ECG SIGNAL DE-NOISING USING DIGITAL FILTER TECHNIQUES

Page 1

ECG SIGNAL DE-NOISING USING DIGITAL FILTER TECHNIQUES

Abstract - The function of the heart is analysed by the Electrocardiogram(ECG) signal. But the ECG electrodes recorded ECG signal cannot be used directly for further processing.SeveralkindsofnoisesmaycorrupttheECGsignal in recording process. Usually the ECG signals are contaminated by the baseline wander noise (BLW), muscle noises (EMG) and moving electrode artifact (MA). Therefore, to enhance the ECG signal appropriate digital filtering techniquesareused.Inthisstudy,discretewavelettransforms (DWT)andlowpassfilter(LPF)methodsareusedtode-noise the ECG signal. Further moving mean method, linear regression method and savitzky-golay smoothing techniques are applied for ECG signal enhancement. Mean square error (MSE) and signal to noise ratio (SNR) parameters are evaluated to assess the noise removing capability of the methods. From the results it is observed that the LPF with movingmeansmoothingmethodshowsuperiorperformance in ECG De-noising.

Key Words: ECG signal, BLW noise, EMG noise, moving artefact, DWT, low pass filter, moving mean, linear regression,savitzky-golay.

1.INTRODUCTION

TheECGsignalisshowninthefigure1.Tounderstandthe functionofheartfirsthastoanalysesthePQRSTwave.TheP wave that indicates the polarization of the arteries, QRS complex that indicates the polarization of ventricles and depolarization of arteries, T wave that indicates the repolarizingoftheventricles.UsuallytheECGsignalissmall atrangefrom0.1mVto20mVandfrequencyrangeof0.05 Hzto100Hz.

Generally, the cardiac function is represented by the ECG signal.TorecordtheECGsignalmultipleECGelectrodesare placedontheskininanEinthovenstructure.Therecorded ECGsignaliscorruptedbythedifferenttypesofnoise,such as BLW noise, motion artifact, EMG noise, power line interferencenoise(PLI),electrodenoiseandhighfrequency noisecantainttherawECGsignal.AmongthesenoiseBLW noise, EMG noise and MA noise are more pervasive in process.PastresearchstatedthattheadvancementinECG signal de-noising, feature extraction, event detection and classification play crucial role in medical diagnosis and clinicalapplications.

TheECGsignalcannotbedirectlyalteredorprocessedusing conventional procedures when ithasbeentampered with differenttypesofnoise.Ingeneral,digitalfiltersarethebest choiceforreducingnoiseinECGsignals.P.C.Bhaskaraand M.D.UplanebsuggestedalowpassFIRfilterwithdifferent windowingtechniquesthatcancancelsthehigh-frequency noise effectively from the ECG signals [7]. Excellent noise reduction services were offered by Kaiser Window. ChaudharyM.andNarwariaR.P.comparedtheperformance ofdifferentdigitalfiltersIIR,Butterworth,ChebyshevType-I andType-IIintermsofthesignaltonoiseratioandaverage power. Concerned work results demonstrated that a low passButterworthfiltermightreducenoisemoreeffectively than the alternatives. Mahawar et al. developed a FIR low pass filter with strong attenuation using the windowing approach,KaiserandDolph-Chebyshev(DC),andDC.Based onsomeoftheperformancemetricsSharmaM.andDalalH. reportedthatFIRandIIRdigitalfilterscanremovethelowfrequencybaselinedriftfromtheECGsignal[4].Inorderto de-noisetheBaselineWanderinterferences,Rastogi,N.and Mehra, R. developed an integrated strategy that combines Daubechies wavelet decomposition with a variety of thresholding techniques and the IIR digital Chebyshev or Butterworthfilter[4].

BasedontheearliersurveyconcludedthatECGsignalpreprocessingandsmoothingtechniquesareessentialinECG signal enhancement. Since the first and foremost step commence here is the reduction of noise and next is smoothing the de-noised ECG signal [2] using different digitalfilteringtechniques.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page385
2
3
K.
4
G.
5
Dr. V.V.K.D.V. Prasad1 , B. Nagasirisha
, K. Baby Amulya
,
Sarada
,
Naga Sirisha
1Dr. V.V.K.D.V. Prasad, Professor, Department of Electronics and communication Engineering, Seshadri Rao Gudlavalleru Engineering College, Andhra Pradesh, India 2B. Nagasirisha Assistant Professor, Department of Electronics and communication Engineering, Seshadri Rao Gudlavalleru Engineering College, Andhra Pradesh, India
***
Fig-1:ECGsignal

2. METHODOLOGY

ThisworkoriginatedfornoisereductioninECGsignalsusing two digital filtering methods such as discrete wavelet transform(DWT)andLPF.Thesefilteringalgorithmstested forde-noisingoftheECGsignalinBLWnoise,MAnoiseand EMG noise. Also different smoothing techniques such as moving mean method, linear regression method and savitzky-golay smoothing techniques are applied for ECG signalprocessing.

DWT: ADWTmethodseparatesagivensignalintoseveral sets,eachsetconsistingofatimeseriesofcoefficientsthat describe the signal's temporal history in the associated frequencyband

LPF: A low-pass filter is a filter that retains the signals in higher frequency than a predetermined cut-off frequency whileattenuatingsignalsthatareatlowerinfrequency.

Moving Mean: The de-noised ECG signal is typically smoothed using the moving mean method. These are smoothedbasedonshort-termovershoots.

TheECGsignalhadthethreedifferenttypesofnoiseadded toit.UsingtheDWTandLPFdigitalfilteringtechniques,the noise that was added to the signal is removed. These two approaches use various algorithms, such as the DWT algorithm,whichisfoundedondecompositionstages.Here, the ECG signal has been de-noised using 8 decomposition levels.Similarly,theLPFisauniqueapproachthatdepends entirely on the cut-off frequency. The cut-off frequency is assumedtobe360hertz.

The ECG signal's noise was subsequently removed in this manner.Followingthat,threedistinctalgorithms moving mean,linearregression,andsavitzky-golay smoothensthe filtered signal. The cut-off frequency used for these three approacheswas0.5hertz.

3. RESUTLS

Thede-noisingflowtoremovethenoisefromtheECGsignal is shown in the methodology. The MIT-BTH arrythmia database was used to download the ECG signal from the physio-bank ATM website. On the website, three different typesofECGsignalwereretrieved.Usingthephysio-bank ATMwebsite,threenoiseswereobtainedfromtheMIT-BTH noisedatabase.

TheinputhealthyECGsignalandthefilteredandsmoothed signals performance measures were assessed. The two performanceindicatorsconsideredareMSEandSNR.The filteredsignalmeansquareerror(MSE)willbelowerthan theinputsignal.Similartothis,SNRwillrise,indicatingthat theECGsignalhaslessnoise.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page386
where, ��(��)��=��−1∑��=0������(��−1)2�� ����=1,2,..,��, ��(��)��=��−1∑��=0ℎ����(��−1)2�� ����(0)��≡���
Fig2.1:DecompositionofDWT Fig-2.2:EnhancementFlow
NoisyECGsignal
methods(DWTand LPF) Smoothingtechniques Moving mean Linear Regression SavitzkyGolay Filteredandsmoothedsignal
noises(BLW,EMGandMA) ECGsignal
De-noising
Adding

Chart -1:ECG,NoisyandDe-noisedsignal(a)HealthyECG signal, (b) ECG signal corrupted with BLW noise, (c) Denoised by LPF, (d) Filtered signal smoothed by Movingmeanmethod

(a)De-noisedECGsignal,(b)DWTdecompositionsforthe de-noisedsignal

The above tables- 3.1, 3.2 and 3.3 represents the evaluationofperformancemetricsbytwodigitalde-noising methodsandthreesmoothingtechniquesinvariousnoise environments.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page387
. Chart -2:De-noisedandDecompositions Table 3.1: PerformancemetricsinBLWnoiseenvironment Table 3.2: PerformancemetricsinEMGnoiseenvironment
BLWnoise Filteringmethods DWT LPF Smoothingmethods MSE SNR(dB) MSE SNR(dB) MovingMean 577E -01 1245 377E -01 15.35 LinearRegression 9.51E -02 12.58 7.57E -01 12.39 Savitzky-Golay 809E -01 1327 765E -02 1235 EMGnoise Filtering methods DWT LPF Smoothing methods MSE SNR(dB) MSE SNR(dB) MovingMean 436E01 1055 6 74E02 1235 Linear Regression 357E01 1293 774E-02 1235 Savitzky-Golay 645E01 1212 547E-02 1335 MAnoise Filtering methods DWT LPF Smoothing methods MSE SNR(dB) MSE SNR(dB) MovingMean 5.31E01 15.24 3.76E01 14.37 Linear Regression 467E01 1436 346E01 1347 Savitzky-Golay 367E01 1334 190E01 1346
Table 3.3: PerformancemetricsinMAnoise environment Chart-3: SNRresultbyLPF

Chart-4: SNRresultbyDWT

So, we may conclude that the LPF has produced superior resultsthantheDWTtechniquebasedonthecomparisonof MSE and SNR of the two digital filter techniques. Three different types of ECG signals were subjected to this methodology,whichinvolvedaddingthreedifferentnoises to each signal before de-noising it with two different proceduresandsmoothingitwiththreedifferentsmoothing techniques.ThethreesignalsMSEandSNRwereassessed. Oncomparingtheperformancemetricsbytwotechniques withthreesmoothingalgorithms,theLPFwithmovingmean methodperformsbetterthantheDWTtechnique.Thiskind of methodology can be used for any kind of bio-medical signalforeliminatingthenoisefromit.

5. REFERENCES

1. Velayudhan,A. andPeter,S. (2016)'NoiseAnalysis andDifferentDe-NoisingTechniquesofECGSignalA Survey', IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), pp. eISSN:2278-2834,p-ISSN:2278-8735.

Chart-5: MSEresultbyDWT

2. Prasad, V. V. K. D. V. Prasad, P. Siddaiah & P. Rao. "De-noising of biological signals using different wavelet based methods and their comparison."Asian Journal of Information Technology7.4(2008):146-149.

3. M.T.Almalchy,V.CiobanuandN.Popescu,"Noise Removal from ECG Signal Based on Filtering Techniques,"201922ndInternationalConference onControlSystemsandComputerScience(CSCS), Bucharest, Romania, 2019, pp. 176-181, doi: 10.1109/CSCS.2019.00037.

4. Nayak,S.,Soni,M.K.andBansal,D.(2012)'filtering TechniquesforECGSignalProcessing',IJREAS,2(2), pp.ISSN:2249-3905.

Chart-6: MSEresultbyLPF

The comparison of SNR values by three smoothing approachesisrepresentedintheabovefigures4.2and4.3. Similarly, the comparison of MSE by the three smoothing approachesisrepresentedintheabovefigures4.4and4.5.

TheinputSNRisconsideredas10dBforallthenoises.

TheendfindingsdemonstratethatboththeButterworthand Chebyshevalgorithmsperformednoisereductionwithabout equalefficacy.Theendfindingsdemonstratethatboththe Butterworth and Chebyshev algorithms performed noise reductionwithaboutequalefficacy.

4. CONCLUSION

In order to de-noise the ECG signal, we will apply digital filteringtechniques.Thetwomethodsthatwereutilisedto eliminate noise from the ECG data are discussed in this paper.

5. Patial,P.andSingh,K.(2014)'FilteringTechniques ofECGSignalusingFIRLowPassFilterwithVarious WindowTechniques',IJESRT,3(8).

6. Prasad, Dr VVKDV. "A new wavelet packet based method for de-noising of biological signals." InternationalJournalofResearchinComputerand Communication Technology 2.10 (2013): 10561062.

7. Singh T., Agarwal P. and V.K Pandey (2014) 'ECG BaselinenoiseremovaltechniquesusingwindowbasedFIRfilters',ICMI(MedCom).

8. AlMahamdyM.,H.BryanRiley(2014)'Performance Study of different De-Noising Methods for ECG ', ICTH,pp.325–332.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page388

9. Nagasirisha.B & Prasad. V. V. K. D. V. A New ApproachforReductionofBaselineWanderNoise inEMGSignal. TurkishJournalofPhysiotherapyand Rehabilitation,vol 32: 2.

10. P. C. Bhaskara & M. D. Uplaneb (2016) 'High Frequency Electromyogram Noise Removal from ElectrocardiogramUsingFIRLowPassFilterBased OnFPGA',RAEREST,pp.497–504.

11. B. Nagasirisha, V.V.K.D.V. Prasad ‘Noise Removal fromEMGSignalUsingAdaptiveEnhancedSquirrel Search Algorithm’ 2020, Fluctuation and Noise Letters.Vol.19,No.04

12. ChoudharyM.,NarwariaR.P.(2012)'Suppression ofNoiseinECGSignalUsingLowpassIIRFilters', IJECSE,pp.2277-1956.

13. N. Mahawar, A. Datar & A. Potnis (2013) 'Performanceanalysisofadjustablewindow-based FIRfilterfornoisyECGSignalFiltering',IJACR,3(3), pp.(print):2249-7277,(online):2277-7970.

14. Sharma M., Dalal H. (2014) 'Noise Removal from ECG Signal and Performance Analysis using DifferentFilter2014',IJIREC,1(2),pp.2349-4042 (Print)&2349-4050(Online).

15. NagasirishaBhattiprolu,V.V.K.D.V.Prasad.‘EMG Signal de-noising using adaptive filters through hybrid optimization algorithms.’ Biomedical Engineering: Applications, Basis and Communications33.02(2021):2150009.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page389

Turn static files into dynamic content formats.

Create a flipbook