International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072
![]()
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072
1ME Scholar, Electrical Department, MBM Engineering College, Jodhpur, INDIA 2Professor, Electrical Department, MBM Engineering College, Jodhpur, INDIA 3,4Ph.D Scholar, Electrical Department, MBM Engineering College, Jodhpur, INDIA ***
Abstract - In present scenario, the scarcity of energy resources, the increase in electricity production costs and the concern for the environment requires optimal economic transmission. In fact, the distance between the power plant and the load is not equal and there is no similar fuel cost function. Therefore, the load must be distributed between the different power plants in a way that results in the lowest energy production costs, in order to provide cheaper electricity. The current economic shipping problem (ED) has averynon-linearobjectivefunctionandhasstrictsubstitution and inequality constraints. Use of Particle Swarm Optimization (PSO) and GWO to distribute active power between power plants that meet system requirements and minimize the cost of electricity generation. The accuracy and speed of convergence of these methods is analyzed. The use of PSO and GWO has solved the economic burden distribution problem in electric power bus systems. PSO and GWO are implemented in 14bus and 30bus systems.
Key Words: Economic Load Dispatch, PSO, Power Systems, Optimization Techniques, Grey wolf optimization GWO
In the conventional methods, it is difficult to solve the optimaleconomicproblemifthe loadchanged.Itneedsto computetheeconomicloaddispatcheachtimewhichusesa longtimeineachofcomputationloops.
It is a computational process where the total required generation is distribution among the generation units in operation, by minimizing the selected cost criterion, and subjectsittoloadandoperationalconstraintsaswell.
Foraninterconnectedsystem,itisnecessarytominimizethe expenses.Theeconomicloaddispatchisusedtodefinethe production level of each plant, so that the total cost of generation and transmission is minimum for a prescribed scheduleofload.
Theobjectiveofeconomicloaddispatchistominimizethe overallcostofgeneration.Forsolvingthiswell-knownnontraditional PSO optimization is chosen, and 14 bus and
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072
G5 14 11.79
VOLTAGEATBUS 14BUSSYSTEM 14BUSSYSTEM b1 1.06 1.06 b2 1.043 1.041 b3 1.23 1.023 b4 1.01 1.012 b5 1.01 1.01 b6 1.07 1.071 b7 1.02 1.021 b8 1.01 1.01 b9 1.047 1.048 b10 1.064 1.065 b11 1.082 1.082 b12 1.06 1.061 b13 1.071 1.071 b14 1.0512 1.0516
GeneratorCost 700 700
COMPARISON BETWEEN PSO AND GWO FOR 30 BUS SYSTEMS
Table -2:ComparisonbetweenPSOANDGWOfor 30bussystem Algorithm PSO 30 BUS SYSTEM GWO 30 BUS SYSTEM
FuelCost(rs/hr.) 775.11 756.0183 Emission(kg/hr) 344.1790 343.0071
GeneratorPower G1 200 200 G2 21.046 20.029 G3 19.24 15.032 G4 13.62 10.42 G5 10.35 10.03 G6 12 12
VOLTAGEATBUS 30BUSSYSTEM 30BUSSYSTEM b1 1.06 1.06 b2 1.04 1.04 b3 1.025 1.024 b4 1.0167 1.0163 b5 1.01 1.1 b6 1.0147 1.0143 b7 1.005 1.004
b8 1.01 1.01 b9 1.0529 1.0523 b10 1.046 1.043 b11 1.082 1.082 b12 1.059 1.0599 b13 1.071 1.071 b14 1.045 1.044 b15 1.04 1.03 b16 1.0471 1.046 b17 1.041 1.040 b18 1.03 1.02 b19 1.027 1.02 b20 1.0316 1.0311 b21 1.034 1.033 b22 1.035 1.034 b23 1.0293 1.0294 b24 1.023 1.023 b25 1.02 1.01 b26 1.0024 1.0022 b27 1.026 1.026 b28 1.012 1.012 b29 1.0066 1.0065 b30 0.9952 0.9951 TransmissionLoss 12.90 12.83 GeneratorCost 824 810
1.3 IEEE 14 BUS System Graphs For PSO and GWO
Fig.1(a ) : PSOfuelcostandemission
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072
Fig.1(b) : GWOfuelcostandemission
Fig.3(a) : PSOVoltageateachbus
Fig.3(b) : GWOVoltageateachbus
Fig.2(a) : PSOGeneratorpower
Fig.4(a) : PSOTransmissionloss
Fig.2(b) : GWOGeneratorpower
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072
1.4 IEEE 30 BUS SYSTEM GRAPHS FOR PSO AND GWO
Fig.4(b) : GWOTransmissionloss
Fig.6(a) : IEEE30-PSOFuelcostandEmission
Fig.5(a) : PSOGeneratorcost
Fig.6(b) : IEEE30-GWOFuelcostandEmission
Fig.5(b) : GWOGeneratorcost
Fig.7(a) : IEEE30-PSOGeneratorPower
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072
Fig.7(b) :IEEE30-PSOGeneratorPower
Fig.9(a) : IEEE30-PSOTransmissionloss
Fig.9(b) : IEEE30-GWOTransmissionloss
Fig.8(a) : IEEE30-PSOVoltageatEachBus
Fig.8(b) : IEEE30-GWOVoltageatEachBus
Fig.10(a) : IEEE30-PSOGeneratorcost
2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1139
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
dispatch of Nigerian power system considering valve point loading effect through interior point method” Electrical&ElectronicEngineeringDepartment,Federal Polytechnic,Ede,NigeriaApril22
[7] ManishParihar,M.K.Bhaskar"ReviewofPowerSystem Blackout" International Journal of Research and InnovationinAppliedScience-IJRIASvol.3issue6June 2018, pp.08-13 URL: https://www.rsisinternational.org/journals/ijrias/Digit alLibrary/Vol.3&Issue6/08-13.pdf.
[8] Emmanuel Gbenga DADA and Shafi'i Muhammad ABDULHAMID“ApplicationofGreyWolfOptimization Algorithm:RecentTrends,Issues,andPossibleHorizons” GUJSci35(2):485-504(2022)11May2021
Fig.10(b) : IEEE30-PSOGeneratorcost
This work adopts the best meta-heuristic optimization techniques to solve the problem of balance between economyandemissions.TheresultsarebetterthanPSOs.As the complexity of the system increases, the integration progressestoimprovement.Therefore,thesolutionforhigh -endsystemscanbeobtainedinashortertimecomparedto conventionalmethods.
[1] BoLiandJingwenWang,“EconomicDispatchMethods for Smart Grid” School of Automation Engineering, Northeast Electric Power University, Jilin, China 07 December2021
[2] Widi Arbovo, “ Comparison Study on economic load dispatchusingmetaheuristicalgorithm” Gaziuniversity journalofscience·March2022
[3] Jun Du, Zongnan Zhang, Menghan Li and Kongge Zhu, “Optimalschedulingofintegratedenergysystembased onimprovedgreywolfoptimizationalgorithm” School ofEnergyandPower,JiangsuUniversity02May2022
[4] Farshadresaei,hamidrezasafavi,andMohammedazmi “An Enhanced Grey Wolf Optimizer with a VelocityAidedGlobalSearchMechanism”22Jan2022
[5] Sobia Pervaiz, Zia Ul-Qayyum,Waqas Haider Bangyal, Liang Gao, and Jamil Ahmad ,“A Systematic Literature ReviewonParticleSwarmOptimizationTechniquesfor MedicalDiseasesDetection”1DepartmentofComputer Science,AbasynUniversityIslamabadCampus2021
[6] Tijanimuhammed,AdepojuGafari,AyoadeMorufua., Afolalu Oladele f., Oladiran Taoeek a. “Economic load
[9] Seyedali Mirjalili, Seyed Mohammad Mirjalili and Andrew Lewis, “Grey wolf optimizer” Department of ElectricalEngineering,ShahidBeheshtiUniversity,G.C. 1983963113,Tehran,Iran2013Elsevier
[10] MoumitaPradha,ProvasKumarRoyandTandraPal“Grey wolf optimization applied to economic load dispatch problems” Department of Electrical Engineering, JalpaiguriGovernmentEngineeringCollege,Jalpaiguri, WestBengal,India22April2016
[11] Nitish Chopra1, Gourav Kumar and Shivani Mehta “Hybrid GWO-PSO Algorithm for Solving Convex EconomicLoadDispatchProblem”InternationalJournal of Research in Advent Technology, Vol.4, No.6, June 2016
[12] M.R.AlRashidi,andM.E.El-Hawary,“SurveyofParticle Swarm Optimization Applications in Electric Power Systems,” IEEE transaction on evolutionary computation, vol.13,no.4,pp.913-917,august2009.
[13] D.W.RossandS.Kim,“Dynamiceconomicdispatchof generation,”IEEETransaction onpowerApparatusand Systems,vol.1,no.6,pp.22-28,1980.
[14] K.T. Chaturvedi, M. Pandit, and L. Srivastava, “Selforganizinghierarchicalparticle Swarmoptimizationfor non-convex economic dispatch,” IEEE Transaction on power systems,pp.1079-1087,2008.
[15] T. A. A. Victoire and A. E. Jeyakumar, “Reserve constraineddynamicdispatchofunits withvalve-point effects,”IEEETransactiononPowerSystems,vol.20,no. 3,pp.1273–1282,Aug.2005.
[16] R.Rajabioum,“Cuckoooptimizationalgorithm,“Applied SoftComputing,pp.5508-5518,November2011.
[17] K.T. Chaturvedi, M. Pandit, and L. Srivastava, “Particle swarm optimization with time varying acceleration coefficientsfornon-convexeconomicpowerdispatch”,
Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1140
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072
International Journal of Electrical and Power Energy System.pp.249–257,June2009.
[18] B.R.Adarsh,T.Raghunathan,T.Jayabarathi,X.S.Yang, “Economic dispatch using chaotic bat algorithm” Energy,pp.666-675,2016.
[19] G.Kumar,R.Singh,“Economicdispatchofpowersystem optimization with power generation schedule using evolutionary technique,” International Journal of Advanced Research in Electrical, Electronics and InstrumentationEngineering,vol.3,Issue7, pp.1071510722,July2014.
[20] ManishParihar,M.K.Bhaskar,DharmendraJain,Digvijay Sarvate, Deepak Bohra."Voltage Stability Analysis of PowerSystemusingPowerWorldSimulator",Volume5, IssueXI,InternationalJournalforResearchinApplied ScienceandEngineeringTechnology(IJRASET)PageNo: 2508-2515, ISSN : 2321-9653, http://doi.org/10.22214/ijraset.2018.11371
[21] El-Gallad, M. El-Hawary, A. A. Sallam, and A. Kalas, “Swarmintelligencefor hybridcostdispatchproblem,” inProceedingoftheCanadianConferenceonElectrical andComputerEngineering,vol.2,pp.753–757,2001.
[22] X.S. Yang, S.S.S. Hosseini, and A.H. Gandomi, “Firefly algorithm for solving nonconvex economic dispatch problems with valve loading effect,” Applied Soft Computing 2012,pp.1180-1186.
[23] M.H.Sulaiman,Z.N.Zakaria,M.I.Mohd-Rashid,andS.R.A. Rahim,“Anewswarm intelligencetechniqueforsolving economicdispatchproblem,”inPowerEngineering and OptimizationIEEEConference,pp.199-202,2013.
[24] J.Sun,V.Palade,X.J.Wu,W.Fang,andZ.Wang,“Solving thepowereconomic dispatchproblemwithgenerator constraints by random drift particle swarm optimization,” IEEE Transaction on industrial Informatics,pp.222-232,2014.
[25] T.A.A.Victoire,andA.E.Jeyakumar,“HybridPSO-SQPfor economic dispatch with Valve- point effect,” Electric PowerSystemsResearch,pp.51-59,2004.60
D.Swagatam,andP.N.Suganthan,“Problemdefinition and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems,”Technicalreport,Dec2010.
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1141