Numerically and CFD studies on shell and tube heat exchangers

Page 1

Numerically and CFD studies on shell and tube heat exchangers

1Reseach scholar, BM College of Technology, Indore

2Professor and HEAD BM College of Technology, Indore

3 Professors, BM College of Technology, Indore ***

Abstract - This study aims to investigate the effect of different baffle layouts on the STHX (rate of heat transmission and pressure loss) of the A tube heat exchanger. The addition of baffles to the tube and shell mechanism enhances the heat switch while also boosting pressure. Best one, doubled, helical, triple section, and flowery baffles are used in tube heat exchangers, and they are designed using SOLIDWORKS go with the flow simulation software (ver. 2015). A single segmental baffle exhibits the best mass price and heat transmission rate on the shell side, according to simulation results. There are almost no stagnation zones inside the helical baffle, which results in significantly less fouling and a longer operating lifetime due to less flow-induced vibration.

Key Words: Kern'stheoreticalapproach,ASPENSegmentalbaffles,Helicalbaffles,Flowerbaffles,Heattransfercoefficient, Pressuredrop,SOLIDWORKSflowsimulation.

1. INTRODUCTION

Oneofmoststronglycrucialcomponentsofanation'seconomicandsocialdevelopmentistheproductionofenergy.Demand fornaturalresourcesandenergyisrisingdailyasaresultofpopulationgrowth,industrialization,urbanisation,andexpanding globaltradeandproductionopportunities.Theusageoffossilfuelsasasourceofenergy,dependencyonforeignsourcesof fuel,highimportcosts,environmentalissues,andthequickdepletionofglobalfossilfuelreservesallraisetheimportanceof renewableenergysources.Currently,renewableenergysourcesaccountfor20%ofglobalenergyconsumption[1].

ApowerproductionsystemcalledtheOrganicRankineCycle(ORC)runsatlowtemperaturesandsubstituteshydrocarbonbasedorganicworkingfluidsforwater.Modelsofdifferentcomplexitylevelsforshell-and-tubeheatexchangers

Thestudyandanalysisofseveralheatexchangermodelshasbeenconducted.Thegeneralpresumptionsmadebyallofthe modelsareoutlinedinthelistbelow.

1.Radiationandheattransportratesinfluidsareinsignificant.Axialheatisalsonegligibleinbothfluids.

2.Theheatcapacityofthetubewallsiszeroinboththenormaldirectionandthedirection.

3.Thethermalcapacitanceoftheheattransmissionshellisdisregarded.thatisonlyonedimensionalandflow-oriented.

2Methodologies:theuseofheatexchangers

Aseparate,in-depthresearchwillbeneededtocovereachareaoftheapplicationofheatexchangersbecauseitissuchavast topic.Theiruseisfrequentlyfoundinhomeappliances,mechanicalequipment,andtheprocesssector.Districtsystemscanbe heatedusingheatexchangers,whichareincreasinglybeingusednowadays.Inordertocondenseorevaporatethefluid,heat exchangersareutilisedinairconditionersandfreezers.Theyalsoworkinpasteurisationunitsinmilkprocessingfacilities.[3]. Heat Transfer Characteristics. Theinlet/outlettemperaturedifferentialontheshellside,inlet/outletpressuredroponthe tube side, heat transfer area of the working fluid on the shell side, and heat transfer coefficient of the tube wall were all calculatedusingnumericalanalysis.First,thetemperaturedifferenceontheshellsidewascalculatedasthedifferencebetween themeasuredinletandoutlettemperatures.Likewise,thepressuredropwasalsocalculatedasthedifferencebetweenthe measuredinletandoutletpressures.

2. Methodology:

2.1STHX'slayoutwiththesimulationtoolASPEN

Aheatexchangercanbedesigned,rated,simulated,andpricedusingthissoftware.Here,theheatexchangercreatedusing Kern'stheoreticalapproachissimulatedusingASPEN.Alltheinformationpertainingtotheheatexchanger'sgeometryandthe

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page822

fluid'sparametersmustbeenteredintothesoftware'ssimulationmode.Thefluidstreams'inputtemperaturesandflowrates mustalsobespecified.ItprovidesaTEMAsheetthatshowstheheattransfercoefficients,pressuredropbothontheshelland tubesides,andotherdatathatareimportantinheatexchangerdesign.TheinputforASPENsimulationsoftwareprogramin thiscaseisasprovenwithinthefollowingdesk2,

I. ProblemDefinition

A. ApplicationOptions

1. General CalculationMode Simulation

LocationofHotfluid Shell-Side

SelectGeometryBased on SIstandards

CalculationMethod Advancedmethod

2. Hotside

Application Liquid,nophasechange

SimulationCalculation Outputtemperature

3. Coldside

Application Liquid,nophasechange SimulationCalculation Outputtemperature

B. ProcessData

I. PropertyData

PropertiesoffluidswereimportedformASPENdatabase

I. ExchangerGeometry

A. Shell/Heads FrontHeadType B-bonnet bolted or integral

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page823
FluidName Shell-Side hotwater Tube-Sidecold water Massflowrate(kg/s) 0.3 0.753 InletTemperature( ) 90 30 OperatingPressureabs(bar) 1 1 FoulingResistance(m2K/W) 0.0002 0.0002
ShellType E-onepassshell RearHeadType U–U-tubebundle ExchangerPosition Horizontal ShellInnerdiameter(mm) 154.05
Tube NumberofTubes 10 NumberofTubesPlugged 0 Tubelength(mm) 1038 TubeType Plain
tube-sheet
B.

V.

A.

B.

1. CodesandStandards

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page824 TubeOutsideDiameter(mm) 21.34 TubewallThickness(mm) 1.65 TubePitch(mm) 28.8 TubePattern 45 TubeMaterial Copper C. Baffles BaffleType SingleSegmental BaffleCut(%) 29 BaffleOrientation Horizontal BaffleThickness(mm) 3.2 BaffleSpacing(mm) 50.8 NumberofBaffles 16 D. Nozzles Outsidediameterofshellside Inletnozzle(mm) 26.645 Insidediameterofshellside Inletnozzle(mm) 26.645 Outsidediameteroftubeside Inletnozzle(mm) 26.645 Insidediameteroftubeside Inletnozzle(mm) 26.645
ConstructionSpecifications
MaterialsofConstruction Shell CarbonSteel Tube-Sheet CarbonSteel Baffles CarbonSteel Heads CarbonSteel Nozzle CarbonSteel Tube Copper
DesignSpecifications Table2Input
toASPENsimulationSoftware
Design
ASME
Sec
Div1
Refinery
TEMA
C-GeneralClass MaterialStandard ASME DimensionalStandard ANSI-American
Code
Code
VIII
ServiceClass
Service
Class

TEMAConstructionDetailsofShellandTubeHeatExchangerasprovidedbyASPENSimulation(Table3.2).Thespecification sheet shown in Fig. 3.1 and the TEMA specification sheet shown in Fig. 3.2 are the results of the APSEN Simulation programmed.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page825
Table3.1HeatExchangerSpecificationsheetbyASPENSimulation
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page826
Figure 26 Shell Side Pressure Drop vs. Shell Side Flow Rate
Property Unit Value THI 90 THO 70 Density kg/m3 971.8 SpecificHeatCapacity kJ/kgK 4.1963 Viscosity mPas 0.354 Conductivity W/mK 0.67 FoulingFactor m2K/W 0.0002
Figure 27 Shell Side Pressure Drop vs. Shell Side Flow Rate Table3.2:-Data for design of Shell and tube heat exchanger ShellSideFluid-HotWater

4. RESULTS ANDDISCUSSION

Table 4 assessment of normal heat switch Coefficient, Shell aspect outlet temperature and Shell side temperature difference predictions

4. RESULT AMD FUTURE SCOPE

Withthesameinputparameters,aShellandTubeHeatExchangerwasconstructedusingKern'smethod,ASPENsimulation software,HTRIsimulationsoftware,andSolidWorksFlowSimulationsoftware.Theoverallheattransfercoefficientvalues were782,790.2,781.9,and852.6W/m2K,respectively.InCFDmodellingstudiesonshellandtubeheatexchangers,single, double,triple,helical,flowertypeA'type,andflowertypeB'typebafflelayoutshavebeenemployed.Thefollowingfindings camefromthesesimulationstudies:Althoughsinglesegmentalbaffleshavealowerpressuredropandahighertotalheat transfercoefficient,theyrequiremorepumpingforce.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page827 FlowRate kg/s 0.3 TubeSideFluid-ColdWater TCI 30 TCO 38 Density kg/m3 984 SpecificHeatCapacity kJ/kgK 4.178 Viscosity mPas 0.725 Conductivity W/mK 0.623 FoulingFactor m2K/W 0.0002 FlowRate kg/s 0.7533
Heat Exchanger Design Method Outlet temperature 0C Overall Heat Transfer Coefficient,W/m2C Temperature Difference Kern's method 70 782 20 ASPEN Simulation 70.08 790.2 19.92 CFD Simulation 68.79 852.46 21.21

1.Wherealittleagreementwiththeoutlettemperatureisattainable,double-segmentedbafflesmaybeusedinsteadofsinglesegmentedbafflessincethepressuredropwillbedecreasedby25%to30%,makingenergysavingsequal.

2.Helicalbafflesareeffectivebecausetheyreducepressurelossby30%to35%whencomparedtosinglesegmentedbaffles. Buttherehasbeena40%decreaseintheoverallheatswitchcoefficient.Accordingtothis,inordertocovertheareaneededto obtainthetemperaturedifferential,40%largertubesmustbeintroduced.Retrofittingwon'tbepossibleinthisscenario,but installinganewheatexchangerwithhelicalbafflesmightbejustifiedonthebasisofeconomics.Thissettingdisablestriple segmentedbaffles.

3. Because flower baffles reduce pressure drop by 25% to 35% while simultaneously lowering the overall heat switch coefficientby30%to35%withsinglesegmentedbuffers,theyarethemosteffectivebaffles.

4.FlowersBecausetheylessenpressure,FlowerB"baffles"aremoreeffectivethanFlowerB"baffles."Arashiscomparableto Flower,exceptithasbetterthermalperformance.

1.Kern'stechniqueandASPENsimulationresultsforatypicalheattransfercoefficientarecomparable,althoughreliableWorks softwarevaluesarehigherby9%.Whenusingthesoftwaresolidworks,theshellsidetemperaturedropisincreasedby6%.

REFERENCES:

[1] S. S. Shinde, S. S. Joshi, and S. Pavithran, “Performance Improvement in Single phase Tubular Heat Exchanger using continuousHelicalBaffles,” Int. J. Eng. Res. Appl.,vol.2,no.1,pp.1141–1149,2012.

[2] A. El Maakoul, A. Laknizi, S. Saadeddine, M. El, A. Zaite, M. Meziane, and A. Ben, “Numerical comparison of shell-side performanceforshellandtubeheatexchangerswithtrefoil-hole,helicalandsegmentalbaffles,” Appl. Therm. Eng.,vol.109,pp. 175–185,2016.

[3]R.ThundilKaruppaRajandS.Ganne,“Shellsidenumericalanalysisofashellandtubeheatexchangerconsideringthe effectsofbaffleinclinationangleonfluidflow,” Therm. Sci.,vol.16,no.4,pp.1165–1174,2012.

[4]F.NematiTaher,S.ZeyninejadMovassag,K.Razmi,andR.TasoujiAzar,“Bafflespaceimpactontheperformanceofhelical baffleshellandtubeheatexchangers,” Appl. Therm. Eng.,vol.44,pp.143–149,2012.

[5]A.VyasandP.Sharma,“AnExperimentalAnalysisStudytoImprovePerformanceofTubularHeatExchangers,”vol.3,no.6, pp.1804–1809,2013.

[6]S.Dogra,S.Kumar,G.Chaudhary,A.Kumar,andL.Chaitanya,“DESIGNINGOFCONDENSERSUSINGDIFFERENTMATERIALS ANDTHEIRCOMPARISION,”vol.2,no.2,pp.301–308,2014.

[7]Y.G.Lei,Y.L.He,R.Li,andY.F.Gao,“Effectsofbaffleinclinationangleonflowandheattransferofaheatexchangerwith helicalbaffles,”

[8]H.KotwalandD.S.Patel,“CFDAnalysisofShellandTubeHeatExchanger-AReview,” Int. J. Eng. Sci. Innov.Technol ,vol.2, no.2,pp.325–329,2013.

[9]J.F.Zhang,S.L.Guo,Z.Z.Li,J.P.Wang,Y.L.He,andW.Q.Tao,“Experimentalperformancecomparisonofshell-and-tubeoil coolerswithoverlappedhelicalbafflesandsegmentalbaffles,”Appl.Therm.Eng.,vol.58,no.1–2,pp.336–343,2013.

[10]D.BhattandP.M.Javhar,“ShellandTubeHeatExchangerPerformanceAnalysis,”vol.3,no.9,pp.1872–1881,2009.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page828

Turn static files into dynamic content formats.

Create a flipbook