The disc embedding theorem stefan behrens - The latest updated ebook version is ready for download

Page 1


https://ebookmass.com/product/the-disc-embedding-theoremstefan-behrens/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The Disaster Days Rebecca Behrens

https://ebookmass.com/product/the-disaster-days-rebecca-behrens-2/ ebookmass.com

The Disaster Days Rebecca Behrens

https://ebookmass.com/product/the-disaster-days-rebecca-behrens/ ebookmass.com

Alone in the Woods Rebecca Behrens

https://ebookmass.com/product/alone-in-the-woods-rebecca-behrens/ ebookmass.com

Strategic Management: Competitiveness and GlobalizationConcepts and Cases, 14e 14th Edition

https://ebookmass.com/product/strategic-management-competitivenessand-globalization-concepts-and-cases-14e-14th-edition-michael-a-hitt/ ebookmass.com

https://ebookmass.com/product/writing-conversational-korean-book-twokatarina-pollock/

ebookmass.com

Corporate and Investment Banking: Preparing for a Career in Sales, Trading, and Research in Global Markets 1st ed. Edition Fidelio Tata

https://ebookmass.com/product/corporate-and-investment-bankingpreparing-for-a-career-in-sales-trading-and-research-in-globalmarkets-1st-ed-edition-fidelio-tata/ ebookmass.com

The Sun and Its Shade Piper Cj

https://ebookmass.com/product/the-sun-and-its-shade-piper-cj-3/

ebookmass.com

Green Jewel (The Painted Daisies Book 2) Lj Evans

https://ebookmass.com/product/green-jewel-the-painted-daisiesbook-2-lj-evans/

ebookmass.com

Managerial Accounting, 6th Edition

https://ebookmass.com/product/managerial-accounting-6th-edition/

ebookmass.com

1st Edition Phelps

https://ebookmass.com/product/making-better-choices-design-decisionsand-democracy-1st-edition-phelps/

ebookmass.com

thediscembeddingtheorem

TheDiscEmbeddingTheorem

STEFANBEHRENS,BOLDIZSÁRKALMÁR, MINHOONKIM,MARKPOWELL, ANDARUNIMARAY

Contributors:StefanBehrens,XiaoyiCui,ChristopherW.Davis, PeterFeller,BoldizsárKalmár,DanielKasprowski,MinHoonKim,DuncanMcCoy, JeffreyMeier,AllisonN.Miller,MatthiasNagel,PatrickOrson,JungHwanPark, WojciechPolitarczyk,MarkPowell,ArunimaRay,HenrikRüping, NathanSunukjian,PeterTeichner,andDanieleZuddas

withanafterwordby

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©OxfordUniversityPress2021

Themoralrightsoftheauthorshavebeenasserted FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2021937963

ISBN978–0–19–884131–9

DOI:10.1093/oso/9780198841319.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

PREFACE

In1982,MichaelFreedman,buildingupontheideasandconstructionsofAndrew Casson,provedthe h-cobordismtheoremandtheexactnessofthesimplyconnected surgerysequenceindimensionfour,deducingaclassificationtheoremfortopological 4manifolds,aspecialcaseofwhichwasthe 4-dimensionaltopologicalPoincaréconjecture.

Thekeyingredientinhisproofisthe discembeddingtheorem.Inmanifoldsofdimension fiveandhigher,genericmapsofdiscsareembeddings,whereasindimensionfoursuch mapshaveisolateddoublepoints,preventingthehigh-dimensionalproofsfromapplying. Freedmanshowedhowtoembeddiscsinsimplyconnected 4-manifolds,revealingthat incertainsituationstopological 4-manifoldsbehavelikehigher-dimensionalmanifolds. ContemporaneousresultsofSimonDonaldsonshowedthatsmooth 4-manifoldsdonot. Indeed,dimensionfourexhibitsaremarkabledisparitybetweenthesmoothandtopological categories,asdemonstratedbytheexistenceofexoticsmoothstructuresonR4,forexample.

FreedmanandDonaldsonbothreceivedtheFieldsMedalin1986fortheircontributions totheunderstandingof 4-manifolds.SoonafterFreedman’sworkappeared,FrankQuinn expandedonthetechniquesofFreedman,provingfoundationalresultsfortopological 4-manifolds,suchastransversalityandtheexistenceofnormalbundlesforlocallyflat submanifolds.TheworkofFreedmanandQuinnwascollectedinthebook[FQ90],which becamethecanonicalsourcefortopological 4-manifoldsinthedecadesthatfollowed.

TheOriginofThisBook

InJanuaryandFebruaryof2013,Freedmangaveaseriesof12lecturesattheUniversity ofCaliforniaSantaBarbara(UCSB)intheUSAwiththegoalofexplaininghisproofof thediscembeddingtheorem.ThelectureswerebroadcastlivetotheMax-Planck-Institut fürMathematik(MPIM)inBonn,Germanyaspartofthe Semesteron 4-manifoldsand theircombinatorialinvariants organizedbyMatthiasKreckandPeterTeichner,where QuinnandTeichnerransupplementarydiscussionsessions.RobertEdwards,intheUCSB audience,notonlycontributedvariousremarksbutalsosteppedinasaguestlecturer andpresentedhisperspectiveonakeystepoftheproof,namelytheconstructionof ‘thedesign’.Thelectureswererecordedandarecurrentlyavailableonlineatwww.mpimbonn.mpg.de/FreedmanLectures.

ThisbookbeganasannotatedtranscriptsofFreedman’slecturestypedbyStefanBehrens. InMayandJuneof2013,theroughdraftofthenoteswasrevisedandaugmentedinacollaborativeeffortoftheMPIMaudience,coordinatedbyBehrensandTeichner.Thefollowing peoplewereinvolvedinthisprocess:XiaoyiCui,MatthewHogancamp,DanielKasprowski,

JuA.Lee,WojciechPolitarczyk,MarkPowell,HenrikRüping,NathanSunukjian,and DanieleZuddas.

Threeyearslater,inNovemberandDecemberof2016,PeterFellerandMarkPowellorganizedaseminaronthediscembeddingtheoremattheHausdorffInstituteforMathematics (HIM)inBonn.ThisincludedscreeningsofFreedman’sUCSBlecturesondecomposition spacetheoryandaseriesoftalksbyPowell,alongwithguestlecturesbyStefanBehrens, PeterFeller,BoldizsárKalmár,AllisonN.Miller,andDanielKasprowskiontheconstructive partoftheprooffollowingtheapproachinthebookbyFreedmanandQuinn[FQ90]. TheHIMaudienceincludedmanyoftheparticipantsintheJuniorTrimesterProgramin Topology:ChristopherW.Davis,PeterFeller,DuncanMcCoy,JeffreyMeier,AllisonN. Miller,MatthiasNagel,PatrickOrson,JungHwanPark,MarkPowell,andArunimaRay. Together,thespeakersandtheaudiencerevisedthestructureofthe2013notes,fleshing outmanydetailsandrewritingcertainpartsfromscratch.From2017to2020,Kalmár,Kim, Powell,andRaysynthesizedtheindividualcontributionsoftheauthorsintotheartefact youpresentlybehold.Newchaptersongoodgroups,theapplicationsofthediscembedding theoremtosurgeryandthePoincaréconjecture,thedevelopmentoftopological 4-manifold theory,andremainingopenproblemswerewritten.Duringthisperiod,KimandMiller,in particular,createdthemanycomputerizedfiguresappearingthroughoutthebook.

ThistextfollowsFreedman’sintroductiontodecompositionspacetheoryinhis2013 lecturesinPartI,beforegivingacompleteproofofthediscembeddingtheoreminPartsII andIV.Thelatterpartsfollowthe2016lecturesbasedon[FQ90],althoughtheyare naturallybasedontheideaslearntfromFreedman’soriginallecturesandtheconcurrent explanationsandguestlecturesbyEdwards,Quinn,andTeichner.Inparticular,wegivea detailednewdescriptionoftowerembeddingandthedesign.PartIIIcontainsadiscussion ofmajorapplicationsandconjecturesrelatedtothediscembeddingtheorem.Itdescribes howtousethediscembeddingtheoremtoprovethe s-cobordismtheorem,thePoincaré conjecture,theexactnessofthesurgerysequenceindimensionfourforgoodgroups,and thetopologicalclassificationofsimplyconnectedclosed 4-manifolds.

Sincesomuchof 4-dimensionaltopologicalmanifoldtheoryrestsontheseminalwork ofFreedman,ithasbeenfeltbythecommunitythatanotherindependentandrigorous accountoughttoexist.Wehopethatthismanuscriptwillmakethishighpointin 4-manifold topologyaccessibletoawideraudience.

CassonTowers

Wechoosetofollowtheprooffrom[FQ90],usinggropes,whichdiffersinmanyrespects fromFreedman’soriginalproofusingCassontowers[Fre82a].Theinfiniteconstruction usinggropes,whichwecalla skyscraper,simplifiesseveralkeystepsoftheproof,andthe knownextensionsofthetheorytothenon-simplyconnectedcaserelyonthisapproach. ReadersinterestedinCassontowersshouldrefertotheMPIMvideosofFreedman’s2013 lectures,whereheexplainedmuchaboutCassontowersandtheiruseintheoriginalproof. Apartfrom[Fre82a],furtherliteratureonCassontowersincludes[GS84,Biž94,Sie82,

CP16].Moreover,thecombinationof[Sie82]andtheCassontowerembeddingtheorem from[GS84]givesanotheraccountoftheoriginalCassontowersprooffrom[Fre82a].

Differences

Webrieflyindicate,fortheexperts,thesalientdifferencesbetweentheproofgiveninthis bookandthatgivenin[FQ90].First,thereisaslightchangeinthedefinitionoftowers(and thereforeofskyscrapers),whichwepointoutpreciselyinRemark12.8.Withourdefinition, itisclearthatthecorrespondingdecompositionspacesaremixedramifiedBing–Whitehead decompositions.Thispossibilitywasmentionedin[FQ90,p.238].

Additionally,thestatementofthediscembeddingtheoremin[FQ90]assertsthat immerseddiscs,undercertainconditionsincludingtheexistenceofframed,algebraically transversespheres,maybereplacedbyflatembeddeddiscswiththesameboundaryandgeometricallytransversespheres.Theproofsgivenin[Fre82a,FQ90]producetheembedded discsbutnotthegeometricallytransversespheres.Weremedythisomissionbymodifying thestartoftheproofgivenin[FQ90],asin[PRT20].Thegeometricallytransversespheres areessentialforthesphereembeddingtheorem,whichisthekeyresultusedintheapplicationofthediscembeddingtheoremtosurgeryfortopological 4-manifoldswithgoodfundamentalgroupandtheclassificationofsimplyconnected,closed,topological 4-manifolds,as wedescribeinChapter22.Wealsoobservethatthegeometricallytransversespheresinthe outputarehomotopictothealgebraicallytransversespheresintheinput[PRT20].Besides thesepoints,theproofofthediscembeddingtheoremgiveninthisbookonlydiffersfrom thatin[FQ90]intheincreasedamountofdetailandnumberofillustrations.

Welargelyfocusonthefirstfewchaptersof[FQ90].Inparticular,weassumethatthe ambient 4-manifoldissmooth.WedonotdelveintotheworkofQuinnonthesmoothing theoryofnoncompact 4-manifolds,theannulustheorem,transversality,ornormalbundles forlocallyflatsubmanifolds,insteaddescribingthesedevelopmentsbroadlyinChapter1, andinmoredetailinChapter21.

SeminarOrganization

Themajorityofthechaptersinthisbookmaybecoveredinasingleseminartalkeach. WeexpectthatPartsIIandIV,evenwithoutgoingthroughallthedetailsinPartIV, willrequireasemester.Wethereforesuggestthefollowingalternativetothestandard approach.AfterusingChapters1and2toprovidecontext,workthroughPartsIIandIV alongsidegroupviewingsofthevideosofFreedman’sUCSBlectures2–5,whichdiscussed thedecompositionspacetheoryofPartI.TheexpositioninPartIofthisbookshouldsupply enoughadditionaldetailtosupportthelectures,anditaddstothecharmoflearningthis mathematicstowatchthemanhimselfexplainit.ThisalsoallowsPartsIandIItobecovered simultaneously.Inthelatterpartoftheseminar,resultsfrombothcanbecombinedforthe proofthatskyscrapersarestandardinPartIV.PartIIIisnotdirectlyapplicabletotheproof ofthediscembeddingtheoremandmaybesafelyskippedinthefirstreading.

Credit

Thismanuscriptistheoutcomeofacollaborativeprojectofmanymathematicians,as describedearlier.AfterFreedman,whoofcoursegavetheoriginallecturesandprovedthe discembeddingtheoreminthefirstplace,andStefanBehrens,whotypeduptheinitialdraft, manypeoplecontributedtoimprovingindividualchapters,orinsomecasesdeveloping themfromscratch.Wethereforeattributeeachchaptertothosewhocontributedthebulkof theworktowardsit,whetherthroughanewlecturethattheywroteanddelivered,polishing theexposition,creatingoriginalpictures,addingnewmaterialtofillindetailsthatcouldnot becoveredinthelectures,orwritingachapterontheirownbycombininginformationfrom varioussourcesintheliterature.

Apartfromtheauthors,theprojectbenefittedfromtheinputofBobEdwardsandFrank Quinn,aswellasJaeChoonCha,DiarmuidCrowley,JimDavis,StefanFriedl,BobGompf, ChuckLivingston,MichaelKlug,MatthiasKreck,ChristianKremer,SlavaKrushkal,Andy Putman,BenRuppik,andAndrásStipsicz.

1ContextfortheDiscEmbeddingTheorem

StefanBehrens,MarkPowell,andArunimaRay

PARTI DECOMPOSITIONSPACETHEORY

3TheSchoenfliesTheoremafterMazur,Morse,andBrown

StefanBehrens,AllisonN.Miller,MatthiasNagel,andPeterTeichner

4DecompositionSpaceTheoryandtheBingShrinkingCriterion

ChristopherW.Davis,BoldizsárKalmár,MinHoonKim,andHenrikRüping

5TheAlexanderGoredBallandtheBingDecomposition

StefanBehrensandMinHoonKim

6ADecompositionThatDoesNotShrink

StefanBehrens,ChristopherW.Davis,andMarkPowell

7TheWhiteheadDecomposition

XiaoyiCui,BoldizsárKalmár,PatrickOrson,andNathanSunukjian

8MixedBing–WhiteheadDecompositions

JeffreyMeier,PatrickOrson,andArunimaRay

StefanBehrens,BoldizsárKalmár,andDanieleZuddas

PARTII BUILDINGSKYSCRAPERS

11IntersectionNumbersandtheStatementoftheDiscEmbedding

MarkPowellandArunimaRay 12Gropes,Towers,andSkyscrapers

MarkPowellandArunimaRay

DuncanMcCoy,JungHwanPark,andArunimaRay

14ArchitectureofInfiniteTowersandSkyscrapers ...................

StefanBehrensandMarkPowell

15BasicGeometricConstructions ...............................

MarkPowellandArunimaRay

16FromImmersedDiscstoCappedGropes

WojciechPolitarczyk,MarkPowell,andArunimaRay

17GropeHeightRaisingand 1-storeyCappedTowers ................

PeterFellerandMarkPowell

18TowerHeightRaisingandEmbedding ..........................

AllisonN.MillerandMarkPowell

PARTIII INTERLUDE

19GoodGroups .............................................

MinHoonKim,PatrickOrson,JungHwanPark,andArunimaRay

20The s-cobordismTheorem,theSphereEmbeddingTheorem,andthe PoincaréConjecture ........................................

PatrickOrson,MarkPowell,andArunimaRay

21TheDevelopmentofTopological4-manifoldTheory

MarkPowellandArunimaRay

22SurgeryTheoryandtheClassificationofClosed,SimplyConnected 4-manifolds 331

PatrickOrson,MarkPowell,andArunimaRay

23OpenProblems ............................................

MinHoonKim,PatrickOrson,JungHwanPark,andArunimaRay

PARTIV SKYSCRAPERSARESTANDARD

24ReplicableRoomsandBoundaryShrinkableSkyscrapers ...........

StefanBehrensandMarkPowell

25TheCollarAddingLemma

DanielKasprowskiandMarkPowell

26KeyFactsaboutSkyscrapersandDecompositionSpaceTheory ......

MarkPowellandArunimaRay

1.1Tryingtosurgerahyperbolicpair..............................4

1.2Tryingtocancelalgebraicallydual 2-and 3-handlesinan s-cobordism....6

1.3Adjustingthealgebraicself-intersectionnumber....................7 1.4TheWhitneymove........................................7

1.5TheHopflinkatatransverseintersection.........................8

1.6ABingdoublealongaWhitneycircle...........................9

1.8Tradingintersectionsforself-intersections........................12 1.9Adjustingtheintersectionnumberofspheresintheproofofthe s-cobordism

1.10ObtainingaWhitneydiscintheproofofthe s-cobordismtheorem.......14 1.11Whitneymovetoresolveaself-intersection.......................15

2.1Transformingacappedsurfaceintoasphere.......................30

2.3Schematicpictureofthe 2-dimensionalspineofaheightthreegrope......32 2.4Schematicpictureofthe 2-dimensionalspineofaheighttwocappedgrope.33

2.5Schematicpictureofthe 2-dimensionalspineofa 2-storeytower........35

2.6TheBingdoubleandaWhiteheaddoubleofthecoreofasolidtorus......37 2.7Aniterated,ramifiedBing-Whiteheadlinkinasolidtorus.............38

5.4Twothickenedarcsembeddedin

5.5Twothickenedarcsembeddedin D2 × [ 1, 1] andatorus...........81

5.6AdecompositionassociatedwiththeAlexandergoredball.............82

5.7ThedefiningpatternoftheBingdecompositionanditssecondstage......84

5.8Bing’sproofshowingthattheBingdecompositionshrinks.............85

6.1Thedefiningpatternforthedecomposition B2.....................88

6.2Asubstantialintersection...................................89

6.3Liftsofthecomponentsofthedefiningpatternfor B2................90

7.1ThedefiningpatternfortheWhiteheaddecomposition...............96

7.2Ahomeomorphismfollowedbyarotation/shear...................101

8.1Ameridional3-interlacing...................................106

8.2An (n,m)-link..........................................111

8.3A (3, 2)-linkintersectingan 8-interlacingoptimally..................111

9.1AlternativedefiningpatternsfortheBingdecompositionandthedecomposition B2...............................................116

9.2Examplesofstarlike,starlike-equivalent,andrecursivelystarlike-equivalent sets..................................................119

9.3Aredbloodcellwithonedimensioninthe S1 × D3 piecesuppressed....121

9.4Shrinkingaredbloodcelldisc................................121

9.5Proofofthestarlikeshrinkinglemma...........................123

9.6ProofofLemma9.12......................................124

9.7ConstructingtheternaryCantorset............................128

10.1AmodificationoftheCantorfunction...........................133

10.2Anadmissiblediagram.....................................139

11.1AmodelWhitneymove....................................158

11.2Amodelfingermove.......................................159

11.3Computationoftheintersectionnumberforspheresina 4-manifold......161

11.4Aregularhomotopyacrosstheboundaryofanimmerseddiscwhichdoesnot preservetheintersectionnumber..............................162

11.5Computationoftheself-intersectionnumberforanimmersedsphereina 4-manifold.............................................164

11.6FindingWhitneydiscspairingself-intersectionpointsofanimmersedsphere withtrivialself-intersection..................................168

12.1Astandardsurfaceblockwithgenusone.........................173

12.2Tipregionsforastandarddiscblock............................174

12.3Schematicpictureofthe 2-dimensionalspineofaheightthreegrope......176

12.4Schematicpictureofthe 2-dimensionalspineofaheighttwocappedgrope.176

12.5Schematicpictureofthe 2-dimensionalspineofa 2-storeytower........177

12.6Splittingthehigherstagesofa 2-storeytowerinto (+)-and ( )-sides.....179

13.1Schematicofa 1-anda 2-handle...............................186

13.2Notationfor 1-handles.....................................188

13.3BasicKirbydiagrams......................................189

13.4Sliding 2-handles.........................................191

13.5Cancellinga 1-/2-handlepairinthreedimensions..................191

13.6HandlecancellationinaKirbydiagram..........................192

13.7Decomposingadiscintohandlesrelativetoitsboundary..............193

13.8Plumbingtwo 2-handles....................................193

13.9Diagramsforself-plumbingsof 2-handles........................194

13.10Kirbydiagramforasurfaceblockwithgenusone...................195

13.11Kirbydiagramforasurfaceblockwithgenustwo...................196

13.12Kirbydiagramforadiscblock................................196

13.13Identifyingtwosolidtoriusinga 1-handleanda 2-handle.............198

13.14Kirbydiagramforaheighttwogrope...........................198

13.15Thespineofaheightonecappedgrope..........................199

13.16AKirbydiagramofa 1-storeycappedtower.......................199

13.17PatternsforBingandWhiteheaddoubling........................200

13.18SimplificationforBingdoubles...............................202

13.19SimplificationforWhiteheaddoubles...........................203

13.20Atreeassociatedwithaheighttwogrope.........................205

13.21Agraphassociatedwithaheightonecappedgrope..................205

13.22AsimplifiedKirbydiagramofaheightonecappedgrope..............207

13.23AsimplifiedKirbydiagramforaheighttwocappedgrope.............208

15.1ACliffordtorusatadoublepoint..............................218

15.2Tubingintoatransversesphere...............................219

15.3Tubingmultiplepointsofintersection...........................219

15.4Boundarytwisting........................................220

15.5Boundarypush-offtoensureWhitneycirclesaredisjoint..............220

15.6Pushingdownintersections..................................221

15.7(Symmetric)contractionofacappedsurface......................222

15.8Contractionfollowedbypushingoffintersectionswiththecaps.........223

15.9ProofofthegeometricCassonlemma...........................224

15.10AnimmersedWhitneymoveisaregularhomotopy..................225

16.1SummaryofProposition16.1................................229

16.2Modifyinganimmerseddiscwithatransversespheretohavezero self-intersection..........................................230

16.3ArrangingforWhitneydiscsinthecomplement....................230

16.4ObtainingageometricallytransversecappedsurfacefromaCliffordtorus..231

16.5RemovingintersectionsbetweentheWhitneydiscsandthecapsofthe transversecappedsurfaces...................................232

16.6SummaryofProposition16.2................................233

16.7Constructingaheightonecappedgrope.........................234

16.8Asinglecappedsurface.....................................234

16.9Thefirstgeometricallytransversesphere.........................234

16.10SeparatingcapsintheproofofProposition16.2....................235

16.11AfterseparatingcapsintheproofofProposition16.2................236

16.12Managingcapintersections..................................236

16.13Thesecondgeometricallytransversesphere.......................237

17.1Schematicpictureofthe 2-dimensionalspineofaheighttwocappedgrope.240

17.2Constructingatransversecappedgrope.........................241

17.3Separating (+)-sideand ( )-sidecaps..........................242

17.4Raisingtheheightofthe ( )-sideofagrope......................243

17.5Obtainingdiscsfromnullhomotopiesofthedoublepointloops........246

17.6Tubingintothegeometricallytransversesphere....................246

17.7A 1-storeycappedtowerwithageometricallytransversesphere.........248

17.8Tubingtoremoveintersections...............................251

18.1Aschematicpictureofthe 2-dimensionalspineofa 2-storeytower.......254

18.2AccessorytoWhitneylemma.................................256

18.3Splittingthesecondandhigherstagesofa 2-storeytowerinto (+)-and ( )-sides..............................................257

18.4Asinglepairofself-intersectionsgivesrisetoeightnewpairsofintersections.258

18.5Thegrope-Whitneymove...................................258

18.6Atowerwithtwostoreysonthe (+)-sideandonestoreyonthe ( )-side..261

18.7A 1-complexinagropeandinadiscblock........................263

18.8Embeddingtheattachingcircletimesanintervalinasurfaceandadiscblock.264

18.9Embeddingtheattachingcircletimesanintervalawayfromintersections...264

18.10Embeddingtheattachingcircletimesanintervalneartheattachingcircles closetointersectionpoints..................................265

18.11Fingermovetomakethetrackofahomotopyembedded..............265

18.12Movingthesecondstoreyandtowercapsofatowerintosmallballs......266

19.1Newdoublepointloopsafteracontractionfollowedbyapush-off........275

19.2Newdoublepointloopsinthecapseparationlemma................276

19.3Newdoublepointloopsingropeheightraising....................277

20.1ObtainingaWhitneydiscintheproofofthe s-cobordismtheorem.......286

20.2ObtainingatransversespherefromaCliffordtorus.................287

20.3Proofofanalternativeversionofthediscembeddingtheorem..........290

20.4FindinganembeddedWhitneydisc............................291

20.5Summaryofthesphereembeddingtheorem......................292

21.1Thedevelopmentoftopological 4-manifoldtheory..................296

23.1Thediscembeddingconjectureinrelationtootherconjectures..........354

23.2Anelement L ofthefamily L1................................357

23.3Thesurgeryconjectureinrelationtootherconjectures...............361

23.4TubingalongWhitneycirclestomodifyanimmersedsphereintoanembeddedclosedsurface........................................374

23.5Resolvingintersectionsbetweenaspheretransversetoasurfaceanditscaps.374

23.6Managingcapintersections..................................375

23.7ResolvingintersectionsbetweenasurfaceandWhitneydiscspairingintersectionsbetweenitscapsandatransversesphere.....................375

23.8AKirbydiagramforasinglepairofgeometricallytransversesphere-like cappedgropesofheightone..................................378

25.1Addingacollartoadefiningsequence...........................393

27.1Thedesigninsidetheskyscraperandthedesigninsidethestandardhandle..402

27.2AspanningdiscforaWhiteheadcurve..........................403

27.3Aschematicpictureofahole+ showingaredbloodcelldisc...........403

28.1ConstructingtheternaryCantorset............................408

28.2Anexplicitparametrizationofthestandardhandle..................411

28.3Skyscrapersandcollarscorrespondingtofinitebinarywordsoflengthat mosttwo...............................................415

28.4Skyscrapersandcollarscorrespondingtofinitebinarywords oflengththree...........................................416

28.5Skyscrapersandcollarscorrespondingtofinitebinarywordsoflengthat mostthree..............................................416

28.6Thedesignintheskyscraper..................................420

28.7Thedesigninthestandardhandle..............................427

28.8AspanningdiscforaWhiteheadcurveandparametrizingits self-intersections.........................................431

28.9Agraphofthefunction b restrictedtotheabscissa..................432

28.10Theproofthatthesingularimageof f isnowheredense...............443

A.1Cassonhandles..........................................451

A.2Theproduct

A.3TheAndrews-Rubinshrink..................................453

A.4Themap α crushes {holes+} and β crushes {gaps+} ..............454 A.5Thegraphof β ..........................................455

ContextfortheDiscEmbeddingTheorem

stefanbehrens,markpowell,andarunimaray

1.1BeforetheDiscEmbeddingTheorem

1.1.1High-dimensionalSurgeryTheory

By1975,classificationproblemsformanifoldsofdimension n atleastfive,betheysmooth, piecewiselinear(PL),ortopological,hadbeentranslatedintoquestionsinhomotopy theoryandalgebra.Foreachofthesecategories,classificationproblemsaretypicallyoftwo types:the existenceproblem concernstheexistenceofamanifoldwithinagivenhomotopy type,whilethe uniquenessproblem concernsthenumberofsuchmanifoldsuptoisomorphism.Theinputforsuchquestionsisa Poincarécomplex—roughlyspeakingafinitecell complexthatsatisfies n-dimensionalPoincarédualityforsome n

Fixthecategory CAT tobeeithersmooth, PL,ortopological.Twoclosed n-manifolds aresaidtobe h-cobordant iftheycoboundan (n +1)-manifoldsuchthattheinclusionof eachboundarycomponentisahomotopyequivalence.The structureset ofagivenPoincaré complex X,denotedby S(X),isthesetof n-dimensionalclosedmanifolds M along withahomotopyequivalence M → X,upto h-cobordism,wherethecobordismhasa compatiblemapto X.ForPoincarécomplexesofdimensionatleastfive, surgerytheory can decideif S(X) isnonempty,andifso,cancomputeitexplicitlyusingalgebraictopology,at leastinfavourablecircumstances[Bro72,Nov64,Sul96,Wal99,KS77].Moreprecisely,the structuresetofaPoincarécomplex X withdimensionatleastfiveisnonemptyifandonly if(i)acertainsphericalfibrationover X,calledthe Spivaknormalfibration,liftstoa CAT bundle,and(ii)an L-theoreticsurgeryobstructionvanishes.Thiscompletelyanswers,at leastinprinciple,thequestionofwhether X ishomotopyequivalenttoa CAT manifold. Moreover,ifthestructuresetforaPoincarécomplex X ofdimension n atleastfive isnonempty,itfitsinthefollowingexactsequenceofpointedsets,calledtheBrowder–Novikov–Sullivan–Wall surgeryexactsequence

Here N (X) denotesthesetof normalinvariants of X,namelybordismclassesofdegree onemapsfromsome n-manifoldto X,togetherwithnormalbundledata.Viatransversality, thiscanbecomputedusinghomotopytheory.The L-groupsarepurelyalgebraicanddepend onlyonthegroup π1(X),theorientationcharacter,andtheresidueof n modulo 4. Letusdescribetheexistenceprogrammeinmoredetail.AssumingthattheSpivak normalfibrationon X liftstoa CAT-bundle,achoiceofliftgivesrisetoanelementof N (X),namelyaclosedmanifold N togetherwithadegreeonemapto X thatrespects thenormaldatacorrespondingtothechosenlift.Wewishtoimprovesuchanelementtoa manifold M equippedwithahomotopyequivalenceto X,attheexpenseofmodifying N bytheprocessof surgery.An elementarysurgery consistsoffindinganembedded Sp × Dq withina (p + q)-dimensionalmanifold,cuttingoutitsinterior,andgluingin Dp+1 × Sq 1 alongitsboundaryinstead.Thisprocesskillsthehomotopyclassrepresentedby Sp ×{0} andthereforecanassistinachievingagivenhomotopytype.Themaintheoremofsurgery theorysaysthatsuchasequenceofelementarysurgerieson N canproduceamanifold homotopyequivalentto X ifandonlyiftheobstructionin Ln(Z[π1(X)]) associatedwith N vanishes.Thisisencodedbythemap σ inthesequenceabove.Inotherwords,every elementof σ 1(0) canbemodifiedbysurgerytoproduceanelementofthestructureset S(X),namelyaclosedmanifold M equippedwithahomotopyequivalencetothePoincaré complex X.Thisargumentshowsthat,forPoincarécomplexesofdimensionatleastfive,we haveaprocedurefordecidingwhetherthestructuresetisnonempty—thatis,whetherthe existenceproblemhasapositiveresolution.

Exactnessofthesurgerysequencecanbeusedtocalculatethesizeofthestructureset, whichaddressespartoftheuniquenessproblem.Inordertofullysolvetheuniqueness problem,wealsoneedtounderstandwhen h-cobordantmanifoldsareisomorphicinthe category CAT.The s-cobordismtheorem [Sma62,Bar63,Maz63,Sta67,KS77](seealso [Mil65,RS72])statesthatan h-cobordismbetweenclosedmanifoldsofdimensionatleast fiveisaproductifandonlyifitsWhiteheadtorsionvanishes.Thetheorem,whichholdsfor allsmooth, PL,andtopologicalmanifolds,allowsonetoobtainuniquenessresults.

Itsprecursor,the h-cobordismtheorem,statesthatevery simplyconnected h-cobordism betweenclosedmanifoldsofdimensionatleastfiveisaproduct.Thisisastraightforward corollaryofthe s-cobordismtheorem,sinceasimplyconnected h-cobordismhasWhiteheadtorsionvaluedintheWhiteheadgroupofthetrivialgroup,whichitselfvanishes.

Summarizing,bytheearly1970s,armedwiththepowerfultoolsofthesurgeryexact sequenceandthe s-cobordismtheorem,topologistshadadeepunderstandingofboththe existenceanduniquenessproblemsformanifoldsofdimensionatleastfive.

1.1.2Attempting4-dimensionalSurgery

Bycontrast,intheearly1970sverylittlewasknownabout 4-manifolds.Whitehead[Whi49] andMilnor[Mil58]hadshownthatthehomotopytypeofasimplyconnected 4dimensionalPoincarécomplexisdeterminedbyitsintersectionform.Moreprecisely, thehomotopytypes,togetherwithachoiceoffundamentalclass,areinonetoone correspondencewithisometryclassesofunimodularsymmetricintegralbilinearforms, or,equivalently,congruenceclasses A ∼ PAP T ofsymmetricintegralmatriceswith

determinant ±1.So 4-manifoldtopologistswereinterestedindeterminingwhichof theseformsarerealizedby,smooth(equivalently, PL [HM74;FQ90,Theorem8.3B]) ortopological,closed 4-manifolds;whetherhomotopyequivalent 4-manifoldsare scobordant;andwhether s-cobordant 4-manifoldsare CAT-isomorphic.Duetoits remarkablesuccessinaddressinghigh-dimensionalmanifolds,surgerytheoryseemed likeapromisingtool.However,themaintheoremsofsurgerywerenotknowntohold indimensionfour.Similarly,the h-and s-cobordismtheoremsfor 4-manifoldsremained openinallthreecategories.

Let E8 denotetheeven 8 × 8 integerCartanmatrixoftheeponymousexceptionalLie algebra;thatis,

Thisisasymmetricintegralmatrixwithdeterminantone,andsobytheMilnor–Whitehead classificationthereisasimplyconnected, 4-dimensionalPoincarécomplexwithintersection formrepresentedbythismatrix.Isthereaclosed 4-manifoldhomotopyequivalenttothis Poincarécomplex?

ByRochlin’stheorem[Roc52,Kir89],theintersectionformofasmooth,closed,spin 4-manifoldmusthavesignaturedivisibleby 16.Since E8 correspondstoanevenintersectionform,hassignature 8,andanysimplyconnected 4-manifoldwithevenintersectionform isspin,therecannotbeanysmooth,closed,simplyconnected 4-manifoldwith E8 asits intersectionform.Nevertheless,thequestionremained:isthereatopological,closed,simply connected 4-manifoldwith E8 asitsintersectionform?Thiswasanintractablequestionin the1970s(refertoSection1.6fortheanswer).

InordertobypasstheobstructionfromRochlin’stheorem,letusconsiderthematrix E8 ⊕ E8,whichhassignature 16.Thefollowingisastrategyforconstructingasmooth, closed,simplyconnected 4-manifoldwith E8 ⊕ E8 asitsintersectionform.Startwiththe simplyconnected 4-manifold K knownasthe K3surface,givenbythesolutionsetforthe quartic x4 + y4 + z4 + w4 =0 in CP3.Itsintersectionformisrepresentedbythematrix

8 ⊕ E8 ⊕ H ⊕ H ⊕ H,

where H = ( 01 10 ) isthehyperbolicmatrixcorrespondingtotheintersectionformof S2 × S2 and ⊕ denotesthejuxtapositionofblocksdownthediagonal.

Wehavetheobviousalgebraicprojection

Wewouldsucceedinconstructingthedesiredmanifoldifthisalgebraicprojectionwere realizedgeometrically.Thatis,wewishtoperformsurgeryon K withtheeffectofremoving thethreehyperbolicpairsfromtheintersectionform,resultinginaclosed 4-manifoldwith intersectionform E8 ⊕ E8.Letusattempttodothisinthesmoothcategory,andseewhere andwhywefail.

Since K issmoothandsimplyconnected,weknowbytheHurewicztheoremthat theelementsof H2(K; Z) correspondingtothehyperbolicpairsintheintersectionform canberepresentedbymaps S2 → K,whichwecantaketobesmoothimmersionsin generalposition.Henceforth,immersionswillbeassumedwithoutfurthercommenttobe ingeneralposition.AsinglehyperbolicpairisshownschematicallyontheleftofFigure1.1. Accordingtothematrix H,thetwospheresintersecteachotheralgebraicallyonce,but ingeneraltherewillbeexcessintersectionpointsgeometrically.Additionally,thespheres mayonlybeassumedtobeimmersed,withalgebraicallyzeroself-intersections.Ofcourse, thespherescorrespondingtodifferenthyperbolicpairsmighthavealgebraicallytrivialbut geometricallynontrivialintersectionsaswell,butweignorethosefornow.Ifthehyperbolic paircouldberepresentedbyframed,embeddedsphereswhichintersectexactlyonce,such asontherightofFigure1.1,wecoulddosurgeryoneitherofthetwospheresbycutting outaregularneighbourhood(diffeomorphicto S2 × D2)andreplacingitwith D3 × S1 , withtheeffectofremovingthecorrespondinghyperbolicmatrixfromtheintersectionform. Wesaythattwospheresinanambient 4-manifoldare geometricallydual iftheyintersectata singlepoint.Theexistenceofthesecondsphere,geometricallydualtothefirst,ensuresthat thissurgerywouldnotchangethefundamentalgroupoftheambientmanifold.Forthisthe secondspheredoesnotneedtobeembedded.Thesituationisentirelysymmetric:wecould dothesurgeryonanembeddinghomotopictothesecondsphere,withthesameeffecton homologyandthefundamentalgroup.

Thisstrategyisanalogoustotheideabehindtheclassificationofclosed,orientable 2-manifolds,inwhichwereducethegenusofanygivensurfacebyidentifyingadualpair ofsimpleclosedcurvesingivenhomologyclasses,cuttingoutanannularneighbourhood ofoneofthem,andfillinginthetworesultingboundarycomponentswithdiscs;the classificationcountsthenumberofsuchmovesneededtoproduceasphere.Theobstruction

Figure1.1 Tryingtosurgerahyperbolicpair.Left:Immersedspheres,depictedschematically, whichintersecteachotheralgebraicallyoncebutgeometricallythrice.Right:Thedesiredsituation, wherewehaveembeddedsphereswhichintersectgeometricallyonce.

tocarryingoutthisstrategyindimensionfourliesingeometricallyrealizingthealgebraic intersectionnumber,passing,asitwere,fromthelefttotherightofFigure1.1.Inthe smoothcategory,Donaldson’sdiagonalizationtheorem[Don83](Section21.2.2)implies thatthisisarealobstruction,sinceitshowsthereisnosmooth,closed,simplyconnected 4-manifoldwithintersectionform E8 ⊕ E8.Sowehaveseenwhyanaïveattempttodo surgeryfails.

Forsurgeryonnon-simplyconnectedmanifolds,oneseekstoremovehyperbolicsummandsintheequivariantintersectionformon H2(M ),thesecondhomologyoftheuniversalcoverofaclosedmanifold M ,thoughtofasamoduleoverthegroupringZ[π1(M )]. Inthiscontext,intersectioncountsarealgebraicallytrivialiftheyaretrivialoverZ[π1(M )]. Theprincipleinsuchasituationisstillthesame,namelywewishtorepresentthisalgebraic situationgeometrically.

1.1.3AttemptingtoProvethe s-cobordismTheorem

Asimilarproblemwithdisjointlyembedding2-spheresoccurswhenwetrytoprovethe s-cobordismtheoremfor 5-dimensionalcobordismsbetween 4-manifolds.Letustrytoimitatetheproofofthehigh-dimensionalsmooth s-cobordismtheorem,andseewhatobstructs thestrategyfromsucceeding.Let N beasmooth,compact s-cobordismbetweentwo closed 4-manifolds M0 and M1;thatis, ∂N = M0 ⊔ M1,eachinclusion Mi → N isa homotopyequivalence,andtheWhiteheadtorsion τ (N,M0) istrivial.Considerarelative handledecompositionof N builton M0 × [0, 1].SincetheWhiteheadtorsionvanishes,the relativechaincomplexoffinitelygenerated,free Z[π1(N )]-modulesforthepair (N,M0) canbesimplifiedalgebraicallysothatthereareonly 2-chainsand 3-chainsandtheboundary mapbetweenthemisanisomorphismrepresentedbytheidentitymatrixinsuitablebases (thismightalsorequiresomepreliminarystabilizationinthecaseofnontrivialfundamental groups).Asbefore,wewouldliketorepresentthisalgebraicsituationgeometrically.

Wefindsomeinitialsuccess:since N isconnected,wemayassumethereareno 0-handlesor 5-handles,andsince N hasdimensionfiveandisan h-cobordism,astandard procedurecalled handletrading allowsustotrade 1-handlesfor 3-handles,and 4-handles for 2-handles(seetheproofofTheorem20.1).Thusweseethat N isbuiltfrom M0 × [0, 1] byattachingonly 2-handlesand 3-handles,inthatorder.Since N isan s-cobordism,we arrangebyhandleslides—possiblyafterstabilizationbyaddingcancelling 2-and 3-handle pairs—thatthe 2-handlesand 3-handlesoccurinalgebraicallycancellingpairs.Let M1/2 denotethe 4-manifoldobtainedbyattachingthe 2-handlesto M0 ×{1}⊆ M0 × [0, 1].By turningthe 3-handlesof N upsidedown,weseethat M1/2 isalsoobtainedbyattaching 2handlesto M1 ×{1}⊆ M1 × [0, 1].Inotherwords, M1/2 canbeobtainedfromeither M0 or M1 byasequenceofsurgeriesonembeddedcircles.Sincetheinclusionof M0 in N inducesanisomorphismonfundamentalgroups,theattachingcirclesforthe 2-handles arenull-homotopicin M0.Similarly,theattachingcirclesin M1 arealsonull-homotopic in M1.Indimensionfour,homotopyimpliesisotopyforloops,andsothesurgeriesare performedonstandardtrivialcircles.Thisproduceseither S2 × S2 or S2×S2 summands in M1/2 [Wal99,Lemma5.5].

Thebeltspheres {0}× S2 ⊆ D2 × D3 ofthe 2-handlesformapairwisedisjointcollectionofframed,embedded 2-spheresin M1/2.Eachofthesesphereshasanembedded, geometricallydualspherecomingfrompushingthecoreofthecorresponding 2-handle unionanullhomotopyoftheattachingcircleinto M1/2.Thelatternullhomotopyprovides anembeddeddisc,sincetheattachingcircleistrivial.Iftheframingoftheattachmentissuch thatwegetan S2×S2 summand,thenthisdualsphereneednotbeframed.Similarly,when weturnthehandlesupsidedown,theattachingcirclesofthe 3-handlesattachedto M1/2 becomethebeltspheresfor 2-handlesattachedto M1.Bythesamereasoningasabove, theattachingspheresfor 3-handlesin M1/2 formapairwisedisjointcollectionofframed, embeddedspheresin M1/2 equippedwithembedded,geometricallydualspheres,which againneednotbeframed.

Recallthatwehavearrangedthateachbeltsphereofa 2-handleintersectstheattaching sphereofthecorresponding 3-handlealgebraicallyonce.However,theymayintersect multipletimesgeometrically.Aschematicpictureforasinglepairofa 2-handlebeltsphere and 3-handleattachingsphereisshownontheleftofFigure1.2,where,asbefore,we ignorepossibleinteractionswithotherpairs.Ifthe 3-handleattachingspherescouldbe isotopedin M1/2 toachievethesituationontherightofthefigureforeachpair,then thecorresponding 2-and 3-handlescouldbecancelled.Sincecancellingalltherelative handlesofthecobordism (N,M0) yieldstheproduct M0 × [0, 1],theproofwouldbe complete.Howeversuchanisotopyisingeneralnotpossibleinthesmoothcategory: Donaldson[Don87a](Section21.2.2)showedthereare h-cobordant,smooth,closed, simplyconnected 4-manifoldsthatarenotdiffeomorphic.Sowehaveseenwhyimitating theproofofthehigh-dimensional s-cobordismtheoremdoesnotsucceed.

Insummary,akeyinputneededinsurgeryaswellasintheproofofthe s-cobordism theoremistheabilitytoremovepairsofalgebraicallycancellingintersectionpointsbetween spheres,andthencegeometricallyrealizealgebraicintersectionnumbers.Asmentioned above,thisisingeneralnotpossiblesmoothly,butfortopological 4-manifoldshope remains.WediscussthesurgeryproblemfurtherinSection1.3.1,andwereturntoa discussionofthe s-cobordismtheoreminSection1.3.2.

Figure1.2 Analgebraicallydualpairconsistingofa 2-handlebeltsphere(red)anda 3-handle attachingsphere(blue)isshown.Thelightcurvesdenotethecorrespondinggeometricallydual spheres.Left:Thebeltsphereandtheattachingsphereintersectalgebraicallyoncebutgeometrically thrice.Right:Thedesiredsituationwherethebeltsphereandattachingsphereintersectgeometricallyonce.

1.2TheWhitneyMoveinDimensionFour

Consideramapofsmooth,orientedmanifolds Xd → Y 2d.Ingeneralposition,theonly singularpointsareisolated,signed,transversedoublepoints.Byinsertinglocalkinks(see Figure1.3forasketch),wecanarrangethatthesumofthesignsoftheself-intersection pointsiszero.Inthecaseofexactlytwoself-intersectionpointsofoppositesign,the situationislikeintheleftofFigure1.4,withtwoarcsintheimageof X joiningthetwo self-intersectionpointsondifferentsheets.Thecirclevisibleinthepicture,consistingof twoarcsjoiningthetwointersectionpoints,iscalleda Whitneycircle.Adiscbounded byaWhitneycircleiscalleda Whitneydisc.SupposethattheWhitneycircleboundsan embeddedWhitneydisc, W ,whoseinteriorliesintheexterioroftheimageof X in Y Underaconditiononthenormalbundleof W in Y describedinthenextparagraph,wecan pushonesheetof X along W andovertheothersheet,asindicatedinFigure1.4,which geometricallycancelsthetwoalgebraicallycancellingintersectionpoints.Thisprocessis calledthe Whitneytrick orthe Whitneymove [Whi44].

For dim X = d ≥ 3,theWhitneymoveturnsouttobesurprisinglysimple.Ifthe Whitneycircleisnull-homotopicin Y ,thenbygeneralpositionwecanassumeitbounds anembeddedWhitneydisc W whoseinteriorisdisjointfromtheimageof X.Anydisc D withboundaryacircle C pairingself-intersectionpointsintheimageof X determines a (d 1)-dimensionalsub-bundleofthenormalbundle νD⊆Y |C of D restrictedto C, byrequiringthatthesub-bundlebenormaltoonesheetoftheimageof X andtangent totheothersheet.InordertoperformtheWhitneymove,weneedthissub-bundleover thecircle C toextendovertheentiredisc D.Standardbundletheoryimpliesthatthe

Figure1.3 Adjustingthealgebraicself-intersectionnumberofanimmersedsubmanifoldby addinglocalkinks. + W

Figure1.4 TheWhitneymove.Left:AWhitneydisc W isshowninblue.Right:TheWhitney moveacross W removestwointersectionpoints.

Turn static files into dynamic content formats.

Create a flipbook