Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime numbers

Page 1

Generation of Pythagorean triangle with Area/ Perimeter as a Wagstaff prime numbers

1 Associate Professor, Department of Mathematics, Cauvery College for Women (Autonomous), Annamalai Nagar, Trichy, Tamil Nadu, India.

2Research Scholar, Department of Mathematics, Cauvery College for Women (Autonomous), Annamalai Nagar, Trichy, Tamil Nadu, India. ***

Abstract - In this paper, we express the ratio Area/PerimeterasaWagstaff PrimenumberforPythagorean triangle. Some of the interesting patterns and sides of a triangleareshown.

Key Words: Pythagorean Triangle, Wagstaff prime number

1.INTRODUCTION

Mathematicaltopicsincludearithmetic,numbertheory, formulasandassociatedstructures,shapesandthespacesin which they are contained (geometry), quantities and their changes, formulas and related structures. The Greek word ”Mathema,”whichmeansknowledge,study,andlearning,is wheretheword”mathematics”originates.Theareaofpure mathematicsknownasnumbertheoryisextensivelyusedto study integer and integer value functions. In the field of numbertheory,theconceptofthePythagoreantriangleisa fascinatingone.Awidevarietyofinterestingproblemscanbe found in [7, 12, 15]. In [4, 5], the authors related the Pythogoreantrianglewithpolygonalnumbers.Specialtypes of numbers like Dhuruva numbrs, nasty numbers and Jarasandha numbers are available in [1, 2, 11, 13]. Pythogoreantrianglewithnastynumberasalegisdiscussed in[6].SpecialpairsofPythogoreantriangleandrectangles withJarasandhanumbersaregivenin[8–10].Commonsided Pythagoreantriplesarediscussedin[14].In[3],connection between pythagorean triangle and dodecic number is explained. Also[16]dealswiththe relationshipbetweenthe Pythagorentriangleandwoodallprimesinwhichthenumber of Pythagoren triangle generated by expressing Area/ Perimeteraswoodallprimenumbers.

Inthispaper,weexpresstheratioArea/Perimeterofa Pythogorean triangle as a Wagstaff prime number and we observesomeentrallingresults

2. BASIC DEFINITIONS

Definition 1: Let (r, s, t) be a Pythagorean triple if it satisfiesthePythagoreanequation r2 + s2 = t2 where r,s,t ∈ N. A Pythagorean triangle contains the sides as a Pythagorean triple and itis denoted by T (r,s,t): r2+ s2 = t2 where r,s are legs and t is hypotenuse.

Definition 2: Most suitable solution of the Pythagoren equationisr=m12 –m22,s=2m1m2andt=m12 +m22,where m1,m2∈ Nsuchthatm1>m2.Ifm1,m2 areofoppositeparity andgcd(m1,m2)=1,thenthesolutionissaidtobeprimitive.

3. WAGSTAFF PRIME NUMBER

In Number Theory, Wagstaff Prime number is a prime numberoftheform(2p+1)/3,wherepisanoddprime.

The prime pages attribute the naming of the Wagstaff primes,whicharenamedafterthemathematician Samuel S. Wagstaff Jr., to Fran¸cois Morain, who did so during a lecture at the Eurocrypt 1990 conference. The New MersenneconjecturementionsWagstaffprimes,andtheyare usedincryptography.

Ryan Propper revealed the discovery of the Wagstaff probableprime2021whichhasslightlymorethan4.5million decimaldigits.

4. METHOD OF ANALYSIS

ThesymbolsA1andP1 denotestheAreaandPerimeter of aPythagorenTriangle,respectively.

Assume

A1/P1 =WagstaffPrimenumber.

Thisrelationshipresultsinthefollowing equation m2(m1-m2)/2=WagstaffPrimenumber.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page1588

)/2=3(onedigitWagstaffPrimenumber)

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page1589 m2 m1-m2 m1 r=m12 –m22 s=2m1m2 t=m12 +m22 A1 P1 A1/P1 1 6 7 48 14 50 336 112 3 2 3 5 21 20 29 210 70 3 3 2 5 16 30 34 240 80 3 6 1 7 13 84 85 546 182 3 Table 1 m2 m1-m2 m1 r=m12 –m22 s=2m1m2 t=m12 +m22 A1 P1 A1/P1 1 22 23 528 46 530 12144 1104 11 2 11 13 165 52 173 4290 390 11 11 2 13 48 286 290 6864 624 11 22 1 23 45 1012 1013 22770 2070 11 Table 2 m2 m1-m2 m1 r=m12 –m22 s=2m1m2 t=m12 +m22 A1 P1 A1/P1 1 86 87 7568 174 7570 658416 15312 43 2 43 45 2021 180 2029 181890 4230 43 43 2 45 176 3870 3874 340560 7920 43 86 1 87 173 14964 14965 1294386 30102 43 Table 3 m2 m1-m2 m1 r=m12 –m22 s=2m1m2 t=m12 +m22 A1 P1 A1/P1 1 1366 1367 1868688 2734 1868690 2554496496 3740112 683 2 683 685 469221 2740 469229 642832770 941190 683 683 2 685 2736 935710 935714 1280051280 1874160 683 1366 1 1367 2733 3734644 3734645 5103391026 7472022 683 Table 4 Case 2 : When m2(m1-m2)/2 = 11 (two digit Wagstaff Primenumber) Case 3 : When m2(m1-m2)/2 = 43 (two digit Wagstaff Primenumber) Case 4 : When m2(m1-m2)/2 = 683 (three digit Wagstaff Primenumber) Case 1 : When m2(m1-m2

5. OBSERVATIONS

1. Thereare4Pythogoreantriangleforalltheabove 7cases,outofwhich2trianglesareprimitiveand the remaining 2 triangles are non- primitive.

2. ¼(r+s-t)isawagstaffprimenumber.

3. Out of 4 triangles in all the cases, t r is a even prime for one non-primitive triangleand cubic number for primitive triangle.

4. FortheWagstaffprimenumber3, 2(r+s−t)=Nastynumber.

5. Inallthecases,thesidess,tareconsecutive foroneoftheprimitivetriangles.

6. s+t,2(t-r)areperfectsquares.

6. CONCLUSION

In this work, generation of Pythagoren Triangles with Area/Perimeter as a Wagstaff primenumberand entrallingobservationsareshown.Further,Onemayfind thePythagorenTrianglesforanyothernumberpattern.

REFERENCES

[1] Bert Miller. Nasty numbers. The mathematics teacher,17,1997.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page1590
m2 m1-m2 m1 r=m12 –m22 s=2m1m2 t=m12 +m22 A1 P1 A1/P1 1 5462 5463 29844368 10926 29844370 163039782384 59699664 2731 2 2731 2733 7469285 10932 7469293 40827111810 14949510 2731 2731 2 2733 10928 14927646 14927650 81564657744 29866224 2731 5462 1 5463 10925 59677812 59677813 325990048050 119366550 2731 Table 5 m2 m1-m2 m1 r=m12 –m22 s=2m1m2 t=m12 +m22 A1 P1 A1/P1 1 87382 87383 7635788688 174766 7635788690 667238122923504 15271752144 43691 2 43691 43693 1909078245 174772 1909078253 166826711517570 3818331270 43691 43691 2 43693 174768 3817981726 3817981730 333630515144784 7636138224 43691 87382 1 87383 174765 15271402612 15271402613 1334453338743090 30542979990 43691 Table 6 m2 m1-m2 m1 r=m12 –m22 s=2m1m2 t=m12 +m22 A1 P1 A1/P1 1 349526 349527 122169123728 699054 122169123730 42701407309276700 244338946512 174763 2 174763 174765 30542805221 699060 30542805229 10675626708896100 61086309510 174763 174763 2 174765 699056 61084911390 61084911394 21350886908323900 122170521840 174763 349526 1 349527 699053 244337548404 244337548405 85402448112230700 488675795862 174763 Table 7 Case 6 : When m2(m1-m2)/2 = 43691 (five digit Wagstaff Primenumber) Case 7 : When m2(m1-m2)/2 = 174763 (six digit Wagstaff Primenumber)
5 : When m2(m1-m2)/2 = 2731 (four digit Wagstaff Primenumber)
Case

[2] Charles Bown. K. Nasties are primitives. The mathematicsteacher,74(9):502–504,1981.

[3] Mita Darbari and Prashans Darbari. Pythagoren triangles with sum of its two legs as dodecic. GSC Advanced Engineering and Technology, 3(1):011–015,Feb2022.

[4] M. A. Gopalan and A. Gnanam. Pythagorean triangles and polygonal numbers.International JournalofMathematicalSciences,,9(1-2):211–215, 2010.

[5] M. A. Gopalan and G. Janaki. Pythagorean triangle witharea/perimeterasaspecialpolygonalnumber. BulletinofPure&Appliedsciences,27(2):393–405, 2008.

[6] M. A. Gopalan and G. Janaki. Pythagorean triangle with nasty number as a leg. Journal of applied MathematicalAnalysisandApplications,4(1-2):13–17,2008.

[7] M.A.GopalanandA.Vijayasankar.Observationsona pythagoreanproblem.ActaCienciaIndica,Vol.XXXVI

M(No4):517–520,2010.

[8] G. Janaki and Saranya .C. Special rectangles and jarasandha numbers. Bulletin of Mathematics and StatisticsResearch,4(2):63–67,April-June2016.

[9] G.JanakiandSaranya.C.Specialpairsofpythagorean triangles and jarasandha numbers. American International Journal of Research in Science, Technology,Engineering&Mathematics,(13):118–120,Dec2015-Feb2016.

[10] G. Janaki and Saranya .C. Connection between special pythogoren triangle and jarasandha numbers.InternationalJournalofMultidisciplinary Research & Development, 3(3):236–239, March 2016.

[11] G.JanakiandSaranya.C.Specialpairsofrectangles andjarasandhanumbers.AsianJournalofScience& Technology,7(5):3015–3017,May2016.

[12] J.N.Kapur.Dhuruvanumbers.Fascinatingworldof Mathematics and Mathematical sciences, Trust society,73(No.9):649,1980.

[13] A.GnanamM.A.GopalanandG.Janaki.Aremarkable pythagoreanproblem.ActaCienciaIndica,Vol.XXXIII M(No4):1429–1434,2007.

[14] P.S.N.Sastry.Jarasandhanumbers.Themathematics teacher,No.9Vol.37(3,4):502–504,2001.

[15] W.Sierpinski. Pythagorean triangles. Doverpublications,INc,NewYork,2003.

[16] G.Janaki,S.ShanmugaPriya“Relationshipbetween Pythagorean triangle & Woodall Primes”, “International Journal of Scientific Research in EngineeringandManagement(IJSREM)”,Volume07, Issue04,PageNo.1320-1322,ISSN:2582-3930,April ,2023-DOI:10.55041/IJSREM18940

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page1591

Turn static files into dynamic content formats.

Create a flipbook