A Review study on the Comparative Study on Wind Load (Along & Across) Analysis of Reinforced Concret

Page 1

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

A Review study on the Comparative Study on Wind Load (Along & Across) Analysis of Reinforced Concrete Chimney by (i) Gust factor method (ii)Simplified Method & (iii) Random Response Method

1Shivam Kumar, 2Ankush Kumar Jain

1M.Tech Student, 2Assistant Professor, Civil Engineering Department Poornima University, Jaipur,India ***

Abstract - ThisresearchwillbeconductedtodeterminetheComparativeStudyonWindLoad(Along&Across)Analysisof ReinforcedConcreteChimneyby(i)Gustfactormethod(ii)SimplifiedMethod&(iii)RandomResponseMethodofaReinforced Concretechimney.Thisthesisdealswithexternalappliedloadingsthateffectchimneystructuresnamelyalongandacrosswind load,withreferencetotheIS875(Part-III)IS4998(Part-I)&DraftcodeCED38(7892):2013.Thecompressivestrengthofcement concreteisassumingM35gradeinseverecondition,tensilestrengthofsteel550DTMT,windzoneisVI.ForZoneVIwindspeedis 55m/s.ModellingandAnalysiswillbedoneinStaadV8isoftware.Analyticalresultswillbecomparedtoachievedifferencesin resultsofthestructuresagainstthewindforces.

Key Words: Steel Structure, Load, wind screen, chimney

1. INTRODUCTION

Achimneyisabuildingthatenclosestheflueandworkswithittocreateasystemthatventshotgasesorsmokeintotheopenair. Chimneys are normally vertical or almost vertical to ensure a smooth flow of gases and to attract air into the combustion, commonlyknownasthestackeffectorchimneyeffect.Themajorityofindustrialchimneysbuilttoday,includingthoseinTurkey, aroundtheworld,usereinforcedconcrete(RC).Duetooutdatedconstructionmethodsorinadequateseismicdesign,chimneys builtinthelate1970sandearliermaybesusceptibletodamageduringearthquakes.Comparedtocurrentcodes,earlieronesdo notprovideenoughseismicdetails.

1.1Effects of Load on Chimneys

DifferentkindsofloadsareappliedtoRCconcretechimneysinbothlateralandverticaldirections.Asidefromthestructure'sown weightandthepressures placedontheserviceplatforms,the mainloads thata concretechimneytypically encounters are pressure from wind loads, loads brought on by seismic activity, and temperature loads. Since concrete chimneys are often relatively tall and slender constructions, the impacts of wind on RC chimneys have a significant impact on their structural behaviour.

1.2Along Wind Load

Thedragcomponentofthewindforcepushingonthechimneywallcausesalongwindloadeffects.Thewindspeed,thewind's surfacecontactarea,theform,andtheorientationofthestructureallaffecthowmuchpressurethewindexertsonitssurface.The structureismodelledasacantileverstructurewithafixedbasetoevaluatetheimpactofwindonthechimney.Thepressure broughtonbythewindloadinthismodelisactingperpendiculartotheexposedsurfaceoftheRCchimney.Forthepurposeof evaluatingalongwindloads,thestructureismodeledasabluffbody.

© 2022,
Certified Journal | Page64
IRJET | Impact Factor value: 7.529 | ISO 9001:2008

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

Fig.1.1windeffectswithrespecttoitsdirectionofflow

1.3 Wind Force Analytical Method

(a) GustFactorMethod

(b)SimplifiedMethod

(c)RandomResponseMethod

2. LITERATURE REVIEW

Arzpeyma et al., (2020)

The usage of solar energy in the modern period is required and important as well. Solar chimney technology for power generationisoneofthesolarenergyharvestingsystemswherethedirectanddiffusedsolarradiationsareabsorbedinthe solarchimneypowerplant.Theusefulnessofsolarchimneyshasbeenestablishedforpowergeneration,anditisaviable solutiontofutureenergygenerationplans.Thisarticlepresentsathoroughdescriptionofthestudyanddevelopmentofsolar energytechnologyaswellasthehistoryofsolarchimneysinthelastfewdecades.

Zuo,et al., (2020)

Thisresearchproposesthewindsuperchargedsolarchimneypowerplant(WS-SCPP)modelbyputtinganunpoweredwind pressurewheelatthetopofthechimney.Solarchimneypowerplant(SCPP)prototypeinSpainisusedasthebasisforbuilding physicalandmathematicalmodelsofWS-SCPPandcomparingitsperformancetothatoftheSCPP.Byusinganunpowered windpressurewheel,WS-performanceSCPP'ssignificantlyimproves.TheshaftpowerofWS-SCPPisalwaysgreaterthanthat ofSCPPatthesameturbinerotationalspeed.At100rpm,theshaftpowerofSCPPincreasesfrom37.8kwto57.03kwby50.9 percent.

Zuo,et al., (2020)

Solarchimneypowerplantscombinedwithseawaterdesalinationandwasteheat(WSCPPDW)andsolarchimneypowerplants combinedwithseawaterdesalinationandwasteheat(SCPPDW)havebeenproposedinthisarticle.Thekeydifferencebetween thetwowastheexistenceorlackofawindsuperchargingsystem,bothofwhichhadaspiralexhaustgasheatingchannel(SGC). Theoutputqualitieswerethenevaluatedundervariousscenariosusingphysicalandmathematicalmodelsthatwerebuilt. WSCPPDWandSCPPDWbothperformedbetterwhenthechimneyheightandfluegastemperaturewerebothincreased.All outputqualitiesimprovedwhenseawaterthicknesswasreduced.Fluegasflowandsunirradiationbothroseatthesametime, butfreshwateroutputandoverallefficiencydecreasedasaresult.

©
| Page65
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

Shi, L. (2019)

Windandsolarchimneyinteractionswerestudiedcomputationallyandconceptually.It'sthewindangle(),theangleformedby theoutwardnormalofthewallandthewinddirection,thatdetermineswhetherornotahigherwindspeedcorrespondsto betterperformance.Thescenariowith=0hasthebestperformanceinawindwardsituation(0°90°).Eventhoughtheleeward situation with = 180° has a little favourable effect, the scenarios with 90° 180° have negative effects, which is somewhat surprising. When is 0° or 45°, the area of the window (Aw) has a beneficial impact on airflow, with a linear relationship betweenAw0.34andAw0.46.Predictingairflowratesunder90°wasmadepossibleusingatheoreticalmodel,whichmaybe usedtomakesimilarforecastsfor90°to180°.Thereisagoodcorrelationbetweentheforecastsandthenumericaldata.

Zuo, et al.,(2020)

WSCPPDW(windsuperchargingsolarchimneypowerplantwithseawaterdesalinationandgaswasteheat)wasinvestigatedin thisstudy.Forthisarticle,themaingoalistoinvestigatetheimpactofoperationalandstructuralaspectsontheWSCPPDW's performanceandtoanalyseitsflowfieldcharacteristics.Structureparametersandfluegasjetcouldnotbewellcapturedbya previous WSCPPDW mathematical model. As a result, CFD ANSYS Fluent was used to do a 3D numerical simulation of WSCPPDW.Simulationswithvariousturbinerotational speeds,nozzlelengths,chimneyoutlet radii,andchimneymixing sectionlengthswereruntodeterminethebestoperationalandstructuralcharacteristicsforWSCPPDW.Fluegasjetscan createahigh-temperature,high-speedjetareainthechimney,causingentrainmentofthesurroundingairflow.

Atallindustrialchimneywassubjectedtowindexcitationstoexploreitsdynamicfeatures,suchasitsnaturalfrequencies, modeforms,andstructuraldampingratios,byusingGPStechnologytomonitorhorizontaldynamicdisplacementsalongits verticalprofile.Inthiscase,FrequencyDomainDecomposition(FDD)wasusedtodothestudy.Basedontheresultsofastatic test,thebasicpropertiesofGPSbackgroundnoiseareevaluatedinthetemporalandfrequencydomains.ThreeGPSroverunits wereusedtoconductthefieldtestingonthechimneyatBelchatowPowerPlantinPoland.Inordertomeasurethechimney's horizontaldeformationalongaverticalprofileasaresultofthewind,GPSunitsweremountedonthreelevelsofthechimney.

Carvalho, et al.,(2019)

Atallindustrialchimneywassubjectedtowindexcitationstoexploreitsdynamicfeatures,suchasitsnaturalfrequencies, modeforms,andstructuraldampingratios,byusingGPStechnologytomonitorhorizontaldynamicdisplacementsalongits verticalprofile.Inthiscase,FrequencyDomainDecomposition(FDD)wasusedtodothestudy.Basedontheresultsofastatic test,thebasicpropertiesofGPSbackgroundnoiseareevaluatedinthetemporalandfrequencydomains.ThreeGPSroverunits wereusedtoconductthefieldtestingonthechimneyatBelchatowPowerPlantinPoland.

3. METHODOLOGY

Thechimneytakenintoconsiderationinthisstudyisacommercialreinforcedconcretechimney.Windanalysiscodewereused inthestructure'sdesign.Foracontinuousemissionmeasurementsystemonthechimney,adoormeasuringhasbeenproposed tobeopened.Thischimneywasspecificallychosenforthisinvestigationinordertoassesstheimpactofsuchanopening.The chimneyhasnotsustainedanydamageasaresultoftheearthquakes.

3.1 Modeling of Chimney

STAADPro,Bentleysoftware,isusedtomodelthechimneyinordertodolinearelasticanalysisonthestructure.Afour-node thinshellelementisusedtosimulateareinforcedconcretechimney.Theshellelementcomprisesfournodes,andeachnode hassixdegreesoffreedom,includingrotationsaboutthex,y,andzaxesaswellastranslationsinthex,y,andzdirection

Fig.3.1Geometryofthinshellelement

©
Journal | Page66
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

Sincethechimney'sheighttodiameterratioislowanditsbehaviouristhatofathinshell,whichdoesnottakeintoaccount transversesheardeformation,thechimneyislikelytofailflexurally.Itdepictsthegeometryofathinshellelementwithfour nodes.Four-nodedshellelementsareusedinthechimney'sdesign.

Fig.3.2TypicalsectionthroughcolumnwallofRCchimney

Thechimneyhasaconsistentcircumferentialthickness,butthewallthicknessvariesalongtheheightofthechimney,leading tovariedshellthicknesses,aswaspreviouslymentionedinsection.Itwasrequiredtogeometricallymodeltheshellelements inawaythatavoidedthestressconcentrationinordertoproducerealisticmodelresults.Thiswasdonebymakingsurethat thewalltaperisaccuratelymodelledandthatthenodesoftheshellelementsareconnectedproperly.

Fig.3.33DviewofChimney

Fig.3.4Geometricalviewofchimney Meshdensityisacrucialmetricforaccuracymanagement.Shellelementsarediscretizedtoproducecorrectanalysisresultsby breakingupthebiggerelementsintoafinitenumberofsmallerelements,resultinginameshofsmallareaelements.When loadingisappliedtotheareaelement,itdispersestheweightevenly,aidingintheachievementofsatisfactoryoutcomes.

TheIS875(part3):1987statesthatthebasicwindspeedcanbecomputed.

©
Journal | Page67
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified
MODELING AND ANALYSIS 4.1Wind Load Calculation
Factor Method
4.
Guest
Vz=Vb*K1*K2*K3

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072

Vz=designwindspeedatanyheightzm/s 

K1=probabilityfactor(riskcoefficient) 

K2=terrain,heightandstructuresizefactor 

K3=topographyfactor

Simplified Method

Anairstreamonabluffbody,suchasachimney,isobstructedbyastaticforceknownasdragforce.Theformanddirectionof the wind incidence determine how the wind pressure is distributed. This results in circumferential bending, which is particularlysevereforchimneyswithlargerdiameters.Along-windshearforcesandbendingmomentsarealsoproducedby dragforce.

Drag Force

Asinglestationarybluffbodyhasadragforceof,

Fd=dragforce,N

Cd =Dragcoefficient

A=areaofsectionnormaltowinddirection,sq.m

TheReynoldsnumber,geometry,andaspectratioofastructureallinfluencethedragcoefficientvalue.Reaffectstheradial distribution of wind pressure on the horizontal segment. Shear forces that are induced in the structure often offset the resultant force of an along wind. On the circumference of the chimney cell, these shear forces are thought to fluctuate sinusoidally.

5. CONCLUSION

Anindustrialchimneyisdesignedandanalyzedbythreedifferentmethods(Gustfactor,Simplifiedmethod,Randomresponse method).Theanalyticalresultiscomparedondifferentproperties(Pressure,Deflection,ShearStressandMoment)afterreview paper.

Theanalysisshowsthatthemaximumpressureisobtainedat150mmheightis19.370Kn/m2byrandomresponse methodwhereas2.846Kn/m2isobtainedviasimplifiedmethodandleastpressureobtainedby2.381Kn/m2.Hence, Gustfactormethodismoreeffectivethanothermethods.

Deflectionanalysisreportedthatrandomresponsemethodgivenheightvalueofdeflectionthatis.705mand.126m obtainedbysimplifiedmethodand.1084mbyGustmethod.Hence,accordingtodeflectionpointofviewgustfactoris morereliableandrandomresponseislessreliable.

Randomresponsemethodgiveshighestshearstressthatis870000N/m2throughrandomresponsemethod,whearas 240000N/m2and210000N/m2shearstressvalueisobservedbysimplifiedandgustfactormethod.Hence,Gustfactor ismoreeffectiveascomparetoothermethod.

Momentanalysisreportedthatrandomresponsemethodgivenheightvalueofmomentthatis43400N-mand6230N-m obtainedbysimplifiedmethodand5000N-mbyGustmethod.Hence,accordingtomomentpointofviewgustfactoris morereliableandrandomresponseislessreliable.

©
| Page68
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

6. REFERENCES

Arzpeyma,M.,Mekhilef,S.,Newaz,K.M.,Horan,B.,Seyedmahmoudian,M.,Akram,N.,&Stojcevski,A.(2020).Solarchimney powerplantanditscorrelationwithambientwindeffect.JournalofThermalAnalysisandCalorimetry,141(2),649-668

 Zuo, L., Qu, N., Liu, Z., Ding, L., Dai, P., Xu, B., & Yuan, Y. (2020). Performance study and economic analysis of wind superchargedsolarchimneypowerplant.RenewableEnergy,156,837-850.

 Zuo,L.,Liu,Z.,Ding,L.,Qu,N.,Dai,P.,Xu,B.,&Yuan,Y.(2020).Performanceanalysisofawindsuperchargingsolarchimney powerplantcombinedwiththermalplantforpowerandfreshwatergeneration.EnergyConversionandManagement,204, 112282.

 Shi,L.(2019).Impactsofwindonsolarchimneyperformanceinabuilding.Energy,185,55-67.

 Zuo,L.,Dai,P.,Liu,Z.,Qu,N.,Ding,L.,Qu,B.,&Yuan,Y.(2020).Numericalanalysisofwindsuperchargingsolarchimney powerplantcombinedwithseawaterdesalinationandgaswasteheat.EnergyConversionandManagement,223,113250.

 Elias,S.,Matsagar,V.,&Datta,T.K.(2017).Distributedmultipletunedmassdampersforwindresponsecontrolofchimney withflexiblefoundation.Procediaengineering,199,1641-1646.

 Wang,Q.,Zhang,G.,Li,W.,&Shi,L.(2020).Externalwindontheoptimumdesigningparametersofawallsolarchimneyin building.SustainableEnergyTechnologiesandAssessments,42,100842.

 Méndez,C.,&Bicer,Y.(2021).Integratedsystembasedonsolarchimneyandwindenergyforhybriddesalinationvia reverseosmosisandmulti-stageflashwithbrinerecovery.SustainableEnergyTechnologiesandAssessments,44,101080.

 Zuo,L.,Dai,P.,Ding,L.,Yan,Z.,Wang,X.,&Li,J.(2021).Effectofchimneyshadowontheperformanceofwindsupercharged solarchimneypowerplants:AnumericalcasestudyfortheSpanishprototype.GlobalEnergyInterconnection,4(4),405414.

 deOliveiraNeves,L.,&daSilva,F.M.(2018).Simulationandmeasurementsofwindinterferenceonasolarchimney performance.JournalofWindEngineeringandIndustrialAerodynamics,179,135-145.

 Gholamalizadeh,E.,&Chung,J.D.(2017).AcomparativestudyofCFDmodelsofarealwindturbineinsolarchimney powerplants.Energies,10(10),1674.

 Zuo,L.,Liu,Z.,Dai,P.,Qu,N.,Ding,L.,Zheng,Y.,&Ge,Y.(2021).Economicperformanceevaluationofthewindsupercharging solarchimneypowerplantcombiningdesalinationandwasteheatafterparameteroptimization.Energy,227,120496.

 Zuo,L.,Liu,Z.,Qu,N.,Dai,P.,Sun,Y.,&Qu,B.(2020,September).Economicanalysisofawindsuperchargingsolarchimney powerplantcombinedwiththermalplantforpowerandfreshwatergeneration.In202012thIEEEPESAsia-PacificPower andEnergyEngineeringConference(APPEEC)(pp.1-6).IEEE.

 Pradhan,S.,Chakraborty,R.,Mandal,D.K.,Barman,A.,&Bose,P.(2021).Designandperformanceanalysisofsolarchimney powerplant(SCPP):Areview.SustainableEnergyTechnologiesandAssessments,47,101411.

 Zuo,L.,Ding,L.,Chen,J.,Zhou,X.,Xu,B.,&Liu,Z.(2018).Comprehensivestudyofwindsuperchargedsolarchimneypower plantcombinedwithseawaterdesalination.SolarEnergy,166,59-70.

Zuo,L.,Liu,Z.,Zhou,X.,Ding,L.,Chen,J.,Qu,N.,&Yuan,Y.(2019).Preliminarystudyofwindsuperchargingsolarchimney powerplantcombinedwithseawaterdesalinationbyindirectcondensationfreshwaterproduction.Desalination,455,7988.

 Khan,M.,&Roy,A.K.(2017).CFDsimulationofwindeffectsonindustrialRCCchimney.IntJCivEngTechnol,8,1008-1020.

 Datta,G.,Sahoo,A.,&Bhattacharjya,S.(2020).WindfragilityanalysisofRCchimneywithtemperatureeffectsbydual responsesurfacemethod.WindandStructures,31(1),59-73.

 Cheng,X.,Qian,H.,Wang,C.,&Fu,X.(2018).Seismicresponseandsafetyassessmentofanexistingconcretechimneyunder windload.ShockandVibration,2018.

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page69

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

 deOliveiraNeves,L.,&daSilva,F.M.(2018).Simulationandmeasurementsofwindinterferenceonasolarchimney performance.JournalofWindEngineeringandIndustrialAerodynamics,179,135-145.

 Kazemi,K.,Ebrahimi,M.,Lahonian,M.,&Babamiri,A.(2022).Micro-scaleheatandelectricitygenerationbyahybridsolar collector-chimney,thermoelectric,andwindturbine.SustainableEnergyTechnologiesandAssessments,53,102394.

 Setareh,M.(2021).Comprehensivemathematicalstudyonsolarchimneypowerplant.RenewableEnergy,175,470-485.

Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page70

Turn static files into dynamic content formats.

Create a flipbook