A Review study on the Design of Wind Screen Using Finite Element Approach

Page 1

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

A Review study on the Design of Wind Screen Using Finite Element Approach

1Shivam Kumar, 2Ankush Kumar Jain

1M.Tech Student, 2Assistant Professor, Civil Engineering Department, Poornima University, Jaipur,India ***

Abstract - Thereasonofthepresentstudyistogettheresultofwindscreenscreen/meshsupportedbysteelstructuresonthe coalminingarea.Toevaluatetheperformanceofthewindscreenscreen/mesh,ischeckedbyperforminganalysisonSTAADPro byprovidingwindspeeddata,gravity,seismicfactors,steelloads.Inthisinvestigationitwillbeconsideredtheworstwindspeed onmeshandloadsonthesteelstructures.Analysisresultsexpectedtoshowthatwhenthereismaximumwindpressurethen thereischancesofwearandteartothewindmeshsoreductioninheightandincreasingthesteelstructuredepthcanhandlethe windspeed.Variationcanoccurswhenthereisdifferenceinheights.ThereforeComparisonoftheresultswillbepresentand STAADProisusedforconstructionandanalysis.

Key Words: Steel Structure, Load, wind screen, mesh

1. INTRODUCTION

LotsofcoalatNTPCBanadagRailwaySiding, Hazaribagh(Jharkhand)havebecamethreattothenearbyvillagersandfarmers. Hundredsofcoalcarryingtrucksandhywasupplycoalregularlybetweenbadkagoncoalminingtobanadagstockyardatbanadag railwaysiding.Manydeepborewellshasbeenalsomadeforthesprinklingofwatertostopthedust,butduetodeepborewells thelocalvillageswaterlevelhasbeendecreased.

Localsclaimsthatthedirtywatercomingoutofthecoalcheapmostlyinrainyseason,flowsdirectlyintonearbyfarmlandsand duetothistheagricultureisbecomingworstandlandsarealsodamaged.Apartfromthisalotoffarmersaremigratingandare sufferingfromairbornediseaseduetoconstantlyexposedtopollutedwaterandair.

Aspertheguidelinesofcoalstockyardregularsprayingofwater,plantingoftreesalongtheboundarysidesandatleast3meters boundaryhastobeprovidedandarebeingfollowedalso,butafterallthisconstructionstillthedustisspreadingoutofboundary. ThevillagershavedemandedthatNTPCauthoritiesshouldtakestepsassoonaspossibletostopthepollution.SoforthatWind screenof8Metersheighthasbeenconstructedandiseffectivelyinusehasminimizedtheairpollution.Accordingtothespeedof windthewindscreenhastobedesignedsothatIshouldnotfail.Thewindspeedhastobetakenfortheshorttermperiod. Accordingtothespeedofwindthematerialforthescreenmeshhastobeplaced.Theheavysteelsectionswillbeprovidedforthe screenmeshaccordingtotheanalysisofwindspeedandheightofmesh,weightofmesh.Steelframesareusuallythechoicewhen constructingalargerbuildingthatneedsabigopenspacebecauseoftheeconomicalaspectandefficiencyofbuildingasinglestoreyunit

Theuseofsteelinthedevelopmentstructurehasbecomeacommonpractice,whichdeterminestheweightofthestructural material,gravitationalforces,compressivestrength,thestabilitypotentialofthestructure,anditsarchitecturalcapabilities

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page140

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue:10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

Figure 1: Wind screen frame

1.1 Wind Screen/Mesh: Windscreensaredeflectorsusedtoreducewindspeed.Theyredirectthewindinanotherdirection.It usuallyconsistsoftrees,shrubs,grassesandvarioustypesoffencesorothermaterials.Theenvironmentalconditionsbehindthe winddivisionsknownastheprotectedareabecomemoreeffectiveasthewindspeedisreducedbyscreens.Whenthewindblows athighspeedagainstthescreen,thepressurebuildsuponthewindwardside(windwardside)andmostoftheairrisesonor aroundtheendsofthescreen.

1.2 The effectiveness of the wind screen: Theeffectivenessofthescreendependsonhowitisdesigned.Thereareseveral criteriawhenconsideringthedesignofthescreen.Parametersinclude:partitionheight,distancefromcoalyard,partitionarea density,partitionlengthanddirection.Theseparametershelptoreducethewindspeedandchangetheweatherconditions.

1.3The effect of density: Partitiondensityisthetermusedfortheratioofthesolidportionoftheentirebarriertothetotalarea ofthebarrier.Whenthewindblowsthroughtheopenside,morewindswillpassthroughit.Ifthescreensaretoodense,thenlow pressurewillappearonthesideofthescreen.Thislowpressureareabehindthewindscreenpullsdowntheairthatpassesover thewindshield,creatingturbulenceandreducingwindprotection.Asthedensitydecreases,theamountofairpassingthroughthe screenincreases,relievingthelowpressureandturbulenceandthusincreasingthelengthoftheshelteredareadownstreamofthe wind.

Thegapsinthewindwardareasturnintopathsthatconcentratethewindflow,creatingareasonthewindwardsideofthegap wherethewindspeedoftenexceedsthewindspeedinthecountry.Theeffectivenessofthescreenislostiftherearegaps.

1.4 The types of loads acting on the structure are:

Deadloads

Imposedloads

Windloads

Seismicloads

Page141
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

2. LITERATURE REVIEW

Renuka G M et al (2020)

Figure 2: wind load directions

Theyhavestudiedthatbyusingoptimalsteelcross-section,thecostcanbereduced.

ShownthatPEBisfoundtobemoreeconomicalthanCSBforlow-riseconstruction.Theyinferredfromtheirstudies thatCSBisapprox25.60percentheavierthanPEBandtherefore30percentmoreeconomicalthanPEB.

Anuj Chandiwala et.al

Theauthorsresearchpaperpresented thatInthestructuraldesign,corpsesmustbetakenintoaccount,imposedand wind loads and forces such as those caused by Earthquakes and the effects of shrinkage, creep and heat, etc., if necessary.TherearedifferenttypesoftasksthatworkOnthedome,aspermanentload(DL),directload(LL),seismic load(EQ),snowload,windload(WL)andothertasks.

Dome diameter was used as 20, 25, 30, 35, 40 and 45 mThe size of the pipe sections was used according to the diameter20,25,30,35,40,45ashorizontalsection0.20,0.15,0.18,0.20,0.23,0.25mandfortheverticalsection0.15, 0.14,0.15,0.18,0.20and0.23respectively.Theplatethicknessis0.008m.

N.Subramanian et. al. 2017

Thestructurestudiedinthisarticlewascomplexthesituation,becauseitwasneithereconomicalnorfeasibleRemove strugglingfarmsandcreatenewfarms.

Rehabilitation of hard-to-satisfy beams the requirement for solidity and functionality without large dimensions financiallosswasthebestsolutioncomplexproblem.

TrusswasmostlytirelessSufferedaseverelossofstiffnessof95.7%accompaniedbyLossofstrengthof17.17%.The pilotstudyindicatedThisonlyuses5%morehardware(additional limbssupport),thehardnessofthistrusshas increasedindifficultyby126.35%anditsloadcapacityby97.94%.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page142

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 10 | Oct 22 www.irjet.net p-ISSN: 2395-0072

Ajay Kumar, Rajeev Kumar et. al.

Theauthorsresearchpaperpresented,thevariouspublicationsontheanalysisofsteelstructureshavebeenbriefly discussed. After reviewing this previously published article, it can be concluded that the structure consisting of different steel sections is more stable. These steel structures can be effectively used for modern and fast urban constructionworks.Variousmodernsteelpartitionshaveproventobethemosteconomicalandsafestcomparedto traditionalpartitions.

Thomas Heaton et al. (2007)

Simulationoftheresponseofsix-andtwenty-storyhigh-strengthsteel-framedbuildings(US1994UBC)toground motions(recordedduringthe2003Tokachi-Okiearthquake).Theauthorconsideredthatthebuildingalsohadperfect weldsandweakwelds,whichwasobservedduringtheNorthridgeearthquakein1994.The2003Tokachi-okicould havecausedlargedisplacementsbetweenfloorsinashorttime.flexible-heavydutysteelframedstructuresaccording toUSA-designed1994.,UniversityofBritishColumbia.

Joghataie and M. Takalloozadeh (2009)

Intheirpaperproposedanewpenaltyfunctionwhichhassuperioraffinityproperties,asthecombinedexternaland internalpenaltyfunctiondoesnothavesuchsuperiorproperties.Theyusedthenewandoldindoorandoutdoor penaltyfunctionandthemethodofdescendingthreecolumnsandtensteeppillars,andthencomparedtheresults.It wasconcludedthattheconvergencerateandtheaccuracyoftheresultimproved.

InthispaperStructuralanalysiswithtallsteelframingwithandwithoutsheetsteelshearwalls(SPSW)usingSTAAD PROsoftware.Themainfocusofthestudywasdifferentthicknesses(6mmto18mm)ofshearwallsmadeofsteel plates.Theparametersconsideredfortheresultsweredeformation,shearstrength,bendingmoment,axialforce.An equivalentstaticseismicanalysiswasperformedaccordingtoIS1893:2002.

Akshay Kunal W. Alabama. et al (2017)

Presentedthatsteelprofilestructureshavealwaysbeenthemainchoiceofcivilengineersforbuildingonothertypes of structures. To date, there are a number of developments and achievements regarding steel structures. The developmentcanbeusedeffectivelyintheprocessofdesigningpressureelementsinthedesignofvariousstructural elements,suchasaxles,racks,gearsandtires.

3. METHODOLOGY

Thecollectionofwindspeedatthecoalyarddatawillbetakeforthepredictionofcoaldustflowingandmaximumairflowing. Theaveragewindspeedwillbetakenfromweatherforecast.Andthepeakvaluewillbetakenintoaccountandwillbefeeded onthesoftware.OncethewindspeedisdeterminedthenthematerialischosentoresistthecoaldustsuchasAgro-netof90% GSMor light weightsteel plates.And theload whichwill carrythe wind mesh will be designedanddeterminedby using software.Designandanalysiswillbedoneondifferentsteelsectionsforcarryingtheloadsufficiently.Thelastpartwill be analysisofallthepartsincludingspeedofwind.Alltheloadswillbecombinedandanalysiswillbedonetillaeconomicaland stabledesignismade.

Steps for the analysis:

Step-1:Selectionofsteelmembersandwindscreenmesh.

Step-2:AssigningSectionalpropertiesandmembersasperSteelTable.

Step-3:AssigningSupportCondition

Step-4:Assigningloadconditions:

Step-5:Analysisofstructure

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page143

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

4. MODELING AND ANALYSIS

Thefollowingmethodsareusedfortheanalysisofindustrialbuildings:

1.EquivalentStaticLoadAnalysisMethod(ESLA)

2.ResponseSpectrumAnalysis(RSA)

3.Time-DateAnalysis(THA)

Figure 3: Analysis report of Industrial ware house

Figure 4: Stiffeners details

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal |

Page144

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

5. CONCLUSION

Figure 5: Beam stresses

Figure 6:Column Footing details

Thisprojectinvolvedtheanalysisanddesignofwindbreaks.Manualcalculation,designandanalysisofsteelwindshield componentsusingStaadProandautocaedsoftware.Thisprojectisdesignedwithawidthof4.5metersandalengthof8 meters(height).

 Designingsteelcomponentsusingsolutionequationsiscomplexandtimeconsuming,sotosavetime,computersoftware shouldbeusedtodesignandprocessanalyzethesetypesoftrussesandthissoftwaretakesinputfromtrussdesignand takesthem.Performcalculationseasilyandquicklytosavetimeandensuredesignintegrity.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page145

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

Straightelementswereusedatthebeginningandattheendconnectedbytrianglesformedbypositionalwelds,andthis elementisaffectedbythecompressionortensionforce,atapproximatelythesametimethatthesameaveragetorqueis excludedinthereinforcements,assumingthateachjointinthearmorthereisapin.

 Thisprojectdealswithtwodesigncriteria(bymanualcalculationandbystaadpro)inStaadprotwodesignswereused firstbycheckingtheadequacyoftheselectedsectionandsecondbythelightestweightdesign.Therewasadifference betweenallthedesignparametersdependingonthesectionareawhichgivesadifferentsection.

6. REFERENCES

General papers

1. Burdzik,W.M.G.andSkorpen,S.A.(2014),“Metal-stripbracingversusdiagonaltimberbracingintimbertrussedtiled roofs”,Eng.Struct.,75,1-10.

2. Jesumi,M.G.Rajendran,“OptimalBracingSystemforSteelTowers”InternationalJournalofEngineeringResearchand ApplicationsVol.3,Issue2,March-April2013.

3. S.M.Dhawade,P.S.Pajgade,“ConsiderationofSeismicDesignofMultistoriedSteelStructure”InternationalJournalofCivil EngineeringResearch.Vol.5,Number2,2014,pp.177-182.

4. PrashantTopalakatti,PrabhuM.Kinagi,“ParametricStudyofSteelFrameBuildingwithandwithoutSteelPlateShear Wall”IISTE.Vol.6,Number10,2014.AbhyudayTitiksh

5. Dr.M.K.Gupta,“AStudyoftheVariousStructuralFramingSystemsSubjectedtoSeismicLoads”SSRGInternational JournalofCivilEngineering.Vol.2,Issue4,April2015.

6. MohammedAbdulRizwan,TejasD.Doshi,“SeismicBehaviorofSPSWSteelFramedBuildings”InternationalResearch JournalofEngineeringandTechnology(IRJET).Vol.2,Issue3,June2015.

7. ShHosseinzadeh,B.Mohebi,“Seismicevaluationofallsteelbucklingrestrainedbracesusingfiniteelementanalysis”, JournalofConstructionalSteelResearch119(2016)76-84.

8. Salem R.S Ghdoura, Vikas Srivastava, “Analysis of Steel Framed Structure using STAAD Pro and ROBOT Software”, InternationalJournalofScientificEngineeringandTechnologyResearch,Volume5,Issue7,March2016,pp:1442-1449.

9. AkshayKunal,“CompressionMembers:Strut&Column”,InternationalResearchJournalofEngineeringandTechnology (IRJET),Volume4,Issue5,March2017,pp:1318-1319.

10. KurapatiNikhila,ASrikanth,“StudyofNonlinearBehaviourofaBracedStructureinallSeismicZones”,International JournalofAdvancedResearchinScience,EngineeringandTechnology,Volume4,Issue6,June2017,pp:4094-4102.

11. ShrikantMHarle,“Analysis ByStaad-ProAndDesignOfStructuralElementsByMatlab”,Journal ofAsianScientific Research,Volume7,Issue5,2017,pp:145-164.

12. InternationalJournalofEngineeringAndScience(IJES)Volume4Issue3.PP.76-84.

13. SwaminathanKrishnan,ChenJi,DimitriKomatitsch,andJeroenTromp,“CaseStudiesofDamagetoTallSteelMomentFrameBuildingsinSouthernCaliforniaduringLargeSanAndreasEarthquakes”,BulletinoftheSeismologicalSocietyof America,Vol.96,No.4A,pp.1523–1537,August2006.

14. http://www.ecf.caltech.edu/~heaton/papers/Kyoto_buildings.pdf

15. A joghataie and M. Takalloozadeh, “Improving Penalty Functions for Structural Optimization”, Transaction A: Civil EngineeringVol.16,No.4,pp.308-320,2009.

16. Abramyana,S.G. and Ishmametova,R.K.(2016), “Strengtheningtimber roof trusses during building construction and reconstruction”, International Conference on Industrial Engineering, ICIE 2016, Procedia Engineering, doi: 10.1016/j.proeng.2016.07.253.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page146

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

17. Anbarasu,M. (2016), “Local-distortional buckling interaction on cold formed steel lipped channel beams”, Thin Wall.Struct.,98,351-359.

18. Barbari,M., Cavalli,A., Fiorineschi,L., Monti,M. and Togni, M. (2014), “Innovative connection in wooden trusses”, Constr.Build.Mater.,66,654-663.

19. Branco,J.M., Piazza,M. andCruz,P.J.S. (2010), “Structural analysis oftwo King-post timbertrusses: Non-destructive evaluationandload-carryingtests”,Constr.Build.Mater.,24(3),371-383.

Standards

20. 1.IndianStandard:1893(Part1);2002.CriteriaforEarthquakeResistantDesignStructures:NewDelhi:BIS;2002.

21. 2.IS 875:Part 1to5Code Of PracticeForDesign Loads (OtherThan Earthquake)For Buildings and Structures,1st Revision,NewDelhi:BIS.

22. 3.IndianStandard:801–1975;CodeOfPracticeForUseOfCold-FormedLightGaugeSteelStructuralMember‘sIn GeneralBuildingConstruction,1stRevision,NewDelhi:BIS.

23. 4.IndianStandard:800–2007;GeneralConstructioninSteel CodeofPractice;3rdSRevision,NewDelhi:BIS.

24. 5.IndianStandard:800–1984;CodeofPracticeforGeneralConstruction,InSteel;1stRevision,NewDelhi:BIS.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page147

Turn static files into dynamic content formats.

Create a flipbook