Reactions of RBSC with FVD

4.2 Story Maximum and Average Lateral Displacements

ETABS gives a simple table in the summary output with "StoryMaximumandAverageLateralDisplacements".This offers information of greatest to average ratio to assess torsionalirregularity.

TheMaximumDisplacementsowingtoPush-XinX-direction are:

Table-8: Max. Disp. of Modals at different stories due to PushX

Table-7: Base Reactions of RBRC with FVD

TheMaximumDisplacementsduetoPush-YinY-direction are:

Table-9: Max. Disp. of Modals at different stories due to PushY

4.3 Discussion of Results

Story Max/Avg. Displacements

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page564

An easy-to-read table containing "Storey Maximum and Average Lateral Displacements" was produced from the ETABS. To check for torsional irregularity, this offers an indicatorofthemaximumtoaverageratio

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

Base Shear

Fig -2: ComparisonMaximumstorydisplacementsdueto PUSHX

Fromtheinterrelationcurvesinfigure2,itisfoundthatdue toinsertionofFVDinthestructuresthedisplacementshave beenreducedby92.17%forSBSC,91.88%forSBRC,94.25% forRBSCand88.26%forRBRC.

Fig -4: ComparisonBaseshearsforTimeHistory

From the comparison values in figure 4, it can be clearly foundthatduetointroductionofFVDinthestructuresthe baseshearshavebeendiminishby77%forSBSC,54.9%for SBRC,78.21%forRBSCand93.95%forRBRCinTH-X/Xdirection.Similarly,thebaseshearshavebeenreducedby 77% for SBSC, 63.87% for SBRC, 75.27% for RBSC and 28.5%forRBRCinTH-Y/Y-direction

Fig -3: ComparisonMaximumstorydisplacementsdueto PUSHY.

From the comparison curves in figure 3, it can be clearly predicatedthatduetoinoculationofFVDinthestructures thedisplacementshavebeenreducedby18.4%forSBSCand 51.36% for RBSC. Whereas SBRC and RBRC doesn’t show any variation in this direction but overall structural displacementsarewithinlimitingvalues.

Fig -5: ComparisonBaseshearsforPushover

Fromthecorrelationvaluesinfigure4,itcanbeprecisely found that due to installation of FVD in the structures the baseshearshavebeenminiaturizedby97%forSBSC,96% forSBRC,98.19%forRBSCand99.4%forRBRCinPUSH-X/ X-direction. Correspondingly the base shears have been reducedby76.4%forSBSC,83.4%forSBRCand89.94%for RBSCinPUSH-Y/Y-direction.

© 2022, IRJET |
7.529 | ISO 9001:2008 Certified Journal | Page565
Impact Factor value:

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

5. CONCLUSIONS

Thefollowingconclusionsmaybeinferredfromthedataand analysis:

1. FVD can reduce the maximal PSA time period in responsespectrumcurvesbyupto90%.Inatimehistorystudy,FVD250reducedthestructures'Base Shearby70%.Themostimportantthingtoknow UseoftheFVDreducesdisplacementsby90%.

2. Regardless of the floor layout, square columns appeartoperformbetterthanrectangularcolumns intermsofstructuralreaction.

3. It is more difficult to assess damage to buildings usingpush-overanalysisthantimehistoryanalysis when analysing the seismic performance of structures.

5.1 Scope for future research

1. FVD250willonlybeusedonconstructionswith outsidecornersforthesakeofthisthesis.

2. Modifying the same structures with FVD500 enablesthemtobeinstalledinthemiddleofthe exterior.

3. Thisworkmaybeextendedtoincludeirregular structures,unsymmetricalstructures,andtall structures

4. Itsapplicationtosteelstructurescanprovidea greatdealofpracticalsolutions.

5. K-shape and M-shape can be utilised in conjunctionwithFVD.

REFERENCES

[1] M.R.Arefi,“Astudyonthedampingratiooftheviscous fluid dampers in the braced frames,” vol. 3, no. 4, pp. 1223–1235,2014.

[2] J.Marti,M.Crespo,andF.Martinez,“Seismic Isolation andProtectionSystems,”Seism.Isol.Prot.Syst.,vol.1, no.1,pp.125–140,2010.

[3] M.K.MuthukumarG,“Analyticalmodelingofdamping,” indianConcr.J.,vol.88,no.4,2014.

[4] I. López, J. M. Busturia, and H. Nijmeijer, “Energy dissipationofafrictiondamper,”J.SoundVib.,vol.278, no.3,pp.539–561,2004.

[5] J.A.InaudiandJ.M.Kelly,“MassDamperUsingFrictionDissipatingDevices,”J.odEng.Mech.,vol.121,no.1,pp. 142–149,1995.

[6] W. J. William H. Robinson, “Lead Damper for base isolution.pdf.”Proceedingsof9thworldconferenceon earthquake,1998.

[7] J.Otten,J.Luntz,D.Brei,K.A.Strom,A.L.Browne,andN. L.Johnson,“Proof-ofConceptoftheShapeMemoryAlloy ReseTtable Dual Chamber Lift Device for Pedestrian ProtectionwithTailorablePerformance,”J.Mech.Des., vol.135,no.6,p.61008,Apr.2013.

[8] D. Demetriou, N. Nikitas, and K. D. Tsavdaridis, “Semi active tuned mass dampers of buildings: A simple control option,” Am. J. Eng. Appl. Sci., vol. 8, no. 4, pp. 620–632,2015.

[9] E. L. Anderson, “Performance-Based Design of SeismicallyIsolatedBridges,”p.494,2003.

[10] S.Infanti,J.Robinson,andR.Smith,“ViscousDampers forHigh-RiseBuildings,”14thWorldConf.Earth.Eng., 2008.

[11] V. Umachagi, K. Venkataramana, G. R. Reddy, and R. Verma,“ApplicationsofDampersforVibrationControl ofStructures:AnOverview,”Int.J.Res.Eng.Technol.,pp. 6–11,2013.

[12] J.Marko,D.Thambiratnam,andN.Perera,“Influenceof dampingsystemsonbuilding90structuressubjectto seismiceffects,”Eng.Struct.,vol.26,no.13,pp.1939–1956,2004.

[13] V. S. Balkanlou, M. R. Bagerzadeh, B. B. Azar, and A. Behravesh,“EvaluatingEffectsofViscous Damperson optimizing Seismic Behavior of Structures,” no. 2007, 2013.

[14] A.Chopra,“Dynamicsofstructures,”2012.

[15] K.-H.Chang,StructuralAnalysis,vol.163.2009.

[16] Y.G.ZhaoandT.Ono,“Momentmethodsforstructural reliability,”Struct.Saf.,vol.23,no.1,pp.47–75,2001.

[17] M. Paz, “Structural Dynamics.pdf.” Van Nostrand ReinholdCompany,NYC.,p.574,1985.

[18] S.AmirandH.Jiaxin,“OptimumParameterofaViscous DamperforSeismicandWindVibration,”vol.8,no.2, pp.192–196,2014.

[19] Y.Zhou,X.Lu,D.Weng,andR.Zhang,“Apracticaldesign methodforreinforcedconcretestructureswithviscous dampers,”Eng.Struct.,vol.39,pp.187–198,2012.

©
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page566

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

[20] Ö. Atlayan, “Effect of Viscous Fluid Dampers on Steel MomentFrameDesignedforStrengthandHybridSteel MomentFrameDesign,”Environ.Eng.,2008.

[21] B. S. Taranath, Reinforced Concrete Design of Tall Buildings.

[22] LIYA MATHEW & C. PRABHA, “Effect of Fluid Viscous DampersinMultiStoreyedBuildings,”IMPACTInt.J.Res. Eng.Technol.(IMPACTIJRET),vol.2,no.9,pp.59–64, 2014.

[23] R.GettuandM.Santhanam,“Retrofitofnon-engineered buildings,”Handb.Seism.retrofitBuild.,no.April,p.471, 2007.

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page567

Turn static files into dynamic content formats.

Create a flipbook