The history of continua: philosophical and mathematical perspectives stewart shapiro (editor) - The

Page 1


TheHistoryofContinua:Philosophicaland MathematicalPerspectivesStewartShapiro(Editor)

https://ebookmass.com/product/the-history-of-continuaphilosophical-and-mathematical-perspectives-stewart-shapiroeditor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The Poetry of Emily Dickinson: Philosophical Perspectives

Elisabeth Camp

https://ebookmass.com/product/the-poetry-of-emily-dickinsonphilosophical-perspectives-elisabeth-camp/

ebookmass.com

The Oedipus Plays of Sophocles: Philosophical Perspectives

Paul Woodruff

https://ebookmass.com/product/the-oedipus-plays-of-sophoclesphilosophical-perspectives-paul-woodruff/

ebookmass.com

The Movement for Black Lives: Philosophical Perspectives

Brandon Hogan

https://ebookmass.com/product/the-movement-for-black-livesphilosophical-perspectives-brandon-hogan/

ebookmass.com

The Humanistic Tradition Volume 1: Prehistory to the Early Modern World 7th Edition, (Ebook PDF)

https://ebookmass.com/product/the-humanistic-traditionvolume-1-prehistory-to-the-early-modern-world-7th-edition-ebook-pdf/ ebookmass.com

Schaum’s Outline of Statistics, 6e 6th Edition Murray R.

Spiegel

https://ebookmass.com/product/schaums-outline-of-statistics-6e-6thedition-murray-r-spiegel/

ebookmass.com

Advances in Nanotechnology-Based Drug Delivery Systems

Anupam Das Talukdar

https://ebookmass.com/product/advances-in-nanotechnology-based-drugdelivery-systems-anupam-das-talukdar/

ebookmass.com

Bad for Me: An Anthology of Dark and Forbidden Romances

1st Edition M.T. Addams

https://ebookmass.com/product/bad-for-me-an-anthology-of-dark-andforbidden-romances-1st-edition-m-t-addams/

ebookmass.com

Inorganic Chemistry for JEE (Advanced): Part 1, 3rd edition DPP K. S. Verma

https://ebookmass.com/product/inorganic-chemistry-for-jee-advancedpart-1-3rd-edition-dpp-k-s-verma/

ebookmass.com

The Hideous Book of Hidden Horrors Doug Murano

https://ebookmass.com/product/the-hideous-book-of-hidden-horrors-dougmurano/

ebookmass.com

https://ebookmass.com/product/evolving-tomorrow-genetic-engineeringand-the-evolutionary-future-of-the-anthropocene-prof-asher-d-cutter/

ebookmass.com

TheHistoryofContinua

TheHistoryofContinua

PhilosophicalandMathematicalPerspectives

GEOFFREYHELLMAN

GreatClarendonStreet,OxfordOX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©StewartShapiroandGeoffreyHellman2021

Themoralrightsoftheauthorshavebeenasserted FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2020938610

ISBN978–0–19–880964–7

PrintedandboundinGreatBritainby ClaysLtd,ElcografS.p.A.

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

1.DivisibilityorIndivisibility:TheNotionofContinuity fromthePresocraticstoAristotle 6 BarbaraM.Sattler

2.Contiguity,Continuity,andContinuous Change:AlexanderofAphrodisias onAristotle 27 OrnaHarari

3.InfinityandContinuity:ThomasBradwardine andHisContemporaries 49 EdithDudleySylla

4.ContinuousExtensionandIndivisiblesinGalileo

5.TheIndivisiblesoftheContinuum:Seventeenth-Century AdventuresinInfinitesimalMathematics 104 DouglasM.Jesseph

6.TheContinuum,theInfinitelySmall,andtheLawofContinuity inLeibniz 123 SamuelLevey

7.ContinuityandIntuitioninEighteenth-Century AnalysisandinKant 158 DanielSutherland

8.BolzanoonContinuity

11.WhatIsaNumber?Continua,Magnitudes,Quantities

13.ThePeirceanContinuum

FranciscoVargasandMatthewE.Moore

14.PointsasHigher-OrderConstructs:Whitehead’sMethod ofExtensiveAbstraction

AchilleC.Varzi

15.ThePredicativeConceptionoftheContinuum

PeterKoellner

16.Point-FreeContinuum

GiangiacomoGerla

17.Intuitionistic/ConstructiveAccountsoftheContinuumToday476 JohnL.Bell

18.ContemporaryInfinitesimalistTheoriesofContinuaandTheir LateNineteenth-andEarlyTwentieth-CenturyForerunners

PhilipEhrlich

ListofFigures

1.1.Zeno’sparadox.

4.1.Galileo, Dialogo (1632),229. 84

4.2.Cavalieri, ExercitationesGeometriaSex (1647),4. 87

4.3.Galileo, Discorsi (1638),32. 90

4.4.Galileo, Discorsi (1638),Prop.1,Thm1.165.

4.5.Huygens, Horologium,Prop.V.

5.1.Cavalieri’sindivisibles.

5.2.Cavalieri’sintegrationof‘cossicpowers’.

5.3.Torricelli’squadratureoftheparabolicsegment.

5.4.Torricelli’s‘paradoxofindivisibles’.

5.5.Torricelli’scurvedindivisibles.

5.6.Robervalonthequadratureandtangentconstructionforthecycloid.

5.7.Wallisandthequadratureofthecubicparabola.

6.1.Soritesargument‘transposedtocontinuousquantity’inLeibniz’s Pacidius Philalethi (A6.3.540).

6.2.Leibniz, PacidiusPhilalethi (1676),A6.3.550.

6.3.Leibniz,DQA(1676),Prop6,A7.6.528.

6.4.FigurefromKnobloch(2002),66,forDQAProposition6.

6.5.Leibniz, Cumprodiisset (c.1701),44.

14.1.Anabstractiveclassofconcentricsquaresconvergingtoanidealpoint.

14.2.Anabstractiveclassofconcentricrectanglesconvergingtoanidealline segment.

14.3.Anabstractiveclassofconcentricsquaresandanabstractiveclassof concentriccirclesconvergingtothesamepoint. 357

14.4.Anabstractiveclassofconcentricsquaresandanabstractiveclassof cotangentialcirclesconvergingtothesamepoint.Theformerclasscovers thelatter,butnotviceversa.

14.5.Anabstractiveclassofcotangentialcirclesandtheabstractiveclassof circumscribedsquaresconvergingtothesamepoint.Theformerclass coversthelatter,butnotviceversa. 363

14.6.Theintendeddistinctionbetweentwoconnectedregions(left)andtwo disconnectedones(right). 366

14.7.Acounterexampletotheintendeddistinction.

16.1.Anapparentpoint.

16.2. A and B areexternallytangent.

16.3. A and B areinternallytangent.

16.4. A and B areexternallydiametricallytangentto C

16.5. A and B areinternallydiametricallytangentto C.

16.6. A isconcentricwith B.

16.7.Theexpressivepowerofourlanguage.

16.8.Thefalsityoftriangularinequality.

16.9.LisalmostcontainedinS.

17.1.Functionwithtworelativemaxima.

17.2.Piecewiselinearfunction.

17.3.Microintervals.

17.4.Microneighbourhoods.

17.5.Definingsmoothnaturalnumbers.

18.1.Comparativegraphsofselectrealfunctions.

18.2.Earlystagesoftherecursiveunfoldingofthesurrealnumbertree.

ListofContributors

JohnL.Bell ProfessorEmeritusofPhilosophy,UniversityofWesternOntario

PhilipEhrlich ProfessorEmeritusofPhilosophy,OhioUniversity

GiangiacomoGerla ProfessorEmeritusofLogicandFoundationofMathematics,UniversityofSalerno,Italy

EmmylouHaffner InstitutdeMathématiquesd’Orsay,UniversitéParisSaclay

OrnaHarari AssociateProfessorofClassicsandPhilosophy,TelAvivUniversity

DouglasM.Jesseph ProfessorofPhilosophy,UniversityofSouthFlorida

AkihiroKanamori ProfessorofMathematics,BostonUniversity

PeterKoellner ProfessorofPhilosophy,HarvardUniversity

SamuelLevey ProfessorofPhilosophy,DartmouthCollege

CharlesMcCarty SeniorVisitingFellow,SidneyM.EdelsteinCenter,TheHebrewUniversityofJerusalem

MatthewE.Moore ProfessorofPhilosophy,BrooklynCollege

PaulRusnock Philosophy,UniversityofOttawa

BarbaraM.Sattler ProfessorofAncientandMedievalPhilosophy,Ruhr-Universität Bochum

DirkSchlimm AssociateProfessorofPhilosophy,McGillUniversity

DanielSutherland AssociateProfessorofPhilosophy,UniversityofIllinoisatChicago

EdithDudleySylla ProfessorEmeritaofHistory,NorthCarolinaStateUniversity

FranciscoVargas AssociateProfessorofMathematics,ElBosqueUniversityatBogotá

AchilleC.Varzi ProfessorofPhilosophy,ColumbiaUniversity

Introduction

Theidea(or,perhapsbetter,theneed)forthisvolumebecamecleartouswhen wewereworkingonourmonograph, Varietiesofcontinua:fromregionstopoints andback.1Wedeveopedaninterestinvariouscontemporaryaccountsofcontinuity:theprevailingDedekind–Cantoraccount,smoothinfinitesimalanalysis (orsyntheticdifferentialgeometry),andintuitionisicanalysis.Eachofthese theoriessanctionssomelong-standingpropertiesthathavebeenattributedtothe continuous,attheexpenseofotherpropertiessoattributed.Theintuitionistic theoriesviolatetheintermediatevaluetheorem,whiletheDedekind–Cantorone givesupthethesisthatcontinuaareunifiedwholes,andcannotbedividedcleanly. Thesloganisthatcontinuaareviscous,orsticky.

WeweresurprisedtolearnthatmanyphilosophersandevensomemathematicianstaketheDedekind–Cantorconceptionofcontinuitytobenotonlythe rightone,buttheonlyone.Someweresurprisedtolearnthatthereareanyother notions.Theymayhaveheardsomethingofthehistory,butmanytakeitfor grantedthatwenowhavetheonecorrectaccountofcontinuity.Theoncelongstanding“intuitions”thatsupporttheotheraccountsarenottobetakenseriously (andperhapsnevershouldhavebeen).

Ourviewisthatthereisnosingle,monolithicpropertyofcontinuity.Itis moreofaclusterconceptthatcanbesharpened,anddevelopedrigorously,in mutuallyincompatibleways.Earlyon,wewereledtotheAristotelianideathat continuaarenotcomposedofpoints,orindivisibleparts.Intermsofcontemporarymetaphysics,thethemeisthatcontinuaaregunky:everypartofacontinous substancehasaproperpart.This,ofcourse,isnotsanctionedinthecontemporary Dedekind–Cantoraccountnor,arguably,intheintuitionisticaccountseither (dependingonwhatcountsasa“point”inthosecontexts).

Thebulkofourprojectin Varietiesofcontinua wastodevelopvariousgunky, orpoint-free,accountsofcontinuity:one-dimensionalandtwo-(andthree-…) dimensional,Euclideanandnon-Euclidean,withactualinfinityandwithoutactual infinity(anotherthemederivedfromAristotleandmaintainedfortwomillennia).

1 Oxford,OxfordUniversityPress,2018.

StewartShapiroandGeoffreyHellman, Introduction In: TheHistoryofContinua:Philosophical andMathematicalPerspectives.Editedby:StewartShapiroandGeoffreyHellman,Oxford UniversityPress(2021).©StewartShapiroandGeoffreyHellman. DOI:10.1093/OSO/9780198809647.003.0001

Wewentontocomparetheseaccountswiththeircontemporarycounterpartson variousmathematical,logical,andmetaphysicalgrounds.

Althoughitisobviousthatmathematicalandphilosophicalthoughtabout thecontinuousdevelopedconsiderablyovertheages,wecouldnotfindany comprehensivetreatmentofthishistory.2Sothetimeisrightforsuchaproject. Thetwoofushaveadeepinterestinthehistoryofphilosophyandmathematics, butwearenotscholarsintheseareas.Soaneditedvolumeseemedtheright coursetofollow.PeterMomtchiloff,fromOxfordUniversityPress,enthusiastically receivedourproposal,andwasverygenerousconcerningcontentandlength.The presentvolumeistheresult.

Ourideathatavolumeonthistopicismosttimely,andmostneeded,musthave beencorrect,judgingfromthestellargroupofscholarswewereabletorecruit. Theyareamongthetopresearchersineachperiodthatiscovered.Atonepoint, earlyon,someonesuggestedthatwekeepthisprojectquietforatime,sothatwe wouldnotbe“scooped”bysomeoneelse.Ourreplywasthatwewould,ofcourse, welcomemoreworkinthisarea,butwecouldnotseeanyonecomingupwitha lineupanywherenearasgoodastheonewehavehere.

Thepapershereallspeakforthemselves,andthereadercandeterminethe contentofeachfromitstitleanditsplaceinthevolume.Sowewillrestcontent herewithaverybriefremarkoneachpaper.

WebegininancientGreece.BarbaraSattler’scontributionconcernsthemetaphysicalandnaturalphilosophythatunderliestheancientdiscussions,arguing thatthemathematicsisalesscentralconcern.Themainfocusis,ofcourse, Aristotle,andhisprecursors,notablyParmenidesandZeno.Acentralthemeofthe paperisAristotle’sresponsetoZeno’sparadoxes.3OrnaHararicoverstheperiod inantiquityafterAristotle,focusingprimarilyonAlexanderofAphrodisias.The closelookatoneofAristotle’ssuccessorshelpsilluminatebothaccounts.Edith DudleySyllaturnstothemedievalperiod.Hermainfocusisa(relatively)recently discoveredmanuscript,byThomasBradwardine,anditsrelationtomedievalviews before,during,andafterBradwardine’stime.Manyoftheissuesunderdebate todaywereprevalentthen.

Nextistheso-calledearlymodernperiod,whenmathematiciansdevelopedthe calculusand,withthat,theriseofinfinitesimaltechniques.Ineffect,continuous magnitudesaretreatedasinfinitesumsofindivisibleelements,eachofwhichis infinitelysmall.Thephilosophicalissuesdominatedthinkingduringthatperiod. WearedelightedtohavetwocontributionsbySamuelLevey.Thefirstison GalileoGalilei,whoseentrytothethemeofthecontinuumistheanalysisof

2 Thereis Infinityandcontinuityinancientandmedievalthought, editedbyN.Kretzmann(Ithaca, CornellUniversityPress,1983).

3 WemightaddthatBarbara,andhercolleagueSarahBroadie,weremosthelpfultousinourwork on Varietiesofcontinua, aidingusinunderstandingthemainAristotelianthemes.Weeagerlyawait Barbara’sforthcomingbookonAristotleoncontinuity.

continuousuniformandacceleratedmotion,acommonconcernofmathematicians,scientists,andphilosophersduringthismostfascinatingera.Levey’ssecond contributionisonGottfriedWilhelmLeibniz,whowasprofoundlyinfluencedby Galileo.Leibnizfamouslydubbedthecontinuuma“labyrinth”.Thereasonforthis is,inlargepart,that“thediscussionofcontinuityandoftheindivisiblesthatappear tobeitselements”requires“considerationoftheinfinite”.Inbetweenthesetwo papers,thereisonebyDouglasJesseph,whofocusesattentiononBonaventura Cavalieri,whosementorwasGalileo.Cavaliericontributedgreatlytotheso-called “methodofindivisibles”thatformedthebasisfortheinfinitesimaltechniques developedbyLeibniz,Newton,andothers.

DanielSutherland’sarticleturnsthereader’sattentiontoImmanuelKant,and theroleandplaceofcontinuityandintuitionineighteenth-centuryanalysis.It focusesonissuesraisedbycontinuityfortherepresentationoftheinfinitelysmall and,inparticular,onthestatusofgeometricalandkinematicrepresentations.

PaulRusnockcoversBernardBolzano,afascinatingfigureoftheearlynineteenthcentury.Bolzanowasoneofthefirstimportantmathematiciansand philosopherstoinsistthatcontinua are composedofpoints,andhemadeaheroic attempttocometogripswiththeunderlyingissuesconcerningtheinfinite.

Nextuparethetwofiguresmostresponsibleforthecontemporaryhegemony. AkihiroKanamoricoversGeorgCantor.ThisarticleprovidestherichmathematicalandhistoricalbasisforCantor’sinitialworkonlimitsandcontinuityand ascentfromearlyconceptualizationstonewones,frominteractiveresearchtosolo advance.Cantorproceededtomoreandmorespecificresults,justashedeveloped moreandmoresettheory.

EmmylouHaffnerandDirkSchlimmcoverRichardDedekind,providinga detailedviewofbothfoundationalandmathematicalaspects.Dedekind,ofcourse, characterizedthepropertyofcontinuityfortherealnumbersintermsofwhat arenowcalled“Dedekindcuts”ontherationalnumbers—thuspresupposingthat continuaarecomposedofpoints,orpoint-likeelements.HaffnerandSchlimmgo ontoconsidersomeofDedekind’smoremathematicaltreatmentsofcontinuity, notablythedefinitionoftheRiemannsurfaceinhisjointworkwithHeinrichWeber(1882).TheyshowhowDedekind’sapproachesbecameincreasinglyabstract, whileatthesametimeretainingacommonmethodology.

WehavetwooutstandingcontributionsbyCharlesMcCarty.Thefirstuses alucidanalysisofthemathematicianPaulduBois-Reymondtoarguefora constructiveaccountofcontinuity,inoppositiontothecontemporaryDedekind–Cantordominance.McCarty’ssecondpaper,anicecompaniontothefirst,treats HermannWeyland,moreimportantly,L.E.J.Brouwer.

FranciscoVargasandMatthewE.MoorecoverCharlesSandersPeirce,who oncedubbedthenotionofcontinuity“themaster-keywhich…unlocksthearcana ofphilosophy”.Roughly,Peirce’saccounthasitthatacontinuoussubstancehasa lotmorepointsthanaregionofDedekind–Cantorspace—ineffectthereisno

setofallsuchparts.VargasandMoorecoverthedefiningfeaturesofPeirce’s mathematicaltheoryofcontinuity,givingamodelforthattheoryinZermelo–Fraenkelsettheory.TheygoontosummarizePeirce’sownattemptstoputhis conceptionintoarigorousform.

AlfredNorthWhiteheadisknownforpresentingapoint-free,orgunky,account ofcontinuity,andheshowedhowtorecoverpointsasakindof“extensiveabstraction”,alimitofsetsorsequencesofregions.⁴AchilleVarzipresentsWhitehead’s variousattemptsalongtheselines.

EachofthefinalfourpapersinthevolumepresentsamoreorlesscontemporarytakeoncontinuitythatisoutsidetheDedekind–Cantorframework.Peter Koellnergivesusanaccountbasedonpredicativity—therejectionofimpredicative definitions—derivedfromtheworkofHenriPoincaré,BertrandRussell,Hermann Weyl,and,especially,SolomonFeferman.Sofarasweknow,allotherviewstake acontinuoussubstance,likespaceorspace-time,tobegivenasawhole,inits entirety.IncontrasttotheDedekind–Cantorviews,manytheorists(Aristotle, mostofthemedievalwriters,Leibniz,Kant,…)insistthatthepartsofacontinuous substanceconstituteapotentialinfinity:ourabilitytocarveoutanddescribe partsofcontinuaisonlypotential,inthesensethatthereisnocompletedtotality ofallsuchparts.Adistinctivefeatureofthepredicativistviewisthatittakesa continuumtobeitselfpotentialwhile—atleastaspresentedrigorouslybythe leadingproof-theoristSolomonFeferman—usingclassicallogic(butnotmodal logic).ThisseemstobetheresultofacceptingsomeaspectsoftheDedekind–Cantorpicture.Roughly,(1)wethinkofaline,say,asacollectionofpoints;(2) wethinkofthepointsasrealnumbers(asinanumber-line);and(3)wethink ofarealnumberasasetofnaturalnumbers.Butwetheninsistthatallsuchsets mustbedefinedinapredicativemanner.Sothecontinuum(orthiscontinuum)is producedinstages:aswedefinesomesetsofnaturalnumbers,wearethenableto definemoresuchsets,andthereisnostagewhereallsuchsetshavebeen,orcan be,defined.

GiangiacomoGerlapresentsasurveyofcontemporaryaccounts(including Varietiesofcontinua)thatdonottakecontinuatobecomposedofpoints.Henotes thatacentralissue,ineachcase,istorecoverthenotionofbeingapoint,typically viasomesortofabstractioninthemouldofWhitehead’sextensiveabstraction.

JohnBellcoverscontemporaryaccountsofcontinuitythatinvokeintuitionistic logic.Mostbecomeinconsistentifageneralizedversionofexcludedmiddleis imposed.Acentralconcernistheextenttowhicheachaccountsanctionsa longstandingintuitionthatcontinuaarewholes,andcannotbedividedcleanly.As notedabove,this“indecomposibility”islostontheDedekind–Cantoraccounts.

⁴ Similartechniquesareusedinour Varietiesofcontinua.

Indeed,suchaccountsviewacontinuumasasetofpoints.Withclassicallogic, eachsubsethasacomplement.

PhilipEhrlichprovidesarichpresentationoftheoriesthat,unlikethe Dedekind–Cantoraccounts,accepttheexistenceofinfinitesimals.Suchaccounts thusviolatetheArchimedeanprinciple,adoptedinbothAristotleandEuclid, butthepayoffisconsiderable.Ehrlichshowshowsuchaccountsderivefrom forerunnersfromthelatenineteenthcenturyandtheearlydecadesofthetwentieth century.

DivisibilityorIndivisibility

TheNotionofContinuityfromthePresocratics toAristotle

1.Introduction

Whilemathematicalpracticeinancienttimesprovidedsomeinspirationforthe debateaboutcontinuityinearlyGreekthinkinguptothetimeofAristotle, mathematicsisnotwherethemaindebate—asfarasithasbeenhandeddown tous—happens.Rather,thediscussionaboutcontinuityisadebatewithinmetaphysicsandnaturalphilosophy.Wewillseethatthemainthinkerstocontribute tothedevelopmentofanunderstandingofcontinuityareParmenides,Zeno, andAristotle.Andwhileamodernunderstandingofcontinuitymayseemtobe essentiallyanti-Aristotelian,1Aristotlewillprovetobethethinkerwhoprepared manyofthecrucialfeaturesofamodernaccountofcontinuity.2

ThemainpointofcontroversyaboutcontinuityinearlyGreektimesis divisibility,asthischapteraimstoshow.Allpartiestothisdisputeagreethatmagnitudes whicharecontinuous(suneches)arehomogeneousandwithoutanygaps.3They disagree,however,onwhichinferencestodrawfromthisforthepossibilityof divisibility—whetheritimpliesdivisibilityorindivisibility.

Thefirstphilosophicallyinterestingandsystematicusageofthenotionof continuitywefindinParmenidespoem.Heunderstandsbeingcontinuousas beingcompletelyhomogeneousandwithoutanydifferences.Parmenidesinfers fromthelackofanydifferencesthatwhatiscontinuousisalsoindivisible,since whatiscompletelyhomogeneousdoesnotprovideany(sufficient)reasonforitto bedividedanywhere;thusitisnotdivisible.

1 ForanotableexceptionofamodernconceptionofthecontinuumthatisinspiredbyAristotle,and thuseitherassumesnopointsasbasicconstituents,orevennoactualinfinity;seeLinnebo,Hellman, andShapiro2016andHellmanandShapiro2018.

2 Evenifnotoriouslyherejectstheassumptionofanactualinfinity,seeespecially Physics bookIII.

3 Gaplessnessishereusedinanintuitivesenseasbeingwithoutanyholes,interruptions,orsudden changes;notinthemodernmathematicalsenseintermsofcompletenessaccordingtowhichrational numbersdonotformacontinuum,whilerealnumbersdo.

BarbaraM.Sattler, DivisibilityorIndivisibility:TheNotionofContinuityfromthePresocraticsto Aristotle In: TheHistoryofContinua:PhilosophicalandMathematicalPerspectives. Editedby:StewartShapiroandGeoffreyHellman,OxfordUniversityPress(2021). ©StewartShapiroandGeoffreyHellman.DOI:10.1093/OSO/9780198809647.003.0002

ZenowillbeshowntostrengthenParmenides’understandingofcontinuity, bydemonstratingthatwewouldgetintoinconsistenciesifweweretoassume divisibility:giventhattherearenointernaldifferencesthatcouldgiverisetoany division,ifweassumedwhatiscontinuoustobedivisibleatanyparticularpoint, thenitseemsitcouldbedividedeverywhere.Butifitcanbedividedeverywhere, thepartswewouldthusderivecannotbethoughtofconsistentlyaccordingto Zeno,aswewillseebelow.

Bycontrast,Aristotleembracestheideaofcontinuaasbeingdivisibleanywhere, whichhetakesupfromtheactivityofthemathematiciansofhistime.While geometersofthistimepresupposethemagnitudestheydealwithtobedivisible anywhere,interestinglytheydonotdiscusscontinuityinthemathematicaltexts handeddowntous.Wefind,however,afulldiscussionofthisnotionasappropriatedfornaturalphilosophyinAristotle’s Physics,anddivisibility adinfinitum isacrucialfeature.AristotlereactstothedivisibilityproblemraisedbyZeno’s paradoxeswithacomplexoflogicaltools:heshowsthattheseproblemscanbe avoidedwiththehelpofanewunderstandingofthepart–wholerelationship,a two-foldunderstandingoflimits,anewunderstandingofthenotionofinfinity, andacarefuldistinctionbetweenactualdivisionandpotentialdivisibility.

2.Parmenides’AccountofContinuity

TheGreektermforbeingcontinuous, suneches,literallymeans‘holdingtogether’. Wewillseethatthisholdingtogethercanbeunderstoodinratherdifferentways— thingsaretemporallyuninterrupted,spatiallyconnected,orontologicallyholding together.InGreekliteraturebeforeParmenides,thewordsunechesrefersmainlyto uninterruptedactivity⁴andassuchimpliesacertaintemporalextension(twodays ortenyears)duringwhichthisactivitytakesplace.WithParmenides,however, beingcontinuousnolongerreferstoanactivity,butrathertoanontological feature:beingcontinuousisacharacteristicofwhattrulyorultimatelyis(toeon, Being),whichistheonlythingthatcanbethoughtconsistently.⁵Whattrulyishas nothingtodowithanykindofactivity;indeed,Parmenidesexplicitlyclaimsthat itisunmovedorunmovable.⁶

ForParmenides,beingcontinuousimpliescompletehomogeneityand,ultimately,indivisibility.Threepassagesfromfragment8ofhispoemsetoutParmenides’notionofcontinuityinparticular.

⁴ See,forexample, Odyssey IX,lines74–75(“therefortwonightsandtwodayscontinuouslywelay, eatingourheartsforwearinessandsorrow”),orHesiod, Theogony 635–636(“they,withbitterwrath, werefightingcontinuallywithoneanotheratthattimefortenfullyears”).Formoredetails,cf.Sattler 2019,onwhichtheParmenidespartofthepaperdraws.

⁵ ForanaccountofhowtounderstandwhattrulyisaccordingtoParmenides,seeSattler2011.

⁶ Theverbaladjective akinêton canindicateeitherapossibility(unmovable)orapassiveresulting state(unmoved).

2.1BeingContinuousExcludesAnyTemporalDifferences

Infragment8,lines5–6,Parmenidesclaimsthat“neitherwasit[whattrulyis]nor willitbe,sinceitisnowalltogether,one,continuous”.Being“nowalltogether,one, continuous”isnamedasthereasonwhytemporaldifferencesthatarecapturedas “was”and“willbe”cannotbesaidofwhattrulyis.“Whatwasandwillbe”seemto bethethingswedealwithinoureverydayworld(whichforParmenidescannotbe objectsofknowledgebutarewhatweordinarymortalsrefertoinouropinions). Thesethingsarespreadouttemporally:theyweretherein(somepartof)thepastor willbetherein(somepartof)thefuture.Bycontrast,whattrulyis,isnotsubject tothesetemporaldifferences,because,accordingtoParmenides,itisaltogether now,one,continuous.Itis now—thishasbeenunderstoodeitherasindicating atemporality,beingbeyondtime;⁷orasindicatingsomepresentthatwecannever addressaspastorfuture.⁸Inbothcases,‘now’cannotbetemporallyextendedifit istobestrictlydistinguishedfromwasandwillbe;otherwisetherewillbeatime whenitwouldberighttosayofitthatitwasorthatitwillbe.⁹Soaccordingto thefirstpassage,Parmenidesdeniesthatwhattrulyisisextendedintimeinthe wayeverydayperceptiblethingsare;itis continuous inthesenseofnotallowing foranytemporaldifferences,likewasandwillbe.Being“nowalltogether”, “one”,and“continuous”thuspreventswhattrulyisfrombeingstretchedout intime.

2.2BeingContinuousImpliesBeingHomogeneous,FullofBeing, andNoMoreorLess

Inlines22–25Parmenidesmakesitclearthatbeingcontinuousexcludesnotonly temporaldifferences,butalsootherkindsofdifferences:

(1) Anditisnotdivisiblesinceitisallhomogeneous.1⁰

(2) Norisitmoreanywhere(oratanypoint),whichwouldpreventitfrom beingonecontinuous,norless,butitisasawholefullofbeing.

⁷ SeeOwen1966;similarlyMourelatos2008,pp.105–107.

⁸ SeeCoxon2009,p.196,whounderstandsitas“totalcoexistenceinthepresent”.Anditneeds tobeapresentthathasneithercomeintobeingnorwillpassaway,sinceParmenidesarguesagainst generationforwhattrulyis.

⁹ Somescholarshavereadthe‘now’asindicatingeternaltemporalduration,forexample,Tarán 1965,p.179,Gallop1984,p.15,andPalmer2009;cf.alsoSchofield1970.Foracritiqueofthisreading, seeSattler2019.

1⁰ Oudediaireton couldeithermean‘notdivisible’or‘notdivided’.SinceParmenidesseemsto deducenecessaryfeaturesofwhattrulyisinfragment8,‘notdivisible’seemstobethemoreappropriate translation.

(3) Throughthatitisallcontinuous,forBeingisincontactwithBeing(fr.8, lines22–25).

ThefirststepinthisargumentclaimsParmenides’Beingtobeallhomogeneous; thisimpliesbeingindivisible.Thesecondsteprulesoutthatitismoreorless—a conditionthatwouldpreventitfrombeingcontinuous.Instead,itisasawhole fullofbeing,whichseemstomeanequallyfull,neithermorenorless.Thelastpart ofthethirdstep,“BeingisincontactwithBeing”,pointsoutthatallofBeingis connected,andso,presumably,thereisnothinginbetweenanywherethatisnot Being,whichwouldunderminethehomogeneityofwhattrulyis.Letusclarify thesenseinwhichthecontinuityreferredtohereshouldbeunderstoodandhow itrelatestobeinghomogeneous.

Thefirstpartofthethirdstep,“throughthatitisallcontinuous”,readsasa conclusion—whatprecedesthusshouldexplainwhywhattrulyisisallcontinuous.11Thefeatureswearegivenin(1)and(2)thatshouldguaranteecontinuityare thatitisnotdivisible,itisallhomogeneous,itisnotmoreanywherenorless,and itisasawholefullofbeing.Whatisimportantforushereisthatbeingcontinuous includesallthesefeatures.Accordingly,beinghomogeneous(homoion)isaweaker notionthanbeingcontinuous,sincebeingcontinuousmeansbeinghomogeneous plusfulfillingsomefurthercriteria.TheGreekword homoion basicallymeans‘of thesamekind’.12Thus,being homoion hereseemsnaturallyunderstoodasbeing homogeneousandonewithrespecttokindorgenus—whattrulyisisnotdivisible intodifferentkindsorgenera.Thiswouldstillleaveopenthepossibilityofother, internaldifferences,likequantitativeorqualitativedifferences,whichareatleast inpartexcludedwiththefollowinglinesthatthereisno‘moreorless’thatwould preventBeingfrombeingcontinuous.

Beingcontinuoushasbeenunderstoodinverydifferentsensesinthispassage— inatemporal,spatial,ontological,andlogicalsense.13Forthetimebeing,I willsimplysuggestthatbeingcontinuousnotonlyimpliesindivisibilityinkind andgenus,butalsoexcludessomeotherkindofdifferences(betheytemporal,spatial,ontological,orlogical);thenextpassagewillbringmoreclarityon thisquestion.

11 Thefollowingclause,“BeingisincontactwithBeing”,iseitherasummaryorreformulationof (1)–(2),or,asissometimesthecasewithParmenides,anadditionalreasonthatisonlyprovidedafter theconclusion.

12 Seealso,forexample,Mourelatos2008,pp.113–114,131andTarán1965.

13 Forexample,Owen1960,pp.96–97understandsittemporally;Schofield1970,pp.132–134takes itinaspatialsense;Tarán1965,pp.106–108understandsitontologically;andCoxon2009,pp.325–326suggestsalogicalsense.Sincethetemporaldifferencesweencounteredinfragment8,lines5–6 weredifferencesoftenseandthuscompletelydifferentfromdifferencesof‘morenorless’,itwouldbe strangeifthesetemporaldifferenceswerenowtakenupby‘moreorless’.

2.3ConditionsThatWouldPreventContinuity

Inlines43–49Parmenidesspellsoutconditionsunderwhichwhattrulyiswould nolongerbecontinuous:whatwouldpreventitfrombeingcontinuouscouldbe eithernon-BeingoranunequallydistributedBeing.Theformerwouldleadtoit beinglargerorsmallerhereorthere,thelattertomoreorlessBeing.Butsincethere isnonon-Being1⁴andnotmoreofBeinghereandlessthere,1⁵thecontinuityof Beingasawholeisgranted.Theexplicitaimoftheselinesistodemonstratethe completenessofwhattrulyis;butpartofitscompletenessconsistsinitsbeing continuous.1⁶

While“largerandsmaller”suggestquantitativedifference—itiswhatwewould callquantitiesthatarelargerorsmaller—“moreorless”couldalsocoverqualitative differences(forexample,moreorlesshotness,blueness,etc.).Accordingly,itseems plausiblethatParmenideswantstoruleoutwhatwewouldcallquantitativeas wellasqualitativedifferenceshere—notanyspecificquantitativeandqualitative differences,butratherquantitativeandqualitativedifferencesingeneral.1⁷

Summingupthediscussionofallthreepassages,wecansaythatbeingcontinuousforParmenidesrequiressomethingtobehomogeneousandtoexcludeany kindsofdifferenceswhichcanbefurtherspecifiedasfollows:temporaldifferences, aswellaswhatwemaytermqualitativeandquantitativedifferences.Thenecessary resultofcontinuitythusunderstoodis indivisibility.ForParmenidesseemsto assumethatadivisionispossibleonlywherethereisinhomogeneityandthus differences—ifsomethingisdivisiblethenitmustbedivisiblebyvirtueofa differencewithinitselfsuchthatonepartofitcanbeseparatedfromthepartfrom whichitdiffers.ButsinceforParmenideswhatiscontinuousishomogeneousin everyrespectandexcludesdifferences,itisnecessarilyindivisible.1⁸

3.Zeno’sParadoxes:NegativeConsequencesof InfiniteDivisibility

Parmenidesarguesforwhatiscontinuoustobeindivisible.Zenostrengthens Parmenides’understandingofcontinuitybyshowingthenegativeconsequences theassumptionofdivisibilitywouldhave:itwouldundermineanystrongnotion ofunity,andthepartsofsuchadivisioncouldnotbeconsistentlythought.

1⁴ Asshowninfragments2,6,and7. 1⁵ Asdemonstratedinlines22–25.

1⁶ Whiletheword suneches isnotmentioned,thediscussionsofarshowsthatthispassagesystematizestheconditionsthatwouldpreventsomethingfrombeingcontinuous.

1⁷ Ofcourse,itisnotobviousthatParmenideswouldhavedistinguishedbetweenqualityand quantityinthewayfamiliartousatleastsinceAristotle;butheclearlyexcludestwodistinctkinds ofdifferencesthatwemaycaptureasquantitativeandqualitative.

1⁸ SeeSattler2019forsupportofthisclaim.

Letusstartwithabrieflookatthechallengedivisibilityseemstoposeforan understandingofunityaccordingtoZenoinfragments1and2:1⁹

Fragment1:

AndThemistiussaysthatZeno’sargumenttriestoprovethatwhatis,isone,from itsbeingcontinuousandindivisible.‘For’runstheargument,‘ifitweredivided, itwouldnotbeoneinthestrictsensebecauseoftheinfinitedivisibilityofbodies.’ Fragment2:2⁰

For,heargues,ifitweredivisible,thensupposetheprocessofdichotomytohave takenplace:theneithertherewillbeleftcertainultimatemagnitudes,which areminimaandindivisible,butinfiniteinnumber,andsothewholewillbe madeupofminimabutofaninfinitenumberofthem;orelseitwillvanish andwillbedividedawayintonothing,andsobemadeupofpartsthatare nothing.Bothofwhichconclusionsareabsurd.Itcannotthereforebedivided, butremainsone.Further,sinceitiseverywherehomogeneous,ifitisdivisibleit willbedivisibleeverywherealike,andnotdivisibleatonepointandindivisibleat another.Supposeitthereforeiseverywheredivided.21 Thenitisclearagainthat nothingremainsanditvanishes,andsothat,ifitismadeupofparts,itismade upofpartsthatarenothing.Forsolongasanyparthavingmagnitudeisleft,the processofdivisionisnotcomplete.Andso,heargues,itisobviousfromthese considerationsthatwhatisisindivisible,withoutparts,andone.

Theseparadoxesclaimthatifweassumesomeonethingtobedivisibleandthus tohaveparts,thisonewillnotbeoneinastrictsenseanylonger.Itrestsonthe backgroundassumptionthatifitweredivisible,itwouldhavepartsandthusit wouldnotonlybeone(whole),butalsoatthesametimemany(parts).Thisis, however,impossible,sincebeingoneandmanyaremutuallyexclusivenotionsfor theEleatics,asZenomakesclearinfragment8.22Henceassumingdivisibilityleads tothecontradictoryresultthatoneisalsomany.Onlyifouroneiscontinuousand thusindivisiblewillwebedealingwithwhatisreallyone.

Furthermore,theassumptionthattheoneisdivisibleanddividedeverywhere alsoshowsthatwecannotconceivethesepartsinanyconsistentway(ashemakes clearinthepluralityparadoxinfragment2justquoted).Avariantofthisproblem canalsobeseenwithoneofZeno’sprobablymorefamousparadoxes,hisfirst

1⁹ IamusingH.D.P.Lee’s1967editionofZeno’sfragments,sinceitismoreencompassingthan Diels/Krantz;Iwillalsousehistranslations.Fragment1inLeeisfoundinSimplicius, Physics 139.19–22;fragment2inSimplicius, Physics 139.27ff.ThediscussionofZenodrawsfromSattler 2020b,ch.3.

2⁰ Porphyryattributesfragment2toParmenides,butAlexanderandSimpliciusthinkitmorelikely byZeno;cf.alsoLee1967,p.12.

21 ThissentencedemonstratesZeno’smovefromdivisibilitytobeingdivided—acentralpointin Zeno’sparadoxesthatwillbeattackedbyAristotle.

22 Leefragment8=DK29A21.

paradoxofmotion.Accordingtothisparadox,ifsomethingmovesoveracertain distance,forexamplearunnerwantstocoveracertainfinitetrackABinafinite timeFG,shefirsthastocoverhalfofthisdistanceAC(Figure1.1).Butbefore therunnercancoverthedistanceAC,shemusthavecoveredalreadyhalfofthis distance,AD,andbeforethat,halfofthishalf,AE,etc.Soshewillhavetopassan infinitenumberofspatialsegmentsbeforereachingtheend.23

Thisseeminglysimpleparadoxraisesseveralproblems,buttheonlyonethat concernsushereisthatitseemstoshowthatbycoveringa finitedistance,arunner hastopassaninfinitenumberofspatialsegments,which,accordingtoZeno,cannot bedone.

Zeno’sparadoxesstrengthenParmenides’understandingofcontinuity,by demonstratingthatevenifweweretoleaveParmenides’positiontotheside, divisibilitystillseemstogetusintoinconsistenciesforthefollowingreason:given thattherearenointernaldifferencesthatwouldaccountforanydivision,ifwe assumewhatiscontinuoustobedivisibleatanyparticularpointthenitseemsto bedivisibleanywhere—aswejustsaw,thefiniteracetrackseemstobedivisible ad infinitum.Butifitisdivisibleanywhere,itseemsitcanbedividedeverywhere.2⁴ Thepartswewouldthusderiveare,however,problematicaccordingtoZeno(as wesawinfragment2).Foreitherweassumethattheprocessofdivisioncangoon withoutanyrestrictions,inwhichcasethepartseither(1)havetobedivideduntil thereisnothingleft;thenwewillhavetoassumethatthesepartsofnilextension makeupanextendedwhole,whichZenoclaimstobeabsurd.Or(2)theseparts havesomeextension,butthisonlymeansthatthedivisionisnotcompleteyet, sincethesepartswouldinprinciplebefurtherdivisible,andthepartsarethus undetermined.

Alternatively,theprocessofdivisioncannotgoonforever,but,atacertainpoint, reachessomethinglikeindivisibleminima.Then(3)theonefinitewholewillbe madeupofinfinitelymanyextendedminima,whichaccordingtoZenoisnot thinkable.Wemaybepuzzledwhyheassumesinfinitelymanyminimainthiscase. Fragment11suggestsananswerbypointingoutthatifthereisaplurality,ithasto

23 InAristotle’s Physics 263a4–11thisparadoxispresentedintwoforms,whichinaccordancewith thesecondaryliteraturecanbecalled‘progressive’and‘regressive’.Theregressivevariantisjustthe givenstateofaffairs,whiletheprogressiveformassumesthataftertherunnerhascoveredthefirsthalf, shethenagainhastocoverthefirsthalfoftheremainingdistanceandthenagainthefirsthalfofthestill remainingdistance,etc.However,inlogicalterms,bothversionsareequivalent.Foramoredetailed discussionofthisparadox,seeSattler2020b,ch.3.

2⁴ Themovefrombeingdivisibleanywheretobeingdividedeverywherewillbequestionedby Aristotle.

Figure1.1 Zeno’sparadox.

bebothfinite(thenumbertheyare)andinfinite(forinorderfortheretobetwo separatethings,therealwaysneedstobesomeotherthirdthinginbetween,and anotherfourththingbetweenthesecondandthird,etc.).

WeknowthatinfactallthreeavenuesconsideredbyZenotobeabsurdhave beenpursuedbythetraditiontofollow,thelastone,inmodifiedform,bythe atomists,thesecondonebyAristotle,andthefirstonebymodernmathematics.2⁵

ForZeno,however,assumingdivisibilityofwhatiscontinuous2⁶leadstotwo majorproblems:suchacontinuouswholewouldonlybeoneinaweaksense,as itwouldbemanypartsatthesametime,andallpossibilitiesofconceivingofsuch partsleadtoabsurdities.Accordingly,whatiscontinuoushastobeindivisiblefor theEleatics.2⁷

4.AMathematicalConceptionofContinuity

Whileourcontemporaryunderstandingofcontinuitydevelopedwithinthefield ofmathematics,sofarwehaveseenthatfortheearlyGreeksthenotionwas discussedwithinthearenaofmetaphysicsandnaturalphilosophy.2⁸Surprisingly, wedonotfindadiscussionorexplicitdefinitionofcontinuityassuchinthe mathematicaltextshandeddowntousfromthetimebeforeorjustafterAristotle. AlsoinEuclid,ourbestmathematicalsourceclosetothetimeofAristotle,the term suneches isnotdefinedandnotveryoftenused.2⁹Nevertheless,wefind clearindicationsthatcrucialfeaturesofthemostprominentunderstandingof continuitylateroncanbefoundwiththemathematicians,asthefollowingpoints suggest.Thereareacoupleofpassagesinthe Elements inwhichEuclidusesthe term suneches asbeingsuccessiveinthewaycontinuouslinesare.3⁰Inthese passages, suneches seemstobeunderstoodastwo-place—onestraightlineiscontinuouswithanotherstraightline.Butthereisalsoaone-placeunderstandingof continuaasbeinginfinitelydivisible,whichispresupposedgenerallyingeometricalconstructions:geometershavetounderstandtheirgeometricalobjects—lines,

2⁵ Grünbaum1968,forexample,adoptsthisfirstroute,thattheextendedwholewouldhavetobe madeupofunextendedparts,andpointsoutthatthereisawaytoallowforsuchpart–wholerelations inmathematics,wherealine,andthussomethingextended,isunderstoodtoconsistofextensionless parts.Sinceextensionissimplyafeatureofthesetmakinguptheline,notofanyoftheindividual membersofthisset,thereis,accordingtoGrünbaum,noparadox.AndGrünbaumsimplyassumes thatthesameholdsinthephysicalrealm.Itisnotclear,however,thatwhatholdstrueofmathematical thingscanalsobesaidofphysicalthings—thatanextendedphysicalthingcan consist ofunextended physicalpartsandthatthisisnotjustamathematical description.

2⁶ WesawthatforZenothismeansassumingunrestricteddivisibility,sincethereisnomorereason toassumeadivisionhereratherthanthere.

2⁷ Thereareacoupleofphilosopherswhodealwithsomenotionof suneches betweenZenoand Aristotle,suchasPhilolaos,Gorgias,andAnaxagoras,butIdonothavespacetodiscussthemhere.

2⁸ Thefollowingsection,aswellassections5and6,drawonSattler2020b,ch.7.

2⁹ Andmostofthetimethetermreferstoacontinuedproportion—toacontinuousratioasin Elements bookVIII,proposition8.

3⁰ As,forexample,inbookI,postulate2,orbookXI,proposition1.

surfaces,andsolids—asmagnitudesthatarealwaysfurtherdivisibleandthus divisiblewithoutend.31Thisbecomesclear,forexample,fromthediscussionof theanonymoustreatise OnIndivisibleLines,wherethereplytothepostulateof indivisiblelinesfrequentlyreliesontheassumptionthatmathematicianstreat theirgeometricalobjectsasbeingalwaysfurtherdivisible.32Whilenotexplicitly discussed,thisideaofmagnitudesbeingdivisiblewithoutendseemstohavebeen takensomuchforgrantedbymathematiciansthattheydonothavetopayit anyspecialattention.Itisclearthatwhentheyassumecrossinglinesandsimilar constructions,thereisnoreflectionofatomisticworries,suchasthatalinecrossing anotherlinewouldneedtogobetweentwoatoms;ratherinfinitedivisibilityjust seemstobepresupposed.Finally,alsoAristotleclaimsthemathematiciansto understandmagnitudesinthesenseofbeinginfinitelydivisibleinhisdiscussion oftheinfinitein Physics bookIII.33

Weseethatthemathematicalunderstandingofmagnitudesiscruciallydifferent fromtheEleaticnotion.WhilethemathematiciansseemtosharetheEleatic assumptionthatbeingcontinuousimpliesbeinghomogeneous—forthemathematiciansthismeansthateachpossiblepartofacontinuousmagnitudeistreated alike—theinfinitedivisibilityofthemathematicalcontinuumistheveryopposite oftheindivisibilityParmenidesassumed.3⁴Themathematicalunderstandingof continuityinthesenseofinfinitedivisibilityispresupposedbyanygeometrical operationthatinvolvesthemathematicalbisectionofaline,surface,orbody.3⁵

ForhisphysicsAristotlecantakeupthisimplicitunderstandingofmagnitudes fromthemathematicians,3⁶eveniftheydonotprominentlycaptureitwiththe term suneches.Aristotle’saccountofcontinuitythusseemstocombineEleatic terminologywithareflectiononGreekmathematics.3⁷

31 Fromacontemporarypointofview,wemayaskwhetherthisunderstandingofgeometrical magnitudesasbeingalwaysfurtherdivisiblewouldmapontotherealnumbers,astheDedekindCantorcontinuumdoes,oronlyontotherationalnumbers.Sodoestheinfinitedivisibilitysimply meanthatwecouldinprinciplemakeinfinitelymanycuts(whichwouldbethecasewiththerational numbers),ordoesitmeanthatwecandivideitexactlywhereverwewant,evenat,letussay, �� (for examplewiththehelpofacirclethatwerollalongthelinewewanttocut)?

32 See DeLineisInsecabilibus 969b20ff.

33 203b17–18.Andin Physics 200b18–20Aristotlereferstoexistingaccountsofbeing suneches as beinginfinitelydivisiblethatarelikelytobemathematicalaccounts,cf.Sattler2020b,ch.7.

3⁴ Zenoattackstheassumptionofinfinitedivisibilityinhisparadoxes,butwedonothavethetextual evidencetosaywhetherthemathematiciansrespondedtothisattack,orsimplyignoredZeno,or perhapsdidnotfeelattackedbecauseZenoshowedinfinitedivisibilitytoleadintoparadoxesforour basicconceptionsconcerningthephysicalrealm(likemotionandapluralityofphysicalthings),not explicitlyforthemathematicalrealm.

3⁵ See,forexample, DeCaelo 303a2andalso DeLineisInsecabilibus 969b29–70a5.

3⁶ Cf.alsoWaschkies1977.

3⁷ Karasmanis2009,p.250claimsthatAristotleunderstoodthecontinuuminaphysicalway andthusdidnotapproachcontinuity(whichheunderstandsasZenonianinfinitedivisibility)and magnitudefromthephenomenonofincommensurability.Karasmanisclaimsthata“Zenonianinfinite divisibilitynevercutsalineintoincommensurablesegments.However,wedonothaveanyevidence thatAristotlehadunderstoodthisproblem.”IthinkKarasmanisisrightinclaimingthatAristotle didnotapproachcontinuityandmagnitudefromtheproblemofincommensurability.Butthisisnot

5.Aristotle’sAccountofContinuity

WhileAristotlecantakeovertheunderstandingofcontinuaasbeinginfinitely divisiblefromamathematicalcontext,hedevelopsitinsuchawayastobeable todealwithproblemsspecifictomotionandtoaccountforthespecificformof unityrequiredforphysicalbutnotmathematicalcontinua.Forexample,inthe physicalrealmtherecanbeadifferencebetweenbeingcontinuousandbeing contiguous,ashepointsoutin Physics V,3,whilethisdifferenceisnottobefound inmathematics.Formathematicians,twolinesinthesameplanethattouchare one,3⁸aslongastheydonotsimplyintersectorformanangle;theyarecontinuous. Inaphysicalcontext,however,twothingsthatarecontinuousinthemselvesand nexttoeachotherdonotbecomeonethingsimplybytouching,atleastnotif theyaresolidthings.Accordingly,in Physics V,3Aristotlegivesustwocriteria forbeingcontinuous.Continuousarethosethings(a)whoselimitstouch—this iswhatmakesforcontinuousthingsastheyareinmathematics.Additionally, however,inthephysicalrealm,(b)theselimitshavetobeone,forotherwisewe wouldbedealingonlywithneighbouringthings.3⁹Inaphysicalcontext,wecan distinguishmerelytouchinglimitsfromthosethathavebecomeone—onlywhere thelimitsareonedowehaveanobjectthatmovesasawhole.

Weshouldalsobearinmindthatinspiteofsomemathematicalbackground,the paradigmcontinuaforAristotlearecertainphysicalmagnitudes,suchasphysical bodies,time,distance,andmotion.Liquidcontinua,likewater,andthingslike mouldingdoughmayhaveinpartdifferentfeatures—forexample,thedistinction betweencontiguityandcontinuityworkswithbodies,butdoesnotseemtowork withwater.⁴⁰Aristotle’saccountofcontinuityismeanttofitthephysicalrealm⁴1

becausehedidnotunderstandthisproblem,butratherbecausea‘Zenonianinfinitedivisibility’can butneednotcutalineintoincommensurablesegments,sothisisaproblemnotessentialforgivinga basicaccountofcontinuity.AsAristotlehimselfpointsoutinhis PriorAnalytics 65b16–20(apassage Karasmanisexplicitlyrefersto),infinitedivisibilityandincommensurabilityaretwodifferentproblems. WhatthisshowsforourimmediateinvestigationisthatAristotledoesnotnecessarilytakeoverallthe problemsthatcanbefoundinthevicinityofamathematicalnotion.

3⁸ Asaretwosurfacesorbodies.

3⁹ Accordingly,Aristotlesometimestalksaboutlimitsintheplural(soin Physics 231a22)and sometimesaboutlimitinthesingular(227a12).Wemaybeworriedabouthisuseoftheplural,since thelimitsoflinesarepointsandAristotleexplicitlyclaimsthatpointscannottouch(andiflimitstouch, wouldtheynothavetohavelimitsthemselves?).Aristotlemaybetalkingloosely,whenhetalksabout limitsintheplural(ashedoeswhenmentioningpointstouchingin227a29),andactuallythinkabout alimitat whichthingstouch;orhemaythinkthatwithphysicalthingsweareneverreallydealingwith points.

⁴⁰ Furthermore,oncewephysicallyactualizeapartofAristotle’sparadigmaticcontinua,wecannot simplygetthewholeback(wewillneedglue,etc.);thisdoes,however,notholdforwater.

⁴1 Thedistinctionbetweenphysicalandtheoreticaldivisibilitywillbecomehighlyimportantinthe continuumdiscussioninthethirteenthandfourteenthcenturieswithThomasAquinas’s‘Minimatheorie’inhiscommentaryonAristotle’s Physics andDunsScotus’sreactiontothatinhis OpusOxoniense ButitisnotsomethingAristotleisconcernedwithashisunderstandingofcontinuaisclearlytailoredto thephysicalandnotthemathematicalrealm(eventhoughderivedfromareflectiononmathematics).

Turn static files into dynamic content formats.

Create a flipbook