Municipal Solid Waste Management; Air Pollution and its’ Impact

Page 1

Municipal Solid Waste Management; Air Pollution and its’ Impact

1Environmental Specialist, Azis Labs, Indore

2Assitant Project Engineer, MECON, India

3Technical Consultant, National River Conservation Directorate, New Delhi

4Line Incharge, Rajratan Global Wires Limited, Indore

5Director, National River Conservation Directorate, New Delhi ***

Abstract – The emission of pollutants during processing of solid waste is of great concern due to its hazardous effects. An assessment of air quality of the solid waste management sites were made and transfer stations duringFebruarytoJune2021 and October to December 2021. Parameters such as particulate matter (PM2.5), particulate matter (PM10) were measured along with other parameters. An assessment of air quality showed their levels of their mean value ranged between 50.7 and 89.6 µg/m3 at sources and 69.54 and 95.79 µg/m3 at downwind. GHG showed lower levels than the proposed limit value, which could not cause any health issues, while PM2.5 was 4-7 times higher than the standards established. Higher pollutant concentration was recorded in the month of February to June than the month of October to December. Thus, it is estimated that the ambient air of the sites is not safe for people living there. Hence, it is necessary to use safe practices for MSWM and its emission control.

Key Words: PM2.5, PM10, SWM, CPHEEO, Bio methanation, Incineration,GHG

1.1 NTRODUCTION

Solid Waste Management is one of the most essential servicesformaintainingthequalityoflifeintheurbanareas andforensuring betterstandardsofhealthandsanitation [1].InIndia,thisservicefallsshortofthedesiredlevel,asthe systemsadoptedareoutdatedandinefficient.Institutional weakness, shortage of human and financial resources, improperchoiceoftechnology,inadequatecoverageandlack of short and long term planning are responsible for the inadequacyofservice[2]

Itisamajorchallengeincitieswithhighpopulationdensity inIndiaasthepercapitagenerationofMuncipalsolidwaste hasalsoincreasedtremendously[3].Asmorelandisneeded fortheultimatedisposalofthesesolidwastes,issuesrelated to disposal have become highly challenging. The waste ManagementandHandlingRulesinIndiawereintroduced bytheMinistryofEnvironmentandForests[4,5,6].

Illmanagementofsolidwasteleadstoproblemsthatimpair human and animal health. Impact of waste depends on compositionofwasteandpracticesinvolvingillegaldisposal.

Solidwastecreatesseveralnoxiousgasessuchassuspended Sulphur Dioxide (SO2), oxides of Nitrogen (NOX), Carbon Monoxide (CO), Respirable Suspended Particulate Matter (RSPM)andSuspendedParticulateMatter(SPM).Pollution duetowastedumpingaffectshealththroughbothshortand long-term effects. Examples of short-term and long-term include asthma and respiratory infection, respiratory chronic respiratory and cardiovascular diseases, cancer respectively. According to international solid waste association (ISWA), 2.6 million tons per day of municipal solidwasteisproducedglobally,andtheamountmayreach upto4.5milliontonsperdayby2050[7,8,9,10]

The management of solid waste is in association with the controlofitsproduction,collectionandstorageandfinallyis transferredtodisposalsitesbyfollowingthebestprinciples ofhealth,finances,aestheticsandecologicalaspects[11,12]

2. MATERIALS AND METHODS

2.1 Description of study area

Kirandul is a city and a municipality in the Dantewada districtintheStateChhattisgarh,India.Itisatwintownship consistingofKirandulandBadeBacheliofBailadilaregion. Bailadilameans"humpoftheox",andthemountainrange herehaspeaksthatlooklikethehumpsofanox.

Present average generation of waste in the study area is about320g/capita/dayaspertheactualsurvey.Thecity KirandulhasthedeficienciesinmanagingMSWinvarying degreesandthereisaneedtosetupanewsolidwaste management technique to improve the present SWM practices prevailing in the city to raise the standards of health, sanitation and urban environment. Government of India has launched a “Swachh Bharat Abhiyan (SBA)” or “CleanIndiaMission”covering4041statutorytownstoclean thestreets,roadsandinfrastructureofthecountry

PopulationprojectionofBailadilaregion,Chhattisgarhis showninTable-1

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page795
Sarika Sinha1 , Santosh Kumar2, Preeti Sinha3 , Acshay Jee Bhosale4 , Anjani Prasad Singh5

2.2

The region does not have any door to door collection and sourcesegregationsystematpresent.Wastesaretransferred by individual households into community bins without segregation. The mixed waste (wet and dry) from the communitybinsisemptiedandloadedintotransportation vehicles(tractors)

- WastegenerationforBailadilaareaforyear2021is takenas0.320kg/capita/day

Presently,wasteprocessingisnotcarriedoutBailadilaarea. Entiremixedwasteiscollectedfromindividualhouseholds orfromthesecondarycollectionpointsandtransportedto thelow-lyingareafordumping.

There are no environmentally suitable and demarcated dumping yards in the city, but most of the municipal solid waste is dumped at Old MV Siding area and near Railway ColonyatBailadilaregionthatisconsideredastheonlydump yard

Waste Generation Projection- The waste generation estimateiscarriedoutonthefollowingassumptions:

- Incrementinwastegenerationrateis0%perannum

- Floatingpopulationisconsideredas0%

- issameasthatof2021asthepopulationisdecreasing

Totalprojectedpopulationis18,887fortheyear2041(Same asthatof2011)asthepopulationisdecreasing.

Waste Composition:

The quantity as well as its composition (biodegradable, recyclablesetc.)arerequiredtoarriveatpropertechnology (ies)forwasteprocessing,viz.Compositing,Biomethanation (BM),WastetoEnergy(WtE),Landfilling,Recyclingetc.The waste composition estimate has been calculated based on field studies, laboratory experiments and as per CPHEEO guidelines.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page796
Table -1:DecadalPopulationData (Source: Office of the Registrar General and Census CommissionerDelimitationCommissionofIndia) Table -2:Projectedpopulation Present SWM Scenario of Bailadila Region, CG Fig- 1:SecondaryCollectionbinatRailwaycolony, Kirandul Fig- 2: WastedumpingatRailwaycolony Table -3: WasteGenerationEstimateforBailadilaarea
PopulationCensusDate Population 1-March-1991 19,623 1-March-2001 19,059 1-March-2011 18,887 Year 2021 2031 2041 Population 18583 18283 17991 Sampling Month Recyclabl e waste (% by weight) Incinerabl e waste (% by weight) Compostabl e waste (% by weight) Land filling waste or inert waste (% by weight) Feb2021 21.91 4.15 52.16 21.77 June2021 2539 999 4365 2097 Average of the data collected during Feb and June2021 2365 707 4790 2137 Waste Generation (Tons/Annum) 52138 15586 105611 4711 Waste Generation (Tons/Day) 142 0427 289 129

Solid Waste Qualitative and Quantitative Assessment

Thequalitativeandquantitativeassessmentforsolidwaste wascarriedoutforBailadilaareainFebruary- June2021 Details ofthe samplingandanalysisaregiven in following sections.

Waste Sample Collection and Analysis

Thequantitativeandqualitativeassessmentofwasteinthe city, especially its physical and chemical properties are essentialfordeterminingthefuturetechnologicaloptionsfor itstreatmentanddisposal.Thefindingsfromthisstudywill feedintotheprocessandfacilitatetakingfuturedecisions, especiallyintermsofselectionofthetechnology.

As a methodology, in the absence of any existing informationonMSWofBailadilaregion,profilinghasbeen taken up to understand the solid waste characteristics, collectionsystem,treatmentprocesses,disposalmethodsand othermanagementissues.Total35solidwastesampleseach in February- June 2021 were collected from different locations like commercial area, markets, residential area, collectionbins,andexistingdumpingsites.

4. RESULT AND DISCUSSION

4.1 Results of the Field Survey and the Laboratory Studies on the Solid Waste Samples Collected During Field Survey

Quantity of Waste Generation

The quantification of waste generation was done based on actualhouseholdsurveyduringthefieldvisitinJune2021by IIT(ISM)representatives,CensusRecordsandAveragewaste GenerationratesasperManualonSolidWasteManagement by Central Public Health & Environment Engineering Organization (CPHEEO), Ministry of Urban Development, Govt. of India and the data collected on the total wastes collectedbycollectionvehiclesduringthefieldvisit.

Waste Characterization

ThecollectedsamplesofMunicipalSolidWastes(MSW)were broadlycategorizedintofollowingfourcategories:(i) biodegradable waste that include food and kitchen waste, greenwaste(vegetables,flowers,leaves,fruits),papers(that canberecycled);(ii)recyclablematerialsthatincludepapers, glass, bottles, cans, metals, certain plastics, etc.; (iii) inert wastesthatincludeconstructionanddemolitionwaste,dirt, rocks, debris etc. and (iv) non- biodegradable waste. The detailanalysis(usingstandardmethods)ofthecollectedsolid wastesamplesarepresentedinTable4(weightandtypeof wastes present in each sample) and Table 5 (presence of biodegradable and non-biodegradable waste materials in percentage).

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page797
S.N Biodegradable %byweight 1 Litter 559 2 Sewagewaste 1669 3 Textile 487 4 Cardpaper 448 5 CoconutCore 512 6 Sugarcane 4.02 7 Paper 3.23 8 Kitchenwaste 1735 Total 6135% Non biodegradable 1. Plastic 475 2. Mixwaste 560 3. Glass 606 4. Constructionwaste 5.79 5. Polythene 6.87 6. Ash 958 Total 3865% S.N Sample No. Type of waste Weight (in gm) Weight in % 1 S1 Litter 299 559 2 S2 Sewagewaste 898 1669 3 S3 Textile 260 4.87 4 S4 Construction Waste 309 5.79 5 S5 Polythene 367 687 6 S6 Ash 512 958 7 S7 Glass 324 606 8 S8 Plastic 254 475 9 S9 Cardpaper 239 448 10 S10 CoconutCore 273 512 11 S11 Sugarcane 215 4.02 12 S12 Paper 172 3.23 13 S13 Kitchenwaste 927 1735 14 S14 Mixwaste 300 560 15 Total 5349
Table - 4:Compositionofthecollectedmunicipalsolid wastesamplesfromthesite Table - 5: Percentage of biodegradable and nonbiodegradablewastesinthecollectedsamples

Moisture Content

Themoisturecontentofsolidwastesusuallyisexpressed asbelow:

Where,

M-moisturecontent,wetbasis(%)

w–initial(wet)weightofsample

d–final(dry)weightofsample

Theresultsofthemoisturecontentanalysisforallcollected solidwastesamplesarepresentedinTable6.Themoisture contenttestwasdoneusingstandardmethodandcalculation wasdoneonthebasisoftheaboveequation.

Energy Content and Density of Solid Waste Components

The energy content of solid waste components can be determinedusing(i)afullscaleboilerasacalorimeter(ii)a laboratory bomb calorimeter and (iii) calculation, if the elemental composition is known. Density is defined as the weightofamaterialperunitvolume(kg/m3).Thedensity dataareneededtoassessthetotalmassandvolumeofthe wastethatmustbemanaged.Thedensityandcalorificvalue (energycontent)ofthecollectedsamplesofmunicipalsolid wastearepresentedinTable7.

Solidwastecontainsorganicaswellasinorganicmatters.The latentenergypresentinitsorganicfractioncanberecovered forbeneficialutilizationthroughadoptionofsuitablewaste processing and treatment technologies. The recovery of energyfromwastesoffersafewadditionalbenefitssuchas (i)thetotalquantityofwastegetsreducedbynearly60%to 90%dependinguponthewastecompositionandtheadopted technology,(ii)demandforland,whichisalreadyscarcein cities,forlandfillingisreduced,(iii)thecostoftransportation of waste to far away landfill sites also gets reduced proportionately, and (iv) net reduction in environmental pollution. The important physical parameters for energy recovery that to be considered include size of the constituents,density,andmoisturecontent.Smallersizeof theconstituentsaids in faster decomposition of the waste. The important chemical parameters to be considered for determiningtheenergyrecoverypotentialandthesuitability ofwastetreatmentthroughbio-chemicalorthermo-chemical conversion

technologies include (i) volatile solids, (ii) fixed carbon content, (iii) inertness, (iv) calorific value, (v) C/N ratio (Carbon/Nitrogenratio),and(vi)toxicity.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page798
(��−��)∗
��= ��
100
Table - 6: MoisturecontentsofthecollectedMSWsamples collectedfromBailadila
S. N Sample NumberMoisture content (%) Material Sector A 1 S1DtoD 40% Mixedkitchens waste 2 S2DtoD 80% Vegetablepeels 3 S3DtoD 85% Bread 4 S4 667% Litter 5 S5 243% Paper&board Sector B 1 S1DtoD 66% Mixedwaste kitchenwaste 2 S2DtoD 6% Mixed 3 S3DtoD 80% Kitchenwaste 4 S4 25% Mixedwaste 5 S5 30% Sewage S.N Sample number Type of MSW Calorific value Density kg/m3 Sector A 1 Sample1D toD Mixedkitchens waste 43537 740 2 Sample2D toD Vegetablepeels 360031 3 Sample3D toD Bread 43537 740 4 Sample4 dustbin Litter 376864 460 5 Sample5 dustbin Paperboard 4122.4Sector B 1 Sample1D toD Mixedwaste kitchen waste 43537 740 2 Sample2D toD Mixedwaste 4476.91 555 3 Sample3D toD Kitchenwaste (vegetablepeels) 3600314 Sample4 Dustbin Mixedwaste 447691 555 5 Sample5 Dustbin Sewage 2080 -
Table- 7:CalorificvalueanddensityofMSWcollectedfrom BailadilaRegion

Proximate Analysis

Proximateanalysisofthesolidwastesamplesincludesthe followingtests:(i)lossofmoisture(lossofmoisturewhen heatedto105℃for1hr),(ii)volatilematter(additionalloss of weight on ignition at 950 ℃ in a covered crucible), (iii) fixedcarbon(combustibleresidueleftaftervolatilematteris removed),and(iv)ash(weightofresidueaftercombustionin anopencrucible).

Theabovetestswerecarriedoutusingstandardmethodsin laboratory(usingOvenandMuffleFurnace)andpresentedin

Table8.

Ultimate Analysis of Solid Waste Components

TheUltimateAnalysisofSolidWasteComponentstypically involvesthedeterminationofthepercentageofC(Carbon),H (Hydrogen),O(Oxygen),N(Nitrogen),S(Sulfur)andash.The resultsoftheultimateanalysisareusedtocharacterizethe chemicalcompositionoftheorganicmatterinMSW.Theyare also used to define the proper mix of waste materials to achieve suitable C/N ratios for biological conversion processes.TheresultsoftheUltimateAnalysiswereobtained usinga State of the Art equipment, CHONS analyser in the

DepartmentofEnvironmentalScienceandEngineering,IIT (ISM) Dhanbad for the collected solid waste samples and presentedinTable9.

Table- 9:Ultimateanalysisofthecollectedmunicipalsolid wastes S.N

Categorization of the solid waste samples based on the laboratorytestresultsTheanalysisresultsofthecollected sampleswereusedtosub-categorizethetotalmunicipalsolid wastesintorecyclablewaste,incinerablewaste,compostable waste,andlandfillingwaste.ResultsarepresentedinTable 10.

Table -10:Wastecategorizationonthebasisofrecyclable, incineration,compostingandlandfilling(FebruarytoJune)

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page799
S.N Sample number VCM (%) Ash % Fixed carbon % (in 1 gm sample) Sector A 1 Sample1Dto D 80.81 12.18 7.01 2 Sample2Dto D 35 20 45 3 Sample3Dto D 75.5 2 22.5 4 Sample4 dustbin 73.52 20.565 5.92 5 Sample5 dustbin 79.3 13.80 6.90 Sector B 1 Sample1Dto D 80.81 12.18 7.01 2 Sample2Dto D 84.05 10.5 5.8 3 Sample3Dto D 47 19 34 4 Sample4 Dustbin 66 7.6 26.4 5 Sample5 Dustbin 30 50 20
Table- 8:Proximateanalysisofthecollectedmunicipal solidwastesamplesfromKirandul
Sample number C% H % S% Sector A 1 Sample1DtoD 4009 1034 013 2 Sample2DtoD 39.03 5.51 0.20 3 Sample3DtoD 4009 1034 013 4 Sample4dustbin 4071 500 010 5 Sample5 dustbin2961 378 008 Sector B 1 Sample1DtoD 4009 1034 013 2 Sample2DtoD 3850 485 018 3 Sample3DtoD 3903 551 020 4 Sample4Dustbin 5 Sample5Dustbin4307 530 021
Recyclable waste in total MSW(%) in
Incinerable waste in total MSW (%) in weight Compostable waste inTotal MSW (% by weight) Land filling waste in total MSW % in weight Paper-3.23 Textiles-4.87 Kitchen waste-17.35 Construction waste5.79 Plastics-4.75 CoconutCoir5.12 Litter-5.59 Ash-9.58
-6.87- Sewagewaste16.69 Mixedwaste5.60
paper-4.48- Sugarcane4.02 Glass-6.06Total-25.39% 9.99% 43.65% 20.97%
weight
Polythenes
Card

4.2 Results of the Field Survey and the Laboratory Studies on the Solid Waste Samples Collected During Field Survey (October- Januray)

Waste

Thedetailanalysis(usingstandardmethods)ofthecollected solidwastesamplesarepresentedinTable11(weightand typeofwastespresentineachsample),Table12(presenceof biodegradable and non-biodegradable waste materials), Table13(percentagecompositionofbiodegradableandnonbiodegradable wastes), and Table 14 (percentage compositionofeachtypeofsolidwastes).

Table -11:Compositionofthecollectedmunicipalsolid wastesamplesfromthesite

Table -12:Classificationofmunicipalsolidwastessamples basedondegradability

S.N Sample number Biodegradable waste Non-biodegradable waste

Sector A

1 Sample1DtoD √

2 Sample2DtoD √

3 Sample3DtoD √

4 Sample4dustbin√

5 Sample5 dustbin √

Sector B

1 Sample1DtoD √

2 Sample2DtoD √

3 Sample3DtoD √

4 Sample4 Dustbin √

5 Sample5 Dustbin √

Table-13:Percentageofbiodegradableandnonbiodegradablewastesinthecollectedsamples S.N

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page800
Characterization
S.N Sample Number Weight (gm) Type of waste Sector A 1 Doorto Doorsample 1 256 Mixedkitchens waste 2 Doorto Doorsample 2 186 Vegetablepeels 3 Doorto Doorsample 3 284 Bread 4 Dustbin sample1 295 Litter 5 Dustbin sample2 220 Paper&cardboard Sector B 1 Doorto Doorsample 1 200 Vegetablepeels 2 Doorto Doorsample 2 201 Mixedwaste(paper) 3 Doorto Doorsample 3 387 Kitchen (vegetablepeels)
Dustbin sample4 439 Mixedwaste 5 Dustbin sample5 397 Sewage Totalwaste weight 6974
4
Biodegradable waste Weight in % 1 Litter 5.75 2 Sewage 21.04 3 Clothes 2.69 4 Sugarcane 1.90 5 Paper&cardboard 7.52 6 Coconutcore 1.46 7 Kitchenwaste 23.47 Total 63.83 Non-biodegradable waste 8 Constructionwaste 10.80 9 Polythene 2.92 10 Plastic 9.66 11 Ash 4.73 12 Glass 1.82 13 Mixedwaste 6.24 Total 36.17

Table

:Compositionoftotalwastesampleinpercentage

Energy

The density and calorific value (energy content) of the collectedsamplesofmunicipalsolidwastearepresentedin Table16.

Aroughassessmentofthepotentialrecoveryofenergyfrom solid waste through different treatment methods can be madefromtheknowledgeofitscalorificvalueandorganic fractionasperstandardmethodsdiscussedbelow. Table

Table

Proximate Analysis

The proximate analysis was carried out using standard methodsinlaboratory(usingOvenandMuffleFurnace)and presentedinTable17.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page801
S.N Material Weight in gm Percentage of total waste 1 Litter 401 5.75% 2 Sewagewaste 1468 21.04% 3 Cloths 188 2.69% 4 Constructionwaste 703 10.80% 5 Polythene 203 2.91% 6 Ash 330 4.73% 7 Glass 127 1.82% 8 Plastic 669 9.66% 9 Kitchenwaste 1637 23.48% 10 Coconutcore 142 1.46% 11 Sugarcane 133 1.90% 12 Mixedwaste 439 6.24% 13 Paper 525 7.52% Total 6974 100.00%
-14
S. N Sample Number Moisture content (%) Material Sector A 1 S1DtoD 40% Mixedkitchens waste 2 S2DtoD 80% Vegetablepeels 3 S3DtoD 84% Bread 4 S4 14% Litter 5 S5 3.8% Paper&board Sector B 1 S1Dto D 60% Mixedwaste kitchenwaste 2 S2Dto D 5% Mixedwaste (paper&plastics) 3 S3Dto D 84% Kitchenwaste (vegetablepeels) 4 S4 30% Mixedwaste 5 S5 32% Sewage
-15:MoisturecontentsofthecollectedMSWsamples
Content
Density of Solid Waste Components
and
:CalorificvalueanddensityofMSW S.N Sample number Types of MSW Calorific value Density Sector A 1 Sample1D toD Mixed kitchens waste 4446.22 749 2 Sample2D toD Vegetable peels 3752.31 3 Sample3D toD Bread 749 4 Sample4 dustbin Litter 4122.04 468 5 Sample5 dustbin Paperboard 4100.4Sector B 1 Sample1D toD Mixedwaste kitchen waste 4446.22 749 2 Sample2D toD Mixedwaste4776.91 550 3 Sample3D toD Kitchen waste (vegetable peels) 3752.31 125 4 Sample4 Dustbin Mixedwaste4776.91 550 5 Sample5 Dustbin Sewage 2085 -
-16

Table- 17:Proximateanalysisofthecollectedmunicipal solidwastesamples

Ultimate Analysis of Solid Waste Components

TheresultsoftheUltimateAnalysiswasdoneusingaStateof the Art equipment, CHONS analyser in the Department of EnvironmentalScienceandEngineering,IIT(ISM)Dhanbad forthecollectedsolidwastesamplesandpresentedinTable 18.

Table -18:Ultimateanalysisofthecollectedmunicipal solidwastes

Categorization of the solid waste samples based on the laboratory test results

The analysis results of the collectedsamples were used to sub-categorize the total municipal solid wastes into recyclablewaste,incinerablewaste,compostablewaste,and landfillingwaste.ResultsarepresentedinTable19.

Table -19:Wastecategorizationonthebasisofrecyclable, incineration,compostingandlandfilling(Feb2021)

During the SWM process various pollutants are emitted. Vriousactivitiesduringthesolidwastemanagementarethe mainsourcesofemissionofGHGandothermajorpollutants. During sampling period the measured mean level of particulatematterrangedbetween50.7and89.6µg/m3at sourcesand69.54and95.79µg/m3atdownwind.Moreover, higherlevelsofPMwereobservedinthemonthofFeb-June than the month of October-December. ]. Concentration of PM2.5wasobservedtobedecreased35mawayfromthe source. On comparison it sowed 20% increased PM2.5 concentrationatthesource.IncreaseinlevelofPM2.5raised the concern that inhalation of PM2.5 from SWM sites can cause pulmonary diseases, and other diseases among the workers and populations living within facilities of such MSWM sites. Presence of organic components in the solid waste materials is decomposed by microbes and releases GHG.So,theSWMsitesareconsideredtobemajorsourcesof CO2andCH4emissions.CH4isamajorcomponentofGHG andhas25timesmoreglobalwarmingpotentialthanCO2.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page802
S. No Sample number (VCM) in 1 gm of the sample (%) Ash % Fixed carbon % (in 1 gm of sample) Sector A 1 Sample1D toD 75 1.4 23.6 2 Sample2D toD 35 20 45 3 Sample3D toD - -4 Sample4 dustbin 78.5 12 9.5 5 Sample5 dustbin 77 15.5 7.5 Sector B 1 Sample1D toD 75 1.4 23.6 2 Sample2D toD 84.5 4.75 10.75 3 Sample3D toD 35 20 45 4 Sample4 Dustbin 65.5 27.75 6.75 5 Sample5 Dustbin 30 50 20
S.N Sample number C% H % S% Sector A 1 Sample1DtoD 41.146 32.833 0.158 2 Sample2DtoD 38.04 5.78 0.20 3 Sample3DtoD - -4 Sample4dustbin 45.575 3.1525 Sample5 dustbin42.5 6.1 0.14 Sector B 1 Sample1DtoD 41.146 32.833 0.158 2 Sample2DtoD 40.35 6.0 0.17 3 Sample3DtoD 41.146 32.83 0.158 4 Sample4Dustbin - -5 Sample5Dustbin 47.6 6.3 0.21
Recyclable waste (%) by weight Incinerable waste (%) by weight Compostable waste in (%) by weight Land filling waste (%) by weight Polythene2.91 Clothes-2.69 Kitchen waste-23.47 Mixedwaste6.24 Glass-1.82 Coconutcore1.46 Sugarcane1.90 Construction waste10.80 Plastic-9.66 - Litter-5.75 Ash-4.73 Paper-7.52 - Sewagewaste21.04 Total-21.91% 4.15 52.16% 21.77%

Thusitshowsthatduetovariousmanagementprocessesof solidwasteithasasignificantimpactonairquality.

3. CONCLUSIONS

The household waste includes unused food, peels of vegetable,rottenfood,unusedpapers,plasticbags,plastic material(wrappers,Likho-phekhopens,brokenbucket,tub etc),unusedcottonmaterial,electronicwaste,smoke,dust etc.Rottingfoodandother decaying organicwasteallows methaneandcarbondioxidetoseepoutofthegroundand upintotheair.Methaneisapotentgreenhousegasandcan itself be a danger because it is flammable and potentially explosive. Carbon dioxide is the most widely produced greenhousegas.Ittrapsheatintheatmosphere,contributing to climate change. Poorly run landfills may become nuisancesbecauseofvectorssuchasratsandflieswhichcan causeinfectiousdiseases.Theoccurrenceofsuchvectorscan be mitigated through the use of daily cover. Gases are produced in landfills due to the anaerobic digestion by microbes. Solid wastes are potential problem to human healthfromimproperhandling.Themainproblemtohealth is indirect and arise from the breeding of disease vectors, primarily Flies and Rats. The household waste along with industrialeffluentscreatesspecificdangerofconcentration ofheavymetalsinthefoodchain.Peoplesarecompelledto live in such area. This is not the natural process we are responsibleforit.Wehavetoconcerntheseproblemsand shouldtrytocontrolit.

REFERENCES

[1] Prabhjot Kaur, “Recent advances in utilization of municipalsolidwasteforproductionofbioproducts:A bibliometric analysis” Case Studies in Chemical and Environmental Engineering 4 (2021) 100164, doi.org/10.1016/j.cscee.2021.100164

[2] VandanaBharti,“AReviewonSolidWasteManagement MethodsandPracticesinIndia”TrendsinBiosciences 10(21),2017,4065-4067

[3] LalChandMalav,“Areviewonmunicipalsolidwasteas arenewablesourceforwaste-to-energyprojectinIndia: Currentpractices,challenges,andfutureopportunities”, JournalofCleanerProductionVolume277,20December 2020,123227

[4] Juntakan Taweekun, “A Review Study On Municipal Solid Waste Management And Waste To Energy Technologies”, Journal of Industrial Pollution Control, ISSN(0970-2083)

[5] Poritosh Roy, “Impacts of COVID-19 Outbreak on the MunicipalSolidWasteManagement:Nowandbeyond thePandemic,”ACSEnviron.,1,Au202132 45

[6] Willie Doaemo, “Assessment of municipal solid waste managementsysteminLaeCity,PapuaNewGuineain the context of sustainable development,” Environ Dev Sustain,23(12),202118509–18539.

[7] ShwetaChoudhary,“AResearchPaperonSolidWaste Management,”JETIRMarchVolume6Issue3,2019

[8] Arti Pamnani, “MUNICIPAL SOLID WASTE MANAGEMENTININDIA:AREVIEWANDSOMENEW RESULTS,”Volume5,Issue2,February(2014),pp.0108

[9] WidadFadhullah,“Householdsolidwastemanagement practicesandperceptionsamongresidentsintheEast Coast of Malaysia,” BMC Public Health, 22:1 (2022) https://doi.org/10.1186/s12889-021-12274-7

[10] George J. Kupchik & Gerald J. Franz, “Solid Waste, Air Pollution and Health,” Journal of the Air Pollution Control Association, 26:2, 116-118, DOI: 10.1080/00022470.1976.10470229

[11] Neha Gupta, “A review on current status of municipal solid waste management in India,” Journal of EnvironmentalSciences37,2015,206-217

[12] VhuthuNdou,“BibliometricAnalysisofMunicipalSolid WasteManagementResearch:GlobalandSouthAfrican Trends,” Sustainability,14 2022, 10229. https://doi.org/10.3390/su141610229

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page803

Turn static files into dynamic content formats.

Create a flipbook