Performance Analysis of savonius hydro turbine using CFD simulation
Niteen Choudhary1 , Purushottam Sahu2 , Ghanshyam Dhanera3
1Reseach scholar, BM College of Technology, Indore
2Professor and HEAD BM College of Technology, Indore
3 Professors, BM College of Technology, Indore ***
Abstract - The primary goal of this study is to experimentally analyse the turbine's maximum efficiency. The goal of this research is to analyse the performance of a Savonius turbine utilised as a hydro turbine using computational fluid dynamics (CFD) simulations and experimental data. This project is primarily based on the renewable energy system.
Key Words: Fluiddynamics,hydroturbine,modelling,performance,andsimulation,alongwithcomputationalfluiddynamics
1. INTRODUCTION
Thecurrenteraistheeraofenergy.Energycanbeproducedbythewind,tides,sun,geothermalheat,biomass,includingfarmand animalwaste,aswellashumanexcrement,whichisknownasunconventionalenergy.Alloftheseresourcesarerenewableor limitlessanddon'tharmtheenvironment.Additionally,theydon'tdemandheavyuse.Currently,theworldusesupto20,000billion Kwh of energy, of which 70% is generated by conventional sources and the remaining 30% by sources such as hydropower, geothermal,biomass,solar,wind,andatomicenergy.About16%ofthis30%iscreatedthroughthekineticenergyoffallingor streamingwater,whichisthenconvertedintopower.
2. Lift Force Performance Model 3.1
Let'sassumethat(L)istheliftingforce,whichactsinthedirectionofthefluidflow'snormal.Thisisexplicableusingthegoverning equation.
L=1/2C_(L)ρAV^2………………………………………(4.1)WhereAistheareaofthebladeairfoil,istheliftcoefficient,andisthedensity ofwater.PullForceDragforceisthenamefortheforcethatoperatesinthedirectionofflow.Drepresentsthedragforce.Thisforce ismostlycausedbythefluid'sviscosity.ThiscanbestatedusingtheformulaD=1/2AC_d(U-V).^2………………………………(4.2)where speedisV,dragforceisD,fluidvelocityisU,anddragcoefficientisCd.
WherespeedisV,thefluid'svelocityisU,thedragforceisD,andthedragcoefficientisCd.
Typically,theliftanddragcoefficientvaluesareestimatedprovisionallyandcomparedtotheReynoldsnumber.InFig.3.2,aregion ofasharpedgeatspanIisindicated,togetherwiththeassociatedspeeds,powers,andedges.Theedgeoftherelativeliquidspeed totheplaneofrevolutionisdenotedby,andtherelativeliquidvectoratspanrisdenotedbyVrel.LandD,whichareguided oppositeandparalleltotherelatedliquidasappeared,speaktotheresultingliftanddragpowers.
Forthehighestlevelofskill,carefulconsiderationoftherotoredges'geometryandshapechangeisessential.Despitethefactthat freshairfoilsarerarelymadeforuseonrotors,turbineshavefrequentlyusedairfoilsthatareinspiredbyaeroplanewings.Airfoils usetheconceptofliftratherthandragtoharnessthepoweroftheair.Cuttingedgesthatuselift(powersagainstthedirectionof thestream)aremoreefficientthandragmachines.Ingeneral,usinglifthasresultedinsomebentandalteredshapes.
3. ANALOGOUS SIMULATION- I
Thegeometryforthetwo-bladedSavoniusturbineusedinthisprojectwasdevelopedinSolidWorksandimportedintotheANSYS 15workbench,whereadditionaloperationsincludingmeshingandsimulationswerecarriedout.
Modelling and Grid Size
Thetwobasiccomponentsofthecomputationaldomainarethecoredomainandtheouterdomain.Tworotorswiththeright dimensionsandanappropriateaspectratiomakeupthemaindomain.Here,themotionlessouterdomaincontrastswiththe spinningprimarydomain.Thecomputationaldomain'sgeometryisdepictedinthefollowingfig.
3.2 NUMERICAL SIMULATION- II
Therangeoftheaspectratiohasbeenpickedfrom5to25,andanumberofgeometrieshavebeenoptimisedforthisnumerical simulation.AftercreatingallofthegeometryinSolidWorks,itisimportedintoANSYS15foradditionalnumericalsimulation.
Thegeometryofthesamesizewiththesamerotordiameterbutdifferentbladepositionsandproduceaworkablesolution.Inthis case,allofthegeometryiscalculatedusingthesameprocedureasinthepreviouschapter.
Belowfiguresshowthe5differentgeometryhavingdifferentaspectratio.
Results and Discussions
8.3.1 Velocity contour of savonius hydro-turbine at Aspect Ratio e=25 and canal width 0.636D, 2.5D, 5D, and 15D
Fig 8.14 Pressure contour at 10D canal width
Fig 8.15 Pressure contour at 2.5D canal width
8.4 Closure
Thefig9.17showshowtheCpisvaryingwithrespecttocanalwidthitisanobviousobservationthatifthecanalwidthistoosmall thetotalforceofwaterwhichiscomingwithafreestreamvelocityisdroppedontherotorandthenwhileincreasingthewidthof theinletareathefluctuationiscontinueandatamiddlepositionabletogettheoptimumCpinthiscasethefeasiblesolutioncanbe abletogetat5D.Thewidthisminimizeatthelastpositionwhereitisunabletorotorfromaboveitisclearlyobservethatwhile reducingthewidthofthecanaltheCpisdecreasinggradually.
TheperformanceofaSavoniushydroturbineCFDsimulationisexaminedinthecurrentworkatlowvelocitiesintherangeof0.6 m/sinsideanopencanal.Forthesamesettings,resultsfrombothexperimentsandCFDworkarecompared.Theresearchresults aresummarisedinthefollowingconclusions:
1. The findings of the torque and power performance measurements of the Savonius hydro turbine indicate that the maximumCpcanbeattainedataspecificlocationwithalowfreestreamvelocitywithlessfluctuationintheturbine.
2. Thelocationdeterminedbythisworkisthemostpracticalsinceitallowsforamaximumpowerco-efficientthatisfar higherthanthatofanyotherposition.
3. Freestreamwatervelocityof0.6m/swouldbeidealforthecurrentworkbecauseitcanbeachievedwithlessfluctuating torqueandpower.
4. Astheoverlapratioincreases,itisseenthattheareasthatcoveralargerpercentageproducehighCpataspecificpoint, whichindicatesthatthepowerextractedthroughaSavoniushydroturbineisincreasinggradually.
5. TheCpisobservedtostartdecreasingate=30astheoverlapratioisfurtherraised,indicatingthate=25isthepractical pointfortheblade.
REFERENCES
[1] N.K. Sarma, A Biswas, R.D. Misra ,“Experimental and computational evaluation of Savonius hydrokineticturbine forlowvelocityconditionwithcomparisontoSavoniuswindturbineatthesameinputpower”Energyconversionand Managementatsciencedirect(2014)
[2] Zied Driss,Olfa Mlayeh Dorra Driss, Makram Maaloul, Mohamed Salah Abis “Numerical simulation and experimental valisation of the turbulent flow around a small incurved Savonius wind rotor” Energy at science direct (2014)
Theabovefig8.17showsthatastheblockageisreducethevalueofCpisincreasedandat5DwidthofthecanaltheoptimumCp canbeachieved. © 2023, IRJET | Impact Factor value: 8.226 |
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 10 Issue: 03 | Mar 2023 www.irjet.net
p-ISSN: 2395-0072
[3]PatelC.R.,PatelV.K.,PrabhuS.V.,EldhoT.I.,“InvestigationofOverlapRatioforSavoniusTypeVerticalAxisHydro Turbine”InternationalJournalofSoftComputingandEngineering(IJSCE)ISSN2231-2307,Volume-3,Issue-2,May (2013)
[4]N.H.Mahmoud,A.A.El-Haroun,E.Wahba,M.H.Nasef“AnexperimentalstudyonimprovementofSavoniusrotor performance” AlexandriaEngineeringJournal(2010)
[5]U.K.Saha,M.JayaRajkumar,“OntheperformanceanalysisofSavoniusrotorwithtwistedblades”RenewableEnergy 31(2006)1776
1788
[6]JoaoVicenteAkwaa,HoracioAntonioVielmob,AdrianePriscoPetry,“AreviewontheperformanceofSavoniuswind turbines”RenewableandSustainableEnergyReviews(2012)
[7] Sukanta Roya, Ujjwal K. Sahab ,“Computational study to assess the influence of overlap ratio on static torque characteristics of a vertical axis wind turbine” Chemical, Civil and Mechanical Engineering Tracks of 3rd Nirma UniversityInternationalConference(NUiCONE2012)
[8] Mabrouki,ZiedDriss,MohamedSalahAbis,“PerformanceAnalysisofaWaterSavoniusRotorEffectoftheInternal Overlap Ibrahim”Sustainable Energy, 2014, Vol. 2, No. 4, 121-125 Available online at http//pubs.sciepub.com/rse/2/4/1©ScienceandEducationPublishingDOI10.12691/rse-2-4-1
[9]. F. O. Rourke, F. Boyle, and A. Reynolds, “Renewable energy resources and technologies applicable to Ireland,” Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 1975–1984, 2009. View at Publisher • View atGoogle Scholar•ViewatScopus