3 minute read

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Advertisement

Volume 11 Issue II Feb 2023- Available at www.ijraset.com

[9] P. Chikersal, S. Poria, and E. Cambria ―SeNTU: Sentiment Analysis of Tweets by Combining a Rule based Classifier with Supervised Learning‖, In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, Colorado, June 2015, pp. 647–651.

[10] L. I. Tan, W.S. Phang, K.O. Chain, ‖Rule-based Sentiment Analysis for Financial News‖, In Proc.Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference, Kowloon, China, January 2016, doi: 10.1109/SMC35812.2015.

[11] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M.Stede, ―Lexicon-based methods for sentiment analysis‖, Computational linguistics, Vol. 37, No. 2, pp. 267-307, 2011.

[12] Khan, A., Baharudin, B., Lee, L. H., & Khan, K. (2010). A review of machine learning algorithms for text-documents classification. Journal of Advances in Information Technology, 1(1), 4–20.

[13] Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5 (4), 1093–1113.

[14] Aggarwal, C. C., & Zhai, C. (2012). A survey of text clustering algorithms. In Mining text data (pp. 77–128). Springer US.

[15] Proceedings of the Sixth International Conference on Inventive Computation Technologies [ICICT 2021] IEEE Xplore Part Number: CFP21F70-ART; ISBN: 978-1-7281-8501-9 Real Time Sentiment Analysis on Twitter SAI MADHU K, computer science and engineer (KLU), DAMARUKANADHAN CH, computer science and engineer(KLU), CHAKRADHAR REDDY B, computer science and engineer (KLU), POLIREDDY M, computer science and engineer(KLU),

[16] Kim, S.-B., Rim, H.-C., Yook, D., & Lim, H.-S. (2002). Effective methods for improving naive bayes text classifiers. In the Pacific rim international conference on artificial intelligence (pp. 414–423).

[17] RuiXia,Feng,ChengqingZong,QianmuLi,YongQi, Tao Li, “Dual Sentiment Analysis: Considering Two Sides of One Review, “IEEE TransactionsOnKnowledgeAndData Engineering, vol. 27, No. 8, August 2015.

[18] Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on empirical methods in natural language processing – Volume 10 (pp. 79–86).

[19] Farghaly, A., Shaalan, K. (2009). Arabic NLP: Challenges and Solutions. ACM Transactions on Asian Language Information Processing (TALIP), ACM, 8(4), 1-22.

[20] Thanh-Nghi Do, François Poulet,”Parallel Learning of Local SVM Algorithms for Classifying Large Datasets”, December, 2016 .

[21] Kim, J. W., Lee, B. H., Shaw, M. J., Chang, H.-L., & Nelson, M. (2001). Application of decision-tree induction techniques to personalized advertisements on internet storefronts. International Journal of Electronic Commerce, 5(3), 45–62.

[22] Mukund, S., Ghosh, D., & Srihari, R. K. (2011). Using sequence kernels to identify opinion entities in Urdu. In Proceedings of the fifteenth conference on computational natural language learning (pp. 58–67).

[23] Medhat, W., Yousef, A. H., & Mohamed, H. K. (2014). Combined algorithm for data mining using association rules. arXiv preprint arX iv:1410.1343.

[24] Apté, C., Damerau, F., & Weiss, S. M. (1994). Automated learning of decision rules for text categorization. ACM Transactions on Information Systems (TOIS), 12(3), 233–251.

[25] Chakrabarti, S., Roy, S., & Soundalgekar, M. V. (2003). Fast and accurate text classification via multiple linear discriminant projections. The VLDB Journal, 12(2), 170–185.

[26] Scalable and Real-time Sentiment Analysis of Twitter Data Maria Karanasou, Anneta Ampla, Christos Doulkeridis and Maria Halkidi Department of Digital Systems, School of Information and Communication Technologies University of Piraeus, Piraeus, Greece

[27] Ku, L.-W., Lee, C.-Y., & Chen, H.-H. (2009). Identification of opinion holders. International Journal of Computational Linguistics & Chinese Language Processing, 14(4), 383–402.

[28] Ruiz, M. E., & Srinivasan, P. (1999). Hierarchical neural networks for text categorization. In Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval (pp. 281–282).

[29] Li, Y.-M., & Li, T.-Y. (2013). Deriving market intelligence from microblogs. Decision Support Systems, 55(1), 206–217].

[30] Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: System demonstrations (pp. 55–60).

[31] Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

[32] Guyon, I.: Web page on SVM applications (1999). http://www.clopinet.com/ isabelle/Projects/-SVM/app-list.html

[33] Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Sch¨olkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods Support Vector Learning, pp. 185–208 (1999)

[34] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297.

[35] Sharma, Sanur, and Anurag Jain. "Role of sentiment analysis in social media security and analytics." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 10.5 (2020): e1366.

[36] Pereira-Kohatsu, J. C., Quijano-Sánchez, L., Liberatore, F., & Camacho-Collados, M. (2019). Detecting and monitoring hate speech on Twitter. Sensors, 19(21), 4654

[37] Downs, A. 2.1. Up and Down with Ecology: The” Issue-Attention Cycle. In The Politics of American Economic Policy Making; Peretz, P., Eds; M.E. Shape, Inc: Armonk, NY, USA, 1996; Volume 48.

[38] Sui, X.; Chen, Z.;Wu, K.; Ren, P.; Ma, J.; Zhou, F. Social media as sensor in real world: Geolocate user with microblog. In Natural Language Processing and Chinese Computing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 229–237.

[39] Scanlon, J.R.; Gerber, M.S. Forecasting violent extremist cyber recruitment. IEEE Trans. Inf. Forensics Secur. 2015, 10, 2461–2470.

[40] Dickerson, J. P., Kagan, V., & Subrahmanian, V. S. (2014, August). Using sentiment to detect bots on twitter: Are humans more opinionated than bots?. In 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014) (pp. 620-627). IEEE.

This article is from: