Thermal Analysis and Design Optimization of Solar Chimney using CFD

Page 1

Thermal Analysis and Design Optimization of Solar Chimney using CFD

Ajay Singh 1, Purushottam Sahu2, Ghanshyam Dhanera 3

1 Research Scholar, BM College of Technology, Indore

2Professor and HEAD, BM College of Technology, Indore

3Example: 2AssistantProfessor, BM College of Technology, Indore, MP ***

Abstract:

The solar chimney design is modeled using 3D parametric Creo design software and CFD analysis is conducted using ANSYSsimulationpackage.Thecomparativeanalysisiscomparedbetweenstraightcollectordesignandstaggereddesign ofsolarchimneycollectoronthebasisofairflow,thermalgradientandpressuredistribution.

Keywords: Solarchimney,CFD,collectors

1. Introduction

Current power generation from fossil energies such as oil,coal, or natural gas is harmful to the atmosphere & has the drawbackofbeingnon-renewable.Manydevelopedcountriesaren'tabletotheseconventionalenergysources,&nuclear power isconsideredan unnecessary risk in some oftheseareas.Lack of electricity hasbeen linkedto poverty,&poverty has been linked to population increases. As a result, the need for an eco-friendly and expensive electricity generation systemisclear,anditwillonlybecomemoresointhefuture.Solarenergyisonepotentialsolutiontotheever-increasing crisis.

1.2Concept of Solar Chimney

Schlaich[23]suggesteda‘solarchimneypowerplantdesigninthelate1970s,whichcouldbeanuprightalternativetothe issueswithtraditional“powergenerators”.Asshownschematicallythe‘solarradiation’isessentiallyabsorbedbytheheat collectorwhichissituatedabovetheground.Asaresult,theairinthereservoirheatsupandradiallyflowsinwardsintoa chimney. This phenomenon is causedby difference in hydrostatic pressure of the air around the solar chimney system. Whileenergyextractsfromtheairbyaturbine-drivengeneratorsituatedatthebottomofthechimney.

Solarchimneys canlikewise beutilizedinstructural settingstodiminish the vitality utilized by mechanical (frameworks thatwarmth&coolingtheworkingmechanical).Mechanicalventilationorcoolinghasbeenquitealongtimethestandard strategy for natural control in many building composes, particularly workplaces, in created nations. Contamination and reallocatingvitality supplies havepromptedanothernatural approachinthebuildingplan.Inventiveadvancesalongside bioclimaticstandardsandconventional outlinetechniquesarefrequentlyjoinedto makenewand possibly effective plan arrangements.Thesun-basedsmokestackisoneoftheseideasatpresentinvestigatedbyresearchersandalsoarchitects, forthemostpartthroughresearchandexperimentation.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Issue:
| Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page805
Volume: 10
02
Figure1.1:Schematicofsolarchimney

2 Methodology Steps

TheCADmodel of a solarchimneyismodeledasperthedimensionsavailablein theliterature[25]. Thedimensionsof a solarchimneyaregivenintable2.1below.

TheCADmodelsofasolarchimneyareindustrializedin(Creodesignsoftware).ThetoolusedforCADmodelingofasolar chimney is a revolving tool with material addition. Imported in ANSYS design modeler, the ‘CAD‘model created in Creo designsoftwareisimported.

TheCADmodelsindustrializedinCreoareshowninfigure5.3above.asshowninfigure5.4below.wheregeometricerrors suchashardedges,corneredges,andsoonarechecked.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page806
chimneyheight 200m chimneydiameter 10m collectordiameter 500m Annulargap 2.5m
Table2.1:ChimneyDimensions[25] Figure5.3:CADmodelofsolarchimneydevelopedinCreodesignsoftware Figure5.8:Fluidmodeldomaindefinition

LoadsandBoundaryconditions

The outlet and inlet conditions of the boundary are defined as shown in figure 5.7 above. The inlet boundary condition comprisesofdefiningairinletspeedof.05m/sandinletheattemperaturedefinitionof300Kasshowninfigure5.8below. Theoutletboundaryconditioninvolvesthesettingofrelativepressuredifferenceto0asnoexternalpumpingequipment isusedinthesimulation.

Turbulenceeddydissipationplotofflatsurfacedesignat800W/m2 heatflux

The turbulence eddy dissipation plot is shown in figure 6.10 above. The plot shows higher turbulence eddy dissipation nearthevertical chimneywith a magnitudeof.0144m2s-3.Themaximumturbulenceeddydissipationobtained from the analysis is .0288 m2s-3. Similarly, the maximum turbulence kinetic energy obtained from simulation is observed near the vicinity of a vertical zone with a magnitude of .002844 m2s-3. The minimum kinetic energy is observed underneath the collector'sface.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page807
Figure5.7: Figure6.10: Figure6.11:Turbulencekineticenergyplotofflatsurfacedesignat800W/m2 heatflux

The velocity plot shows a higher magnitude in vertical members and a lower magnitude underneath the collector's face. Themagnitudeofvelocityincreasedsuddenlyatthecornerandreaches1.39m/sasshownbythegreencolor.

6.2 Staggered Surface Results

FurtherCFDanalysisisconductedonthestaggeredsurfaceofthecollectorunderthesameloadingconditions.

Thepressureplotgeneratedfortheflatplatecollectorsolarchimneyisshowninfigures6.13above.Theplotshowshigher pressureunderneaththecollector'sfacewithamagnitudeof3.77Paandreducesasairmovestowardstheinclinedexitof achimney.Thepressureattheverticalzoneis.47Paandthepressureatthecommoninterfaceis2.12Pa.

Theradiationintensityplotshowsanalmostconstantdistributionofradiationalongtheverticalzoneandunderneaththe flat collector type. The variation of radiation intensity is low and is observed to be highest at the vertical zone with a magnitudeof9495W/m2 sr-1

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page808
Figure6.12:Velocityplotofflatsurfacedesignat800W/m2 heatflux Figure6.13:Pressureplotofstaggeredsurfacedesignat1000W/m2 heatflux Figure6.14:RadiationIntensityplotofstaggeredsurfacedesignat1000W/m2 heatflux
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page809
Figure6.15:Totalpressureplotofstaggeredsurfacedesignat1000W/m2 heatflux
Chart Count Pressure [ Pa ] 0 4.05129433 1 2.00084424 2 0.507588327 3 0.44145292 4 0.520182967 5 0.545426369 6 0.571546853 7 0.57012552 8 0.568497956 9 0.571458459
Table6.1:Pressurevariationofflatplatecollectordesignalongthecurvefor1000W
Chart Count Pressure [ Pa ] 0 2.01724315 1 -0.278381497 2 -0.269819736 3 -0.172182739 4 -0.10574311 5 -0.048026376 6 0.00562836 7 0.036296547 8 0.071661592 9 0.092241123
DesignType FlatCollectorDesign(1000W) StaggeredCollectorDesign(1000W) Pressure(Pa) 2.05 2.27
Table6.2:Pressurevariationofstaggeredplatecollectordesignalongthecurvefor1000W Table6.3:Pressuredifference

7.1 Conclusion

Thedetailedresultsare:

1. The pressure profile obtained along the length of the chimney is similar for both staggered design and flat collectordesign.

2. Thek-epsilonturbulencemodelgavereasonablygoodpredictionsasthefluidflowdidn’tfoundtobeturbulent.

3. Thepressuredistributionalongtheradialdirectionisdifferentforbothflatplatecollectorchimneyandstaggered designchimney.

4. For 1000W heat flux, the staggered design generated a 10.7% higher pressure drop as compared to the flat collectordesign.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page810
Chart Count Pressure [ Pa ] 0 3.42269635 1 0.510040641 2 -0.290514112 3 -0.289453983 4 -0.209681213 5 -0.15196985 6 -0.103920273 7 -0.047522411 8 -0.022668351 9 0.008806961
DesignType FlatCollectorDesign(800W) StaggeredCollectorDesign(800W) Pressure(Pa) 2.69 2.91
Table6.5:Pressurevariationofflatplatecollectordesignalongthecurvefor800W
Table
6.7:Pressuredifference
Chart Count Pressure [ Pa ] 0 4.422236 1 3.49484 2 1.735698 3 0.560506 4 0.371799 5 0.467921 6 0.505992 7 0.526842 8 0.558355 9 0.574641
Table6.6:Pressurevariationofstaggeredplatecollectordesignalongthecurvefor800W

REFERENCES

[1].Dimoudi,A.Solarchimneysinbuildings Thestateoftheart.Adv.Build.EnergyRes.2009,3,21–44.

[2].Khanal,R.;Lei,C.Solarchimney Apassivestrategyfornaturalventilation.EnergyBuild.2011,43,1811–1819.

[3]. Ohanessian, P.; Charters, W.W.S. Thermal simulation of a passive solar house using a Trombe-Michel wall structure. Sol.Energy1978,20,275–281.

[4].Akbarzadeh,A.;Charters,W.W.S.;Lesslie,D.A.ThermocirculationcharacteristicsofaTrombewallpassivetestcell.Sol. Energy1982,28,461–468.

[5]. Das, S.K.; Kumar, Y. Design and performance of a solar dryer with vertical collector chimney suitable for rural application.EnergyConvers.Manag.1989,29,129–135.

[6].Awbi,H.B.Designconsiderationsfornaturallyventilatedbuildings.Renew.Energy1994,5,1081–1090.

[7]. Aboulnaga, M.M. A roof solar chimney assisted by cooling cavity for natural ventilation in buildings in hot arid climates:anenergyconservationapproachinAl-Aincity.Renew.Energy1998,14,357–363.

[8].Khedari,J.;Lertsatitthanakorn,C.;Pratinthong,N.;Hirunlabh,J.ThemodifiedTrombewall:Asimpleventilationmeans andanefficientinsulatingmaterial.Int.J.AmbientEnergy1998,19,104–110.

[9].Hirunlabh,J.;Kongduang,W.;Namprakai,P.;Khedari,J.Studyofnaturalventilationofhousesbya metallicsolarwall undertropicalclimate.Renew.Energy1999,18,109–119.

[10].Afonso,C.;Oliveira,A.Solarchimneys:Simulationandexperiment.EnergyBuild.2000,32,71–79.

[11].Khedari,J.;Boonsri,B.;Hirunlabh.J.Ventilationimpactofasolarchimneyonindoortemperaturefluctuationandair changeinaschoolbuilding.EnergyBuild.2000,32,89–93.

[12].Spencer,S.;Chen,Z.D.;Li,Y.;Haghighat,F.Experimentalinvestigationofasolarchimneynaturalventilationsystem InAirDistributioninRooms,Proceedingsofthe7thInternationalRoomventConference,Reading,UK,9–12July2000;pp. 813–818.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page811

Turn static files into dynamic content formats.

Create a flipbook