International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056
Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072
![]()
International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056
Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072
1Shivam Kumar, 2Ankush Kumar Jain
1M.Tech Student, 2Assistant Professor, Civil Engineering Department Poornima University, Jaipur,India ***
Abstract - ThisresearchwillbeconductedtodeterminetheComparativeStudyonWindLoad(Along&Across)Analysisof ReinforcedConcreteChimneyby(i)Gustfactormethod(ii)SimplifiedMethod&(iii)RandomResponseMethodofaReinforced Concretechimney.Thisthesisdealswithexternalappliedloadingsthateffectchimneystructuresnamelyalongandacrosswind load,withreferencetotheIS875(Part-III)IS4998(Part-I)&DraftcodeCED38(7892):2013.Thecompressivestrengthofcement concreteisassumingM35gradeinseverecondition,tensilestrengthofsteel550DTMT,windzoneisVI.ForZoneVIwindspeedis 55m/s.ModellingandAnalysiswillbedoneinStaadV8isoftware.Analyticalresultswillbecomparedtoachievedifferencesin resultsofthestructuresagainstthewindforces.
Key Words: Steel Structure, Load, wind screen, chimney
Achimneyisabuildingthatenclosestheflueandworkswithittocreateasystemthatventshotgasesorsmokeintotheopenair. Chimneys are normally vertical or almost vertical to ensure a smooth flow of gases and to attract air into the combustion, commonlyknownasthestackeffectorchimneyeffect.Themajorityofindustrialchimneysbuilttoday,includingthoseinTurkey, aroundtheworld,usereinforcedconcrete(RC).Duetooutdatedconstructionmethodsorinadequateseismicdesign,chimneys builtinthelate1970sandearliermaybesusceptibletodamageduringearthquakes.Comparedtocurrentcodes,earlieronesdo notprovideenoughseismicdetails.
DifferentkindsofloadsareappliedtoRCconcretechimneysinbothlateralandverticaldirections.Asidefromthestructure'sown weightandthepressures placedontheserviceplatforms,the mainloads thata concretechimneytypically encounters are pressure from wind loads, loads brought on by seismic activity, and temperature loads. Since concrete chimneys are often relatively tall and slender constructions, the impacts of wind on RC chimneys have a significant impact on their structural behaviour.
Thedragcomponentofthewindforcepushingonthechimneywallcausesalongwindloadeffects.Thewindspeed,thewind's surfacecontactarea,theform,andtheorientationofthestructureallaffecthowmuchpressurethewindexertsonitssurface.The structureismodelledasacantileverstructurewithafixedbasetoevaluatetheimpactofwindonthechimney.Thepressure broughtonbythewindloadinthismodelisactingperpendiculartotheexposedsurfaceoftheRCchimney.Forthepurposeof evaluatingalongwindloads,thestructureismodeledasabluffbody.
International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056
Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072
Fig.1.1windeffectswithrespecttoitsdirectionofflow
(a) GustFactorMethod
(b)SimplifiedMethod
(c)RandomResponseMethod
Arzpeyma et al., (2020)
The usage of solar energy in the modern period is required and important as well. Solar chimney technology for power generationisoneofthesolarenergyharvestingsystemswherethedirectanddiffusedsolarradiationsareabsorbedinthe solarchimneypowerplant.Theusefulnessofsolarchimneyshasbeenestablishedforpowergeneration,anditisaviable solutiontofutureenergygenerationplans.Thisarticlepresentsathoroughdescriptionofthestudyanddevelopmentofsolar energytechnologyaswellasthehistoryofsolarchimneysinthelastfewdecades.
Thisresearchproposesthewindsuperchargedsolarchimneypowerplant(WS-SCPP)modelbyputtinganunpoweredwind pressurewheelatthetopofthechimney.Solarchimneypowerplant(SCPP)prototypeinSpainisusedasthebasisforbuilding physicalandmathematicalmodelsofWS-SCPPandcomparingitsperformancetothatoftheSCPP.Byusinganunpowered windpressurewheel,WS-performanceSCPP'ssignificantlyimproves.TheshaftpowerofWS-SCPPisalwaysgreaterthanthat ofSCPPatthesameturbinerotationalspeed.At100rpm,theshaftpowerofSCPPincreasesfrom37.8kwto57.03kwby50.9 percent.
Solarchimneypowerplantscombinedwithseawaterdesalinationandwasteheat(WSCPPDW)andsolarchimneypowerplants combinedwithseawaterdesalinationandwasteheat(SCPPDW)havebeenproposedinthisarticle.Thekeydifferencebetween thetwowastheexistenceorlackofawindsuperchargingsystem,bothofwhichhadaspiralexhaustgasheatingchannel(SGC). Theoutputqualitieswerethenevaluatedundervariousscenariosusingphysicalandmathematicalmodelsthatwerebuilt. WSCPPDWandSCPPDWbothperformedbetterwhenthechimneyheightandfluegastemperaturewerebothincreased.All outputqualitiesimprovedwhenseawaterthicknesswasreduced.Fluegasflowandsunirradiationbothroseatthesametime, butfreshwateroutputandoverallefficiencydecreasedasaresult.
International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056
Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072
Windandsolarchimneyinteractionswerestudiedcomputationallyandconceptually.It'sthewindangle(),theangleformedby theoutwardnormalofthewallandthewinddirection,thatdetermineswhetherornotahigherwindspeedcorrespondsto betterperformance.Thescenariowith=0hasthebestperformanceinawindwardsituation(0°90°).Eventhoughtheleeward situation with = 180° has a little favourable effect, the scenarios with 90° 180° have negative effects, which is somewhat surprising. When is 0° or 45°, the area of the window (Aw) has a beneficial impact on airflow, with a linear relationship betweenAw0.34andAw0.46.Predictingairflowratesunder90°wasmadepossibleusingatheoreticalmodel,whichmaybe usedtomakesimilarforecastsfor90°to180°.Thereisagoodcorrelationbetweentheforecastsandthenumericaldata.
WSCPPDW(windsuperchargingsolarchimneypowerplantwithseawaterdesalinationandgaswasteheat)wasinvestigatedin thisstudy.Forthisarticle,themaingoalistoinvestigatetheimpactofoperationalandstructuralaspectsontheWSCPPDW's performanceandtoanalyseitsflowfieldcharacteristics.Structureparametersandfluegasjetcouldnotbewellcapturedbya previous WSCPPDW mathematical model. As a result, CFD ANSYS Fluent was used to do a 3D numerical simulation of WSCPPDW.Simulationswithvariousturbinerotational speeds,nozzlelengths,chimneyoutlet radii,andchimneymixing sectionlengthswereruntodeterminethebestoperationalandstructuralcharacteristicsforWSCPPDW.Fluegasjetscan createahigh-temperature,high-speedjetareainthechimney,causingentrainmentofthesurroundingairflow.
Górski, P. (2017)Atallindustrialchimneywassubjectedtowindexcitationstoexploreitsdynamicfeatures,suchasitsnaturalfrequencies, modeforms,andstructuraldampingratios,byusingGPStechnologytomonitorhorizontaldynamicdisplacementsalongits verticalprofile.Inthiscase,FrequencyDomainDecomposition(FDD)wasusedtodothestudy.Basedontheresultsofastatic test,thebasicpropertiesofGPSbackgroundnoiseareevaluatedinthetemporalandfrequencydomains.ThreeGPSroverunits wereusedtoconductthefieldtestingonthechimneyatBelchatowPowerPlantinPoland.Inordertomeasurethechimney's horizontaldeformationalongaverticalprofileasaresultofthewind,GPSunitsweremountedonthreelevelsofthechimney.
Carvalho, et al.,(2019)
Atallindustrialchimneywassubjectedtowindexcitationstoexploreitsdynamicfeatures,suchasitsnaturalfrequencies, modeforms,andstructuraldampingratios,byusingGPStechnologytomonitorhorizontaldynamicdisplacementsalongits verticalprofile.Inthiscase,FrequencyDomainDecomposition(FDD)wasusedtodothestudy.Basedontheresultsofastatic test,thebasicpropertiesofGPSbackgroundnoiseareevaluatedinthetemporalandfrequencydomains.ThreeGPSroverunits wereusedtoconductthefieldtestingonthechimneyatBelchatowPowerPlantinPoland.
Thechimneytakenintoconsiderationinthisstudyisacommercialreinforcedconcretechimney.Windanalysiscodewereused inthestructure'sdesign.Foracontinuousemissionmeasurementsystemonthechimney,adoormeasuringhasbeenproposed tobeopened.Thischimneywasspecificallychosenforthisinvestigationinordertoassesstheimpactofsuchanopening.The chimneyhasnotsustainedanydamageasaresultoftheearthquakes.
STAADPro,Bentleysoftware,isusedtomodelthechimneyinordertodolinearelasticanalysisonthestructure.Afour-node thinshellelementisusedtosimulateareinforcedconcretechimney.Theshellelementcomprisesfournodes,andeachnode hassixdegreesoffreedom,includingrotationsaboutthex,y,andzaxesaswellastranslationsinthex,y,andzdirection
Fig.3.1Geometryofthinshellelement
International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056
Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072
Sincethechimney'sheighttodiameterratioislowanditsbehaviouristhatofathinshell,whichdoesnottakeintoaccount transversesheardeformation,thechimneyislikelytofailflexurally.Itdepictsthegeometryofathinshellelementwithfour nodes.Four-nodedshellelementsareusedinthechimney'sdesign.
Thechimneyhasaconsistentcircumferentialthickness,butthewallthicknessvariesalongtheheightofthechimney,leading tovariedshellthicknesses,aswaspreviouslymentionedinsection.Itwasrequiredtogeometricallymodeltheshellelements inawaythatavoidedthestressconcentrationinordertoproducerealisticmodelresults.Thiswasdonebymakingsurethat thewalltaperisaccuratelymodelledandthatthenodesoftheshellelementsareconnectedproperly.
Fig.3.33DviewofChimney
Fig.3.4Geometricalviewofchimney Meshdensityisacrucialmetricforaccuracymanagement.Shellelementsarediscretizedtoproducecorrectanalysisresultsby breakingupthebiggerelementsintoafinitenumberofsmallerelements,resultinginameshofsmallareaelements.When loadingisappliedtotheareaelement,itdispersestheweightevenly,aidingintheachievementofsatisfactoryoutcomes.
TheIS875(part3):1987statesthatthebasicwindspeedcanbecomputed.
International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056
Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072
Vz=designwindspeedatanyheightzm/s
K1=probabilityfactor(riskcoefficient)
K2=terrain,heightandstructuresizefactor
K3=topographyfactor
Anairstreamonabluffbody,suchasachimney,isobstructedbyastaticforceknownasdragforce.Theformanddirectionof the wind incidence determine how the wind pressure is distributed. This results in circumferential bending, which is particularlysevereforchimneyswithlargerdiameters.Along-windshearforcesandbendingmomentsarealsoproducedby dragforce.
Asinglestationarybluffbodyhasadragforceof,
Fd=dragforce,N
Cd =Dragcoefficient
A=areaofsectionnormaltowinddirection,sq.m
TheReynoldsnumber,geometry,andaspectratioofastructureallinfluencethedragcoefficientvalue.Reaffectstheradial distribution of wind pressure on the horizontal segment. Shear forces that are induced in the structure often offset the resultant force of an along wind. On the circumference of the chimney cell, these shear forces are thought to fluctuate sinusoidally.
Anindustrialchimneyisdesignedandanalyzedbythreedifferentmethods(Gustfactor,Simplifiedmethod,Randomresponse method).Theanalyticalresultiscomparedondifferentproperties(Pressure,Deflection,ShearStressandMoment)afterreview paper.
Theanalysisshowsthatthemaximumpressureisobtainedat150mmheightis19.370Kn/m2byrandomresponse methodwhereas2.846Kn/m2isobtainedviasimplifiedmethodandleastpressureobtainedby2.381Kn/m2.Hence, Gustfactormethodismoreeffectivethanothermethods.
Deflectionanalysisreportedthatrandomresponsemethodgivenheightvalueofdeflectionthatis.705mand.126m obtainedbysimplifiedmethodand.1084mbyGustmethod.Hence,accordingtodeflectionpointofviewgustfactoris morereliableandrandomresponseislessreliable.
Randomresponsemethodgiveshighestshearstressthatis870000N/m2throughrandomresponsemethod,whearas 240000N/m2and210000N/m2shearstressvalueisobservedbysimplifiedandgustfactormethod.Hence,Gustfactor ismoreeffectiveascomparetoothermethod.
Momentanalysisreportedthatrandomresponsemethodgivenheightvalueofmomentthatis43400N-mand6230N-m obtainedbysimplifiedmethodand5000N-mbyGustmethod.Hence,accordingtomomentpointofviewgustfactoris morereliableandrandomresponseislessreliable.
International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056
Arzpeyma,M.,Mekhilef,S.,Newaz,K.M.,Horan,B.,Seyedmahmoudian,M.,Akram,N.,&Stojcevski,A.(2020).Solarchimney powerplantanditscorrelationwithambientwindeffect.JournalofThermalAnalysisandCalorimetry,141(2),649-668
Zuo, L., Qu, N., Liu, Z., Ding, L., Dai, P., Xu, B., & Yuan, Y. (2020). Performance study and economic analysis of wind superchargedsolarchimneypowerplant.RenewableEnergy,156,837-850.
Zuo,L.,Liu,Z.,Ding,L.,Qu,N.,Dai,P.,Xu,B.,&Yuan,Y.(2020).Performanceanalysisofawindsuperchargingsolarchimney powerplantcombinedwiththermalplantforpowerandfreshwatergeneration.EnergyConversionandManagement,204, 112282.
Shi,L.(2019).Impactsofwindonsolarchimneyperformanceinabuilding.Energy,185,55-67.
Zuo,L.,Dai,P.,Liu,Z.,Qu,N.,Ding,L.,Qu,B.,&Yuan,Y.(2020).Numericalanalysisofwindsuperchargingsolarchimney powerplantcombinedwithseawaterdesalinationandgaswasteheat.EnergyConversionandManagement,223,113250.
Elias,S.,Matsagar,V.,&Datta,T.K.(2017).Distributedmultipletunedmassdampersforwindresponsecontrolofchimney withflexiblefoundation.Procediaengineering,199,1641-1646.
Wang,Q.,Zhang,G.,Li,W.,&Shi,L.(2020).Externalwindontheoptimumdesigningparametersofawallsolarchimneyin building.SustainableEnergyTechnologiesandAssessments,42,100842.
Méndez,C.,&Bicer,Y.(2021).Integratedsystembasedonsolarchimneyandwindenergyforhybriddesalinationvia reverseosmosisandmulti-stageflashwithbrinerecovery.SustainableEnergyTechnologiesandAssessments,44,101080.
Zuo,L.,Dai,P.,Ding,L.,Yan,Z.,Wang,X.,&Li,J.(2021).Effectofchimneyshadowontheperformanceofwindsupercharged solarchimneypowerplants:AnumericalcasestudyfortheSpanishprototype.GlobalEnergyInterconnection,4(4),405414.
deOliveiraNeves,L.,&daSilva,F.M.(2018).Simulationandmeasurementsofwindinterferenceonasolarchimney performance.JournalofWindEngineeringandIndustrialAerodynamics,179,135-145.
Gholamalizadeh,E.,&Chung,J.D.(2017).AcomparativestudyofCFDmodelsofarealwindturbineinsolarchimney powerplants.Energies,10(10),1674.
Zuo,L.,Liu,Z.,Dai,P.,Qu,N.,Ding,L.,Zheng,Y.,&Ge,Y.(2021).Economicperformanceevaluationofthewindsupercharging solarchimneypowerplantcombiningdesalinationandwasteheatafterparameteroptimization.Energy,227,120496.
Zuo,L.,Liu,Z.,Qu,N.,Dai,P.,Sun,Y.,&Qu,B.(2020,September).Economicanalysisofawindsuperchargingsolarchimney powerplantcombinedwiththermalplantforpowerandfreshwatergeneration.In202012thIEEEPESAsia-PacificPower andEnergyEngineeringConference(APPEEC)(pp.1-6).IEEE.
Pradhan,S.,Chakraborty,R.,Mandal,D.K.,Barman,A.,&Bose,P.(2021).Designandperformanceanalysisofsolarchimney powerplant(SCPP):Areview.SustainableEnergyTechnologiesandAssessments,47,101411.
Zuo,L.,Ding,L.,Chen,J.,Zhou,X.,Xu,B.,&Liu,Z.(2018).Comprehensivestudyofwindsuperchargedsolarchimneypower plantcombinedwithseawaterdesalination.SolarEnergy,166,59-70.
Zuo,L.,Liu,Z.,Zhou,X.,Ding,L.,Chen,J.,Qu,N.,&Yuan,Y.(2019).Preliminarystudyofwindsuperchargingsolarchimney powerplantcombinedwithseawaterdesalinationbyindirectcondensationfreshwaterproduction.Desalination,455,7988.
Khan,M.,&Roy,A.K.(2017).CFDsimulationofwindeffectsonindustrialRCCchimney.IntJCivEngTechnol,8,1008-1020.
Datta,G.,Sahoo,A.,&Bhattacharjya,S.(2020).WindfragilityanalysisofRCchimneywithtemperatureeffectsbydual responsesurfacemethod.WindandStructures,31(1),59-73.
Cheng,X.,Qian,H.,Wang,C.,&Fu,X.(2018).Seismicresponseandsafetyassessmentofanexistingconcretechimneyunder windload.ShockandVibration,2018.
Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page69
International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056
deOliveiraNeves,L.,&daSilva,F.M.(2018).Simulationandmeasurementsofwindinterferenceonasolarchimney performance.JournalofWindEngineeringandIndustrialAerodynamics,179,135-145.
Kazemi,K.,Ebrahimi,M.,Lahonian,M.,&Babamiri,A.(2022).Micro-scaleheatandelectricitygenerationbyahybridsolar collector-chimney,thermoelectric,andwindturbine.SustainableEnergyTechnologiesandAssessments,53,102394.
Setareh,M.(2021).Comprehensivemathematicalstudyonsolarchimneypowerplant.RenewableEnergy,175,470-485.
Volume: 09 Issue: 11 | Nov 2022 www.irjet.net p-ISSN:2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page70