LINEAR STABILITY ANALYSIS ON THE ONSET OF DDC IN A DPM SATURATED WITH CSF WITH INTERNAL HEATING

Page 1

LINEAR STABILITY ANALYSIS ON THE ONSET OF DDC IN A DPM SATURATED WITH CSF WITH INTERNAL HEATING

Assistant Professor, Dept. of Mathematics, Sri Shivalingeshwara Govt. First Grade College, Aland, Karnataka-India ***

Abstract - The effect of rotation on the onset of double diffusive convection (DDC) in a horizontal couple stress fluid saturated porous layer with an internal heat source is investigated using linear stability analysis. Thelinearstability analysis is based on the classical normal mode technique. The extended Darcy model which includes thetimederivativeterm and Coriolis term has been employed in the momentum equation. The expressions for stationary and oscillatory Rayleigh number are obtained as a function of governing parameters such as internal Rayleigh number, couple stress parameter, Taylor number, normalized porosity and Lewis number and their effects on the stability of the system are shown graphically

Key Words: Rotation, couple stress fluid (CSF), Darcy Porous medium (DPM), Double diffusive convection (DDC), Internal Heat Source.

Nomenclature

a Wavenumber, 22lm 

c Specificheatofsolid

p c Specificheatoffluidatconstantpressure

C Couplestressparameter, 2 c d

d Heightoftheporouslayer

Da Darcynumber,   2 / Kd

g Gravitationalacceleration,   0,0, g

i Unitnormalvectorinthe x-direction

j Unitnormalvectorinthe y-direction

K Permeability

k Unitnormalvectorinthe z-direction

, lm Horizontalwavenumbers

Le Lewisnumber, TS

p Pressure

Pr Prandtlnumber, T

DPr Darcy-Prandtlnumber, PrDa

q Velocityvector,   ,, uvw

Q Internalheatsource

SRa SoluteRayleighnumber, S T gSKd  

TRa ThermalRayleighnumber, T T gTKd  

iR InternalRayleighnumber, 2 T Qd 

SRa SoluteRayleighNumber,   S T gSKd  

TRa ThermalRayleighNumber,   T T gTKd 

S Soluteconcentration

S Salinitydifferencebetweenthewalls

t Time

T Temperature Ta Taylornumber,

T Temperaturedifferencebetweenthewalls ,, xyz Spacecoordinates

Greek symbols

a Wavenumber, 22lm 

S Solutecoefficientofexpansion

T Thermalcoefficientofexpansion  Ratio of specific heats,

 Thermalanisotropyparameter, TxTz

 Dimensionless amplitude of temperature perturbation

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page614
 2 2 z K  Ω
       1 pp s ff ccc    
 Porosity  Normalizedporosity, 

S

Solutediffusivity T

Thermaldiffusivity  Dynamicviscosity

Couplestressviscosity

c

 Kinematicviscosity, 0

 Fluiddensity

0 Referencedensity

 Growthrate

 Dimensionless amplitude of concentration perturbation

contaminant transport in fluid saturated soils, liquid gas storage, and food processing [see [11] & [13]]. Double diffusive convection (DDC) in porous media has attracted manyauthorslike[2]&[14]duringthelastseveraldecades.

The effect of internal heat source is important in several applicationsthatincludereactorsafetyanalysis,metalwaste form development for nuclear fuel, fire and combustion studies,andstorageof radioactivematerials.The onset of convection due to internal heat source has become an interesting problem in various areas of geophysics and engineeringunderthesituationsofradioactivedecayora weekexothermicreactionwithintheporousmaterial.

0,0, Ω Other symbols

Ω Angularvelocity,

Subscripts

b Basicstate

c Critical

f Fluid

h Horizontal

m Porousmedium 0 Reference

s Solid

Superscripts

* Dimensionlessquantity

′ Perturbedquantity

Osc Oscillatory

St Stationary

1. INTRODUCTION

Doublediffusiveconvection(DDC)inporousmediahasbeen intensively studied because of its applications in different branchesofscienceandengineering,suchasunderground disposal of nuclear wastes, groundwater pollution,

Earlierstudiesofconvectiveflowsinporousmediawithin rectangularenclosures,withoutthelocalheatsourceeffects. Averylittleattentionhasbeendevotedtothisproblemwith non-Newtonian fluids. The corresponding problem in the caseofporousmediumhasalsonotreceivedmuchattention untilrecently.Withgrowingimportanceofnon-Newtonian fluidswithsuspendedparticlesinmoderntechnologyand industries,theinvestigationsofsuchfluidsaredesirable.The studies of such fluids have applications in number of processes that occur in industry, such as the extrusion of polymer fluids, solidifications of liquid crystals, cooling of metallicplateinabath,exoticlubricationandcolloidaland suspension solutions. In the category of non-Newtonian fluids couple stress fluids have distinct features, such as polareffects.

Themainaimfeatureofcouplestresseswillbetointroduce a size dependent effect that is not present in the classical viscousfluids.Thetheoryofpolarfluidsandrelatedtheories aremodelsforfluidswhosemicrostructureismechanically significant. The constitutive equations for couple stress fluidsweregivenby[1].

Anisotropy is generally a consequence of preferential orientation of symmetric geometry of porous matrix or fibers and is in fact encountered in numerous systems in industryandnature.Alsoartificialporousmatrixanisotropy can be made deliberately according to applications. [3] studied the combine defect of horizontal and vertical heterogeneityandanisotropyontheonsetofconvectionina porousmedium. [4]performedlinearandnonlinearstability analysisofdoublediffusiveconvectioninanisotropicporous mediaincludingSoreteffectandreportedthattheeffectof mechanicalanisotropicparametersistodestabilizeandof thermalanisotropicparametersistostabilizethesystem.

There are large number of practical situations in which convectionisdrivenbyinternalheatsourceintheporous media.Thewideapplicationsofsuchconvectionsoccurin nuclear reactions, nuclear heat cores, nuclear energy, nuclearwastedisposals,oilextractions,andcrystalgrowth. [5] investigated linear stability analysis for the onset of naturalconvectioninafluidsaturatedporousmediumwith uniform internal heat source and density maximum in an

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page615
D d dz 2 1 22 22 xy    2 2 2 1 2 z   

local thermal nonequilibrium model and predicted that internal heat source parameter advances the onset convection,[6]studiedtheonsetofstationaryconvectionin alowPrandtlnumberwithinternalheatsourceandfound that effect of internal heat source parameter is destabilization.Recently,[7-10]havestudiedtheproblemof thermal instability in porous media with internal heat source.Few authors have studied on rotation withcouple stressfluidinporousmedia[see[19],[20],[21],[22]&[23]].

Although few literatures on DDC in a porous medium saturatedbyordinaryfluidwithorwithoutaninternalheat source is available, no attention has been devoted to the studyofDDCinaporouslayersaturatedbyacouplestress fluids in the presence of an internal heat and rotation. Thereforeinthepresentworkweintendtoinvestigatethe onsetdoublediffusiveconvectioninarotatingcouplestress fluid saturated porous layer with an internal heat source employing a modified Darcy model using linear stability analyses.Ourobjectiveistostudyhowtheonsetcriterion forstationaryandoscillatoryconvectionareaffectedbythe Lewis number, solute Rayleigh number, Taylor number, Couple stress parameter, internal heat source and normalizedporosity.

2. GOVERNING EQUATIONS

We consider an infinite horizontal couple stress fluid saturatedporouslayerconfinedbetweentheplanes 0 z  and zd  with the vertically downward gravity force g actingonit.Aconstanttemperature 0TT and 0T with stabilizingconcentrations 0SS and 0S respectivelyare maintained between the lower and upper surfaces. A Cartesianframeofreferenceischosenwiththeorigininthe lowerboundaryand z -axisverticallyupwards.Theporous layer rotates uniformly about the z -axis with a constant angular velocity (0,0,) . The modified Darcy model, whichincludesthetimederivativeandtheCoriolistermis employed as a momentum equation [see [17]]. The basic governingequationsare

where, the variables and constants have their usual meaning, as given in the Nomenclature. Further ()/(),()(1)()(), mfmsf ccccc pp   c isthespecificheatofthesolidand p c isthespecificheatof thefluidatconstantpressurerespectively.

1.1 BASIC STATE

Thebasicstateofthefluidisassumedtobequiescentandis given

Thentheconductionstatetemperatureandconcentration aregivenby

Onthebasicstatewesuperposeinfinitesimalperturbations intheform

indicate

equationsaregiven

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page616
.0 q  (1) 00 0 2 2 () 1 () TS c pTSgq q K       , (2) 2 0 (.)() T T qTTQTT t     , (3) 2 (.) S T qSS t     , (4)
000
(z)      , (5)
temperature b T(z) , solute concentration b S(z)
b P(z) and density b(z)  ,
following equations 22 0 22 000 00 1 bb bTb bTbSb dP dTdS b g,Q(TT),, dzdzdz [(TT)(SS)]     , (6)
bbb bbb q(,,),PP(z),TT(z), SS(z),(z),
The
, pressure
satisfy the
0 1 b TSin(R(z/d)) i T(z)T SinRi   , 0 1 b S(z)S(z/d)S  (7) 1.2 PERTURBED
STATE
bbb bb ''' qqq,TTT,SSS, '' PPP,   , (8)
by 0 ' .q  , (9) 0 0 2 2 1 0 TS c ' q ''' p(TS)g t '' q()q K           , (10)
where,primes
perturbations.SubstitutingEq.(5) into Eqs. (1)- (4) and using Eqs. (5)- (7), the perturbed

Byoperatingcurltwice-onequation(10),weeliminate ' p fromitandthenrendertheresultingequationandtheEqs. (11) and (12) dimensionless using the following transformations.

Where l,m are horizontal wavenumbers and  is the growthrate.Infinitesimalperturbationsofthereststatemay either damped or grow depending on the value of the parameter . Substituting Eq. (18) into the linearized versionofEqs.(14)-(16),weobtain

Toobtain non-dimensional equationsas(on dropping the asterisksforsimplicity),

is the Taylor number and

istheinternalRayleghnumber,andallthe other non-dimensional parameters are as defined in the Nomenclature.

The boundary conditions are assumed to be stress free, isothermalandisohaline,theEqs.(14)-(16)aretobesolved fortheboundaryconditions

2. LINEAR STABILITY ANALYSIS

Wepredictthethresholdsofbothmarginalandoscillatory convections using linear theory. The Eigenvalue problem definedbyEqs.(14)-(16)subjecttotheboundaryconditions (17) is solved using the time-dependent periodic disturbances in a horizontal plane. Assuming that the amplitudesoftheperturbationsareverysmall,wewrite

 and

alm

. The boundary conditions(17)nowbecomes

We assume the solutions of Eqs. (19)-(21) satisfying the boundaryconditions(22)intheform

Themostunstablemodecorrespondsto 1 n  (fundamental mode).Therefore,substitutingEq.(23)with 1 n  intoEqs. (19)-(21),weobtainamatrixequation

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page617 2 T '' TT''''' (q.)TwTQT td     , (11) 2 S '' SS'''' (q.)SwS td     , (12)
2 '''***'''*** T *'*'* T (x,y,z)(x,y,z)d,(u,v,w)(/d)(u,v,w), tt(d/),T(T)T,S(S)S     (13)
2 222 2 22 1 1 1 1 1 D TS D [(C)Ta]w Prtz (C)(RaRa) Prt       , (14) 2 0 i [R(q.)]Tw t    , (15) 2 1 0 (q.)Sw tLe     , (16) where, 2 2 K Ta()   
2 iTRQd/  
2 2 0 w wTS z    at 01z,  . (17)
(w,T,S)(W(z),(z),(z))exp[i(lxmy)t]   (18)
222222 222 222 1 1 10 D T D S D [(C(Da))(Da)TaD]W Pr aRa(C(Da)) Pr aRa(C(Da)) Pr         , (19) 22 0 i [(Da)R]W  , (20) 22 1 0 [(Da)] Le   , (21) Whrere,
2 2 0 W W z     at 01z,  . (22)
Dd/dz
222

000 (W(z),(z),(z))(W,,)Sin(nz),   123 (n,,,......)  (23)
22222 0 2 0 2 0 0 100 0 1 10 TS DDD i ()TaaRa()aRa() PrPrPr W (R) Le                           (24) where, 222 a 

2.1

STATE

Forthevalidityoftheprincipalofexchangeofstabilities(i.e., steadyoscillatory),wehave 0   (i.e. 0 ri  )atthe marginalofstability.ThentheRayleighnumberatwhichthe marginallystablesteadymodeexistsbecomes

This coincides with the results of [24]. Further

, Eq.(30)gives

which has the critical value

obtainedby[15]and[16].

2.2

We now set i i   in Eq. (25) and clear the complex quantitiesfromthedenominator,toobtain

0

Intheabsenceofheatsource 0 i (i.e.,R)  ,Eq.(26)reduces to

1 1 St TS (a)(C(a))Ta(a) RaLeRa aa(C(a))

Thisresultexactlycoincideswiththeonegivenby[17].

It is important to note that the critical wavenumber St c a dependsonthecouplestressparameterandTaylornumber. In the absence of Taylor number 0 (i.e.,Ta)  , Eq. (27) gives

2 1 1 St TS Ra(a)[C(a)]LeRa

Whichistheresultgivenby[12]. Forsinglecomponentfluid 0 S Ra,  inEq.(27)gives

Which is the one obtained by [18]. When 0 C  (i.e., Newtonianfluidcase),Eq.(29)reducesto

D w

Pr((R)(aLeRa)

Pr(aLeRaTa)(Le(R))))

2 2 2

DSi RaPr(R)(TaaLeRa)

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page618
Eq.
of
Rayleighnumberintheform 2 2 2222 22 Di S DD T D LePr(R)[() Le (Ta())a()Ra] PrPr Ra a(Le)(Pr)         , (25)
Theconditionofanon-trivialsolutionoftheabovesystemof homogeneous linear
(24) yields the expression
thermal
STATIONAR
222422 22 St iS T (R)(TaaLeRa) Ra a     ,
(26)
22222 222
     , (27)
 
22222
a
, (28)
22222222 2222
Ra
     , (29)
1 1 St T (a)(C(a))Ta(a)
aa(C(a))
222222 22 St T (a)Ta(a) Ra aa   (30)
Ta 
222 2 St T (a) Ra a    , (31)
0
St
Ra  
St c a  
2 4
T
for 2
OSCILLATORY STATE
12TiRai  , (32)
(
242
Since TRa isaphysicalquantity,itmustbereal.Hence,from Eq. (32) it follows that either 0 i  or 2 Le(PrR)
0  Le(PrR)           (33)
i ,   oscillatory onset). For oscillatory onset, setting 2 0  0 i ()   givesanexpressionforfrequencyofoscillationsin theform(ondroppingthesubscripti)
2 42 222222 42
iS Di DSi Di
222422 2 4222264 22222 2
Di D
Le w[(Le(Ta)PrR) Pr Pr(aLeRa(Le(R)))]w        (34)
NowEq.(32)with 2 0  ,gives
Osc TDiS
The analytical expression for the oscillatory Rayleigh numbergivenbyEq.(34)isminimizedwithrespecttothe wavenumber numerically, after substituting for 2 0 w()  fromEq.(33),forvariousvaluesofphysicalparametersin order to know their effects on the onset of stationary and oscillatoryconvection.

3. RESULT AND DISCUSSION

The effect of rotation on the onset of double diffusive convection (DDC) in a horizontal couple stress fluid saturated porous layer with an internal heat source is investigated using linear stability analysis. The linear stability analysis is based on the classical normal mode technique.Onlythelinearparthasconsideredinthispaper.

Theneutralstabilitycurvesinthe T Raa planeforvarious parameter values are as shown in Figs.1-6. We fixed the values for the parameters except the varying parameter. From these figures it is clear that the neutral curves are connectedinatopologicalsense.Thisconnectednessallows thelinearstabilitycriteriatobeexpressedintermsofthe criticalRayleighnumber TcRa ,belowwhichthesystemis stableandunstableabove.

InFig.1themarginalstabilitycurvesfordifferentvaluesof couplestressparameter C aredrawn.Itisobservedthat withtheincreaseof C thevaluesofRayleighnumberand the corresponding wavenumber for oscillatory mode decreases while those for stationary mode increases. Therefore, the effect of C is to advance the onset of oscillatory convection while its effect is to inhibit the stationaryconvection.

Fig.2depictstheeffectofTaylornumber Ta ontheneutral stabilitycurves.Wefindthattheeffectofincreasing Ta is toincreasethevalueoftheRayleighnumberforstationary andoscillatorymodesandthecorrespondingwavenumber. ThustheTaylornumber Ta hasastabilizingeffectonthe double diffusive convection in a horizontal couple stress fluidsaturatedporouslayerwithaninternalheatsource.

Fig.3indicatestheeffectofinternalRayleighnumber iR on the neutral stability curves for the fixed values of other parameters. It is observed that the value of the Rayleigh numberforstationaryandoscillatorymodeincreaseswith increasing iR ,indicatingthattheeffectof iR istoinhibitthe onsetofstationaryandoscillatoryconvection.

InFig.4themarginalstabilitycurvesfordifferentvaluesof Lewisnumber Le aredrawn.Itisobservedthatwiththe increase of Le the values of Rayleigh number and the correspondingwavenumberforoscillatorymodedecreases while those for stationary mode increases. Therefore, the effect of Le is to advance the onset of oscillatory convection while its effect is to inhibit the stationary convection.

Fig.5depictstheeffectofsoluteRayleighnumber SRa on the neutral stability curves for stationary and oscillatory modes. We find that the effect of increasing SRa is to

increase the critical value of the Rayleigh number for stationary and oscillatory modes and the corresponding wavenumber.ThusthesoluteRayleighnumber SRa hasa stabilizing effect on the double diffusive convection in a horizontalcouplestressfluidsaturatedporouslayerwithan internalheatsource.

Theeffectofnormalizedporosityparameter  isdepicted in the Fig. 6. We find that an increase in  decreases the minimum of the Rayleigh number for oscillatory mode, indicatingthattheeffectofincreasing  istoadvancethe onsetofoscillatoryconvection.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page619
4 6 8 10 12 14 300 400 500 600 700 800 Stationary Oscillatory
(C=0.2,0.4,0.7,1,2) Ra S=100,=0.7,Ta=100,R=3,Le=20 Ra T a 2 4 6 8 10 12 150 300 450 600 750 Ra S=100,=0.7, Ta=100,Ri=3,Le=20
Ta Ra T a Stationary Oscillatory 200 100 50 Ta=10
Fig.1.NeutralstabilitycurvesfordifferentsvaluesofC.
Fig.2.Neutralstabilitycurvesfordifferentsvaluesof

5. CONCLUSION

The effect of rotation on the onset of double diffusive convection (DDC) in a horizontal couple stress fluid saturated porous layer with an internal heat source is investigated using linear stability analysis. The linear stability analysis is based on the classical normal mode technique.Thefollowingconclusionsaredrawn: TheTaylor number Ta hasastabilizingeffectonthedoublediffusive convection in a horizontal couple stress fluid saturated porous layerwithan internal heatsource. The effect of solute Rayleigh number SRa is todelayboth stationary

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page620 1 2 3 4 5 6 200 400 600 800 1000 1200 1400 Ra S=100,=0.7,Ta=100,C=3,Le=20, Fig.3.Neutralstabilitycurvesfordifferentvaluesof internalRayleighnumberRi a Ra T Ri=(6,4,3,1) 2 4 6 8 10 500 1000 1500 2000 2500 3000 3500 Ra S=100,=0.7, Ta=100,C=3,Le=20, Stationary Oscillatory 10 15 20 Le=7 Fig.4.Neutralstabilitycurvesfordifferentvaluesof LewisnumberLe a Ra T 2 4 6 8 10 500 1000 1500 2000 2500 3000 Stationary Oscillatory R i=3,=0.7, Ta=100,C=3,Le=20, Fig.5.Neutralstabilitycurvesfordifferentvaluesof soluteRayleighnumberRa S a Ra T 300 200 100 Ra S =50
2 3 4 5 6 7 200 400 600 800 1000 1200 1400 Stationary Oscillatory R i=3,Ri=3, Ta=100,C=3,Le=20, Fig.6.Neutralstabilitycurvesfordifferentvaluesof normalizedporosity. a Ra T 0.9 0.7 0.2 0.4 =1

and oscillatory convection. And the effect of Lewis number Le is to delay the onset of stationaryconvection while it advances the oscillatory convection. The internal Rayleighnumber iR hasadestabilizingeffectonthedouble diffusive convection in a porous medium. The effect of couple stress parameter C is to advance the onset of oscillatory convection whereas its effect is to inhibit the stationaryonset.Thenormalizedporosityparameter  has adestabilizingeffectinthecaseofoscillatorymode.

REFRENCES

[1] Stokes, V. K. (1966). Couple stresses in fluids(Vol.9). Physics of Fluids, 1709-1716.

[2] Vafai, K. (2000). Handbook of porous media. Marcel Dekker,NewYork(Ed).

[3] Nield, D. A. & Kuznestsov, A. V. (2007). The effects of combined horizontal and vertical heterogeneity and anisotropy on the onset of convection in a porous medium(vol.46). International Journal of Thermal Science,1211-1218.

[4] Gaikwad,S.N.,Malashetty,M.S.,&Prasad,K.(2009).An analyticalstudyoflinearandnonlineardoublediffusive convectioninafluidsaturatedanisotropicporouslayer withSoreteffect(Vol.33). Applied Mathematical Model, 3617-3635.

[5] Saravanan,S.(2009).Thermalnonequilibriumporous convectionwithheatgenerationanddensitymaximum (Vol.76). Transport in Porous Media,35-43.

[6] Cookey,C.I.,Omubo,P.V.B.,Obi,B.I.,&Eze,L.C.(2010) Onset of thermal instability in a low Prandtl number fluidwithinternalheatsourceinaporousmedium. The American Journal of Science and Industrial Research, 1 (1),18-24.

[7] Bhadauria, B.S., Anojkumar, Jogendra Kumar, Sacheti, N.C., & Chandran, P. (2011). Natural convection in a rotating anisotropic porous layer with internal heat. Transport in Porous Medium, 90(2),687-705.

[8] Bhadauria,B.S.(2012).Doublediffusiveconvectionina saturated anisotropic porous layer with internal heat source. Transport in Porous Media (Vol.92),299-320.

[9] Bhadauria,B.S.,Hashim,I.,& Sidheshwar,P.G.(2013a). Effect of time periodic theremal bouindary conditions and internal heating on heat transport in porous medium(Vol.97). Transport in Porous Media,185-200..

[10]B.S. Bhadauria, B. S., Hashim, I., & Sidheshwar, P. G. (2013b).Studyheattransportinporousmediumunder G-jitterandinternalheatingeffects (Vol.96). Transport in Porous Media,21-37.

[11]Shivakumara, I. S., Lee, J., & Sureshkumar, S. (2011). Linear and nonlinear stability of double diffusive convectionincouplestressfluidsaturatedporouslayer (Vol.81) Archive of Applied Mechanics,1697-1715.

[12]Malashetty,M.S., Dulal,P.,&Premila,K.(2010)Double diffusiveconvectioninDarcyporousmediumsaturated withcopulestressfluid(Vol.42), FluidDynamicResearch, 035502-035523.

[13]Azaiez, J., & M. Sajjadi, M. (2012). Stability of Double diffusive convective miscible displacements in porous media. Physical Review E,85(2),ArticleId026306.

[14]Nield,D.A.&A.Bejan,A.(2006).Convectioninporous media,Springer,NewYork,NY,USA,3rd ed..

[15]Horton,C.W.&Rogers,F.T.(1945).Convectioncurrent in a porous medium, Journal of Applied Physics ( Vol. 16),367-370.

[16]Lapwood,E.R.(1948).Convectionofafluidinaporous medium. Proceedings of the Cambridge Philolsophical Society (Vol.44),508-521.

[17]Malashetty, M.S., Premila Kollur, & Sidram, W.(2013). Effect of rotation on the onset of double diffusive convection in a Darcy porous medium saturated with couple stress fluid (Vol. 37), Applied Mathematical Modeling,172-186.

[18]IShivakumara, I.S., Sureshkumar, S. & Devaraju, N. (2010).Corioliseffectonthermalconvectioninacouple stressfluidsaturatedrotatingrigidporouslayer. Archive of Applied Mechanics,81(4), 513-530.

[19]Gaikwad, S. N. & Kamble, S. S. (2014). Linear stability analysis of double diffusive convection in a horizontal sparsely packed rotating anisotropic porous layer in presence of Soret effect. Journal of Applied Fluid Mechanics, 7(3), 459-471.

[20]Banyal, A. S. (2013). A mathematical theorem on the onset of stationary convection in couple stress fluid. Journal of Applied Fluid Mechanics,6(2),191-196.

[21]Kumar, P. (2012). Thermosolutal maneto-rotating convection in copule stress fluid through porous medium. Journal of Applied Fluid Mechanics,5(4),45-52.

[22]Rudraiah, N. & Chandrashekhar, G. (2010). Effects of couple stress on the growth rate of Rayleigh-Taylor instability at the interface in a finite thickness couple stressfluid. Journal of Applied Fluid Mechanics,3(1),8389.

[23]Agoor,B.M.,&Eldable,NTM.(2009). Rayleigh–Taylor instabilityattheinterfaceofsuperposedcouplestress

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page621

fluidsflowsinporous media. JournalofAppliedFluid Mechanics,7(4),573-580.

[24]Vadasz, P. (1998): Coriolis effect on gravity-driven convectioninarotatingporouslayerheatedfrombelow (Vol.376), Journal of Fluid Mechanics,351-375.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page622

Turn static files into dynamic content formats.

Create a flipbook
LINEAR STABILITY ANALYSIS ON THE ONSET OF DDC IN A DPM SATURATED WITH CSF WITH INTERNAL HEATING by IRJET Journal - Issuu