Sustainable polylactide-based blends suprakas sinha ray - The ebook is available for instant downloa

Page 1


https://ebookmass.com/product/sustainable-polylactide-basedblends-suprakas-sinha-ray/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications Mahmoud Nasrollahzadeh

https://ebookmass.com/product/biopolymer-based-metal-nanoparticlechemistry-for-sustainable-applications-mahmoud-nasrollahzadeh/

ebookmass.com

Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications Sanjay Mavinkere Rangappa

https://ebookmass.com/product/elastomer-blends-and-compositesprinciples-characterization-advances-and-applications-sanjaymavinkere-rangappa/

ebookmass.com

Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends Kalarikkal

https://ebookmass.com/product/micro-and-nano-fibrillar-compositesmfcs-and-nfcs-from-polymer-blends-kalarikkal/

ebookmass.com

Binding and Unbinding Kink: Pain,

Pleasure,

and Empowerment in

Theory

and Practice Amber R. CliffordNapoleone

https://ebookmass.com/product/binding-and-unbinding-kink-painpleasure-and-empowerment-in-theory-and-practice-amber-r-cliffordnapoleone/ ebookmass.com

Future Energy: Improved, Sustainable and Clean Options for Our Planet 3rd Edition

https://ebookmass.com/product/future-energy-improved-sustainable-andclean-options-for-our-planet-3rd-edition-trevor-m-letcher-editor/

ebookmass.com

History, Disrupted: How Social Media and the World Wide Web Have Changed the Past Jason Steinhauer

https://ebookmass.com/product/history-disrupted-how-social-media-andthe-world-wide-web-have-changed-the-past-jason-steinhauer/

ebookmass.com

School Counseling to Close the Achievement Gap: A Social Justice Framework

https://ebookmass.com/product/school-counseling-to-close-theachievement-gap-a-social-justice-framework/

ebookmass.com

Strategic Management: Competitiveness and Globalisation, 7th Asia-Pacific Edition Dallas Hanson

https://ebookmass.com/product/strategic-management-competitivenessand-globalisation-7th-asia-pacific-edition-dallas-hanson/

ebookmass.com

A King So Savage (The Savage Duet Book 1) April Moran

https://ebookmass.com/product/a-king-so-savage-the-savage-duetbook-1-april-moran/

ebookmass.com

Stay With Me: A Best Friend's Brother Small Town Romance

(Sugarland Creek Book 2) Brooke Montgomery & Brooke Cumberland

https://ebookmass.com/product/stay-with-me-a-best-friends-brothersmall-town-romance-sugarland-creek-book-2-brooke-montgomery-brookecumberland/

ebookmass.com

SustainablePolylactideBasedBlends

SustainablePolylactideBasedBlends

SuprakasSinhaRay

CentreforNanostructuresandAdvancedMaterials,DSI-CSIRNanotechnology InnovationCentre,CouncilforScientificandIndustrialResearch, Pretoria,SouthAfrica DepartmentofChemicalSciences,UniversityofJohannesburg,Doornfontein, Johannesburg,SouthAfrica

RitimaBanerjee

DepartmentofChemicalEngineering,CalcuttaInstituteofTechnology, Howrah,India DepartmentofChemicalSciences,UniversityofJohannesburg, DoornfonteinCampus,Johannesburg,SouthAfrica

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-323-85868-7

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: EdwardPayne

EditorialProjectManager: JohnLeonard

ProductionProjectManager: PoulouseJoseph

CoverDesigner: GregHarris

TypesetbySTRAIVE,India

Dedicatedtoourparents.

Abouttheauthorsxv

Prefacexvii

Acknowledgmentsxix

1.Introduction1

1.1Backgroundandmotivation1

1.2Polylactide:Advantagesandchallenges4

1.3Polymerblendtechnology5

1.4Polylactideblendsresearchoutputs10

1.5Sustainability10

1.6Scopeofthebook13 References13

2.Terminologyanddimensionsofsustainability,lifecycle assessment,andcharacteristicsofsustainablepolymer materials17

2.1Terminology17

2.2Thethreedimensionsofsustainability20

2.3Lifecycleassessment21

2.4Characteristicsofsustainablepolymers23

2.5Conclusions26 References27

3.Scienceandtechnologyofpolylactide31

3.1Introduction31

3.2ChemistryandsynthesisofPLAs32

3.3Properties37 3.4Applications40

3.5Biodegradation41

3.6LifecycleassessmentofPLAandPLA-based materials42

3.7Conclusion44 References45

4.Synthesis,properties,advantages,andchallengesof bio-basedandbiodegradablepolymersusedforthe preparationofblendswithpolylactide51

4.1Introduction51

4.2Definitionandcharacteristicsofbio-basedand biodegradablepolymers52

4.3Polymersderivedfromrenewableresources54

4.4Environmentallyfriendlypolymersderivedfrom fossil-fuelresources63

4.5Advantagesofbiopolymers67

4.6Challengesandopportunitiesof biopolymers68

4.7Biopolymersmarket69

4.8Conclusion72 References73

5.Fundamentalsofpolymerblendtechnology79

5.1Basicsofpolymerblends79

5.2Interphaseandcompatibilization81

5.3Blendmorphologydevelopment88

5.4Effectofprocessingconditionsonblend morphology111

5.5Conclusions116 References116

6.Processingtechnologiesforpolylactide-basedblends127

6.1Blendingmethodsandequipment127

6.2Conclusions137 References137

7.Techniquesforstructuralandmorphological characterizationofpolymerblends139

7.1Opticalmicroscopy139

7.2Scanningelectronmicroscopy140

7.3Transmissionelectronmicroscopy145

7.4Atomicforcemicroscopy145

7.5Wide-angleX-raydiffraction148

7.6Small-angleX-rayscattering152

7.7Nuclearmagneticresonance167

7.8Infraredspectroscopy169

7.9Rheology170

7.10Conclusions173 References173

8.Mechanicalmodelsforpolymerblends179

8.1Backgroundofmechanicalmodels179

8.2Conclusions185 References185

9.Polylactidestereocomplex187

9.1BasicsofstereocomplexPLA187

9.2Processingandstructuralcharacterizationof stereocomplexPLA192

9.3DegradabilityofstereocomplexPLA203

9.4MechanicalpropertiesofSCPLA204

9.5ApplicationsofSCPLA205

9.6Conclusions205 References207

10.Polylactide/naturalrubberblends213

10.1Processingandstructuralcharacterizationof PLA/naturalrubberblends213

10.2ThermalcharacterizationofPLA/NRblends221

10.3MechanicalpropertiesofPLA/NRblends222

10.4DegradabilityofPLA/NRblends223

10.5ApplicationsofPLA/NRblends226

10.6Conclusions226

References226

11.Polylactide/starchblends229

11.1Basicsofstarch229

11.2Processingandstructuralcharacterizationof PLA/starchblends230

11.3ThermalcharacterizationofPLA/starchblends238

11.4MechanicalpropertiesofPLA/starchblends242

11.5DegradabilityofPLA/starchblends244

11.6ApplicationsofPLA/starchblends246

11.7Conclusions246

References246

12.Polylactide/chitosanblends251

12.1Basicsofchitosan251

12.2Processingandstructuralcharacterizationof PLA/chitosanblends252

12.3ThermalcharacterizationofPLA/chitosanblends258

12.4MechanicalpropertiesofPLA/chitosanblends263

12.5DegradabilityofPLA/chitosanblends266

12.6ApplicationsofPLA/chitosanblends267

12.7Conclusions268

References268

13.Polylactide/poly(hydroxyalkanoate)blends271

13.1Basicsofpoly(hydroxyalkanoate)271

13.2Processingandstructuralcharacterizationof PLA/PHAblends272

13.3ThermalcharacterizationofPLA/PHAblends281

13.4MechanicalpropertiesofPLA/PHAblends282

13.5DegradabilityofPLA/PHAblends285

13.6ApplicationsofPLA/PHAblends286

13.7Conclusions287 References287

14.Polylactide/ligninblends291

14.1Basicsofligninandpolymer/ligninblends291

14.2Processingandstructuralcharacterizationof PLA/ligninblends294

14.3ThermalcharacterizationofPLA/ligninblends299

14.4MechanicalpropertiesofPLA/ligninblends302

14.5DegradabilityofPLA/ligninblends305

14.6ApplicationsofPLA/ligninblends307

14.7Conclusions308 References309

15.Polylactide/naturaloilblends313

15.1Processingandstructuralcharacterizationof PLA/naturaloilblends313

15.2ThermalcharacterizationofPLA/naturaloilblends321

15.3MechanicalpropertiesofPLA/naturaloilblends323

15.4DegradabilityofPLA/naturaloilblends324

15.5ApplicationsofPLA/naturaloilblends324

15.6Conclusions327 References327

16.Polylactide/poly(butylenesuccinate)blends329

16.1Processingandstructuralcharacterizationof PLA/PBSblends329

16.2Thermalpropertyandcrystallizationmodification337 16.3Mechanicalproperties339

16.4Biodegradability,recycling,andapplications341

16.5Conclusions348 References349

17.Polylactide/poly[(butylenesuccinate)-co-adipate] blends353

17.1Processingandstructuralcharacterizationof PLA/PBSAblendsystems353

17.2Thermalproperties,crystallizationmodification, andthermalstability363

17.3Mechanicalproperties365

17.4Biodegradationandapplications370 17.5Conclusion371 References372

18.Polylactide/poly(ε-caprolactone)blends375

18.1Processingandstructuralcharacterizationof PLA/PCLblends375

18.2ThermalcharacterizationofPLA/PCLblends382

18.3MechanicalpropertiesofPLA/PCLblends386

18.4BiodegradabilityofPLA/PCLblends391

18.5ApplicationsofPLA/PCLblends394

18.6Conclusions395 References395

19.Polylactide/poly(butyleneadipateterephthalate) blends399

19.1Processingandstructuralcharacterizationof PLA/PBATblends399

19.2ThermalcharacterizationofPLA/PBATblends405

19.3MechanicalpropertiesofPLA/PBATblends407

19.4DegradabilityofPLA/PBATblends407

19.5ApplicationsofPLA/PBATblends409

19.6Conclusions410 References410

20.Market,currentandfutureapplications413 20.1Market413

20.2Applications416 References418

21.Conclusions,challenges,andfutureoutlook423 21.1Conclusions423 21.2Challenges423 21.3Futureoutlook425 References426 Index429

Abouttheauthors

SuprakasSinhaRay isChiefResearcherandManageroftheCentreforNanostructures andAdvancedMaterials,DSI-CSIRNanotechnologyInnovationCentre,CouncilforScientificandIndustrialResearch(CSIR),Pretoria,SouthAfrica.HereceivedhisPhDinphysical chemistryfromtheUniversityofCalcutta,India,in2001.Prof.Ray’scurrentresearch focusesontheapplicationsofpolymer-basedadvancedmaterials.Heisoneofthemost activeandhighlycitedauthorsinthefieldofpolymernanocompositematerials,andhe hasrecentlybeenratedbyThomsonReutersasoneoftheTop1%mostimpactfuland influentialscientistsandTop50highimpactchemists(outof2millionchemists worldwide).

Prof.Rayistheauthorof7books,coauthorof5books,35bookchaptersonvarious aspectsofpolymer-basednanostructuredmaterialsandtheirapplications,andauthor andcoauthorof450articlesinhigh-impactinternationaljournalsaswellas37articles innationalandinternationalconferenceproceedings.Healsohas6patents(including applications)and7newdemonstrated(commercialized)technologiessharedwithcolleagues,collaborators,andindustrialpartners.Sofarhisteamcommercialized19differentproducts.HishonorsandawardsincludeSouthAfrica’smostPrestigious2016 NationalScienceandTechnologyAward(NSTF),Prestigious2020CSIR-wideCareer AchievementsAward,Prestigious2014CSIR-wideLeadershipAward,Prestigious2014 CSIRHumanCapitalDevelopmentAward,andPrestigious2013MorandLamblaAward (topawardinthefieldofpolymerprocessingworldwide),InternationalPolymerProcessingSociety,UnitedStates.HehasalsobeenappointedasExtraordinaryProfessor,UniversityofPretoriaandDistinguishedVisitingProfessor,UniversityofJohannesburg. Currently,heisservingasAssociateEditor/EditorialBoardMemberofthe RSCAdvances (AssociateEditor), ACSOmega, InternationalJournalofPlasticFilmsandSheeting,and MacromolecularMaterialsandEngineering.

RitimaBanerjee completedhermaster’sdegreeinpolymerscience&technologyfrom theIndianInstituteofTechnology,Delhi(IITD).Afterworkinginthepolymerindustry(GE PlasticsandSABIC)for7years,shereturnedtoacademia.ShetaughtatDelhiTechnologicalUniversityfor2yearsandsubsequentlycompletedherPhDfromtheDepartmentof MaterialsScience&Engineering,IITD,theareaofherworkbeingmicrocellularprocessingofthermoplasticelastomer-basedblendsandnanocomposites.SheispresentlyafacultymemberintheDepartmentofChemicalEngineeringatCalcuttaInstituteof Technology,India.Herresearchinterestsincludemicrocellularprocessingandthe structure-property-processingrelationshipofpolymericmaterials.

Preface

Fossil-basedsyntheticcommoditypolymershavebecomeindispensableformodernlife andtheglobaleconomy.Theamountofplastic-basedproductsconsumedyearlyinindustryandhouseholdshasbeengrowingimmenselyduetotheirproperties.Mostplasticbasedproductsdevelopedfromsyntheticpolymersarenonbiodegradableand,therefore, remainintheenvironmentforatleastdecades,probablycenturiesifnotmillennia.Ithas beenprojectedthattheconsumptionofsyntheticplastic-basedproductswilldoubletheir sizeby2034;therefore,plasticwasteisestimatedtogrowexponentially.

Inrecentyears,plasticwastegeneratedfromtheindustryandhouseholdshasbecome aneyesoreintheenvironment.Afterhavingserveditsuseanddiscardedintotheenvironment,plasticwastebecomesanenvironmentalhazard.Inaddition,theomnipresenceof plasticwastenegativelyimpactshumanhealthandwildlifeastheyarebecoming entangledwithpolymers,whichresultsininjuriesanddeathinsomecases.Therefore, thelineareconomicmodelofsyntheticplastics,“take,make,use,anddispose,”failsto addressend-of-lifeissuesofafter-useplasticproduct-basedwastesandmakesthecurrent productionanduseofsyntheticplastic-basedproductsinsocietyunsustainable.

Toaddressthepersistentplasticpollutiononlandandinwaterways,researchersare focusingonthedevelopmentofsustainablepolymers.Asustainablematerialcanbe definedaseither“amaterialderivedfromrenewablefeedstocksthataresafeinboth productionanduse,andthatcanberecycledordisposedofinwaysthatareenvironmentallyinnocuous”or“aclassofmaterialsthatarederivedfromrenewablefeedstocks andexhibitclosed-looplifecycle.”Therefore,incontrasttothelineareconomymodel, acircularmaterialseconomyframework,i.e.,make,use,andrecycle/decompose,has beendeveloped.

Inthisdirection,polylactide(PLA)isoneofthemostimportantandusefulsustainable polymersbecauseofitsrenewableorigin,controlledsynthesis,goodmechanicalproperties,andinherentbiodegradability/biocompatibility.However,itsbrittleness,poormelt strength,andslowcrystallizationratehavelimiteditsapplicationandprocessability. TheblendingofPLAwithothersustainableaswellasbiodegradable(bothbio-based andfossilfuel-based)polymershavinghigherflexibilityandhighermeltstrengthisan economicallyefficientstrategyforthedevelopmentofPLA-basedmaterialswithdesired properties.Overthepastfewyears,manyarticlesandpatentshavebeenpublishedinthis area;however,therapidevolutioninthisareaisyettoberealized.Twomainissuesare drivingextensiveworldwideresearchtowardthedevelopmentofPLA-basedblends: (i)thedependenceonfossilfuel-basedresourcesand(ii)thegrowingconcernabout

theenvironmentalpollutioncausedbytheincreasingproduction,use,anddisposalof nondegradableconventionalsyntheticpolymers.

Mostchemicallydifferentbio-basedandbiodegradablepolymersareimmiscibleand blendingthemwithPLAleadstophase-separatedmorphologieswithweakinterfacial adhesionandthuspoormechanicalperformances.Sincethefinalpropertiesoftheblends aredirectlydependentonthemorphologies,manyattemptshavebeenmadetotunethe morphologiestowardthedesiredapplication.Thestudiesreportedtodatehaveshown thatvariousmorphologiescanbedevelopedbysimplyalteringthedynamicandkinetic parameterssuchastheblendratio,viscosityratio,compatibilization,mixingtime,and mixertype.Thisbookfocusesonrecentresearchefforts,processingtechniques,andcriticalresearchchallengesindevelopingPLA-basedsustainablematerialsforuseinloadbearingtoflexiblepackagingapplications.

ThisbookprovidesathoroughandcriticaloverviewofstateoftheartinPLA-based blends,includingsignificantpastandrecentadvances.Thefollowingarekeyfeatures ofthisbook:

• Anintroductiontosustainabilityandcharacteristicsofsustainablepolymers

• ScienceandtechnologyofPLA

• Theoreticalmodelingofimmisciblepolymerblends-kineticsandthermodynamic

• Fundamentalunderstandingofvariousavailableandupcomingprocessing technologiesforPLA-basedpolymerblends

• Fundamentalsoncharacterizationtechniquesandpropertymeasurementsofpolymer blendsinparticular

• Acriticalreviewofmostcrucialpolylactide-basedpolymer(bio-basedand biodegradable)blendsystems

• Biodegradationandlife-cycleassessmentofPLAanditsblends

• Mainchallengesandoutlook

• Applicationsandmarketpotential

Thisbookisidealforpolymerscientistsandengineers,materialscientists,researchers, engineers,includingunder-andpostgraduatestudentsinterestedinthisexcitingfield ofresearch.ThebookwillalsohelpindustrialresearchersandR&Dmanagerstobring advancedPLA-basedsustainableproductsintothemarket.

SuprakasSinhaRay

CentreforNanostructuresandAdvancedMaterials,DSI-CSIRNanotechnology InnovationCentre,CouncilforScientificandIndustrialResearch,Pretoria, SouthAfrica

DepartmentofChemicalSciences,UniversityofJohannesburg,DoornfonteinCampus, Johannesburg,SouthAfrica

RitimaBanerjee

DepartmentofChemicalEngineering,CalcuttaInstituteofTechnology, Howrah,India

DepartmentofChemicalSciences,UniversityofJohannesburg, DoornfonteinCampus,Johannesburg,SouthAfrica

Acknowledgments

SuprakasSinhaRaythankstheDepartmentofScienceandInnovation,theCouncilforScientificandIndustrialResearch,andtheUniversityofJohannesburgforofferingfinancial support.Hefurtherexpresseshissincerestappreciationtoallcolleagues,postdoctoralfellows,andstudents(particularlyDrVincentOjijo)fortheirvaluablecontributionsto developthisfieldattheCouncilforScientificandIndustrialResearch.Wewouldliketo thankthereviewersfortheircriticalevaluationoftheproposalandchapters.Wethank alltheauthorsandpublishersforprovidingpermissiontoreproducetheirpublished figuresandtables.OurspecialthanksgotoEdwardPayneandJohnLeonardatElsevier fortheiradvice,support,andsuggestionsduringthevariousphasesofconceptdesign, organization,andproductionofthisbook.Finally,wethankourfamiliesfortheirtireless supportandencouragement.

Introduction

Polylactide(PLA)-basedblendsarearelativelynewclassofmaterialsforsustainable futuredevelopment.Thischapterprovidesthebackgroundandmotivationtodevelop PLA-basedblendscontainingbio-basedandbiodegradablepolymers.Moreover,this chapterbrieflyintroducespolymerblendtechnologyincludingcharacteristicsofsustainablepolymermaterials.Finally,ascopeofthisbookisprovidedinthischapter.

1.1Backgroundandmotivation

Advancesinpolymerscienceandengineeringovertheyearshaveledtothediscoveryand commercializationofvariouspolymerssuchaspolypropylene,polyethylene,polycarbonates,nylons,polyimides,polyurethanes,andliquidcrystals,whichhavefoundvarious domesticandindustrialapplicationsthatshapeourworldandadvanceourqualityoflife. Polymersfeatureprominentlyinalmosteverysectoroftheeconomy,fromindustriesthat manufacturepharmaceuticals,composites,tires,tolaboratoriesthatperformDNAprofilingforcriminalinvestigationsbylawenforcementagencies,demonstratingthatpolymersandpolymersciencehaveandcontinuetocontributetocivilization;additional examplesarepresentedin Fig.1.1[1–4].OwingtogreatmindssuchasHermannStaudinger(1881–1965),WallaceHumeCarothers(1896–1937),PaulJ.Flory(1910–1985), andStephanieL.Kwolek(1923–2014)advancingthefieldofpolymerscienceandengineering;plasticsareconsideredoneofman’sgreatestfeatsinthefieldofscienceandtechnology [5,6].In1962,FredWallaceBillmeyerJr.(1919–2004)predictedthat,withadvances inpolymerscienceandengineering,plasticswouldbecomethedominantmaterialsofthe future,surpassingsteel,aluminum,andcopper [7].Morethanhalfacenturylater,that predictionseemsaccurateas,inrecenttimes,plasticshaveoutperformedcompeting materials,includingwood,metal,andglass,asthematerialofchoiceindiversedomestic andindustrialapplications;theproductionofplasticsexceeded8billionMtbetween1950 and2015 [8,9].

Owingtotheirflexibility,adaptabilityforvariousapplications,lightweight,moisture resistance,corrosionresistance,andlowcost,plasticsaresought-aftermaterialsfor multipleapplications [10].Commodityplasticssuchaspolypropylene,whichisavery cost-effectivepolymericmaterialthatcanbeblow-molded,extruded,thermoformed, orinjection-molded;arepopularforthefabricationofproductssuchaspackagingfilms, plasticcratesusedforgoodstransportation,storagecontainers(e.g.,icecreamcontainers andyogurtcontainers),plasticcaps,jerrycans,andhaircombs.Otherwell-known commodityplasticsincludepoly(vinylchloride)(generallyknownasPVCandemployed

FIG.1.1 Theimmensecontributionsofpolymerstohumanadvancementandcivilizationcannotbeoverstated; polymersfeatureheavilyinalmosteverysectoroftheeconomy. ReproducedfromIroegbuAOC,RaySS,MbaraneV, BordadoJC,SardinhaJP.Plasticpollution:aperspectiveonmattersarising:challengesandopportunities.ACSOmega 2021;6:19343–55.Thisisanopen-accessarticledistributedunderthetermsandconditionsoftheCreativeCommons Attribution(CCBY)license.

inpipingandinsulationsystems),polyethylene(generallyemployedinpackagingfilms), andpoly(ethyleneterephthalate)(PET;generallyemployedinbeveragepackaging) [2,11]. Sinceourrelianceonpolymersincreasesinstepwithadvancesinscienceandtechnology (e.g.,robotics,artificialintelligence,syntheticorgans,insulationforenergyconservation, andsmartmaterials),afuturethatisnotenrichedandheavilydependentonplastics seemsunlikely [11–13].

Therefore,thereisnogainsayingthatplasticshavecontributedimmenselytotheriseof humancivilization;however,amajorquestionhasalwaysbeenontheirsustainableuse andthenegativeimpactontheenvironment.Plastic-linkedpollutionchangesthedynamicsofsystemsandenvironmentswithconsequentialimpactsonthenaturalcharacteristicsoftheirlivingandnon-livingcomponents.Mostusedcommodityandengineering plasticsarenotformulatedtodegrade.Therefore,theaccumulationofvisibleplasticbasedproductssuchascarry-bags,bottles,foodpackagingstuff,etc.,inlandfields, oceans,andwaterwayshascapturedtheattentionofeverypartofoursociety.Recently, ithasbeenfoundthattheaccumulationofnon-visibleplastics,suchasmicroplastics andnanoplastics,willhavemoredireconsequences,particularlytohumanhealth.The entrainmentofnanoplasticsintothehumangutholdsphysiologicalconsequences.For example,ithasbeenshownthatnanoplasticsimpactnegativelyonthecomposition anddiversityofmicrobialcommunitiesinthehumangut,consideringthatemerging researchevidencingthestrongrelationshipbetweenthegutandneuralnetworksinthe

braincouldnegativelyimpacttheendocrine,immune,andnervoussystems [14].Thegenotoxicityofmicro-andnanoplasticstoDNAhasbeenestablished.Ithasbeendemonstratedthatiftheplasticmatterissmallenoughtocrossthenuclearmembrane surroundingtheDNA,damagecanoccur,impairingtheDNAstructureorforminglesions which,unrepairedormisrepaired,cancausemutagenicprocessesthatareconsideredto playaroleinthecarcinogenesisofcells.

Inaddition,itwasfoundthatthetypeandlevelofdamageofDNAdependonthe shape,functionalgroups,andchemicalcompositionoftheplasticdebris [15].Thehuman airwayisakeypathwayforplasticfiberentrainmentintothelungs,andthebiopersistence ofthefibersdependsontheirlength,structure,andchemicalcomposition.Moreover,at certainexposurelimits,allplasticfibersarelikelytoproduceinflammation,whichcan leadtolungchallengessuchastheformationofreactiveoxygenspecieswiththepotential toinitiatecancerousgrowthsthroughsecondarygenotoxicity [16].Althoughtherearefew studiesontheextentofthedamagethatprolongedexposuretoplasticparticlescancause tothehumanbody,itisacceptedthatindustryworkersattextilefacilitieshaveahighrisk ofcontractingoccupationaldiseasesarisingfromhighexposuretotextilefibers [17].

Factorsmilitatingagainsteffortstomanageandlimitthenegativeenvironmental impactsofplastic-linkedpollutionarenumerousandmultifaceted;theyincludeeconomicandpoliticalfactors,alackofcommitmentbygovernmentsandglobalplastic economystakeholders,dissentingopinionsofscientists,andunderreportedand/oroverlookedpolluters [8,18–21].

Therefore,tomitigateplastic-linkedpollution,alternativethinkinghasbeentodevelop newpolymericmaterialsthathavenoorlesseradverseimpactontheenvironmentand/or arebio-sourced.Thisgroupofpolymersisknownas“sustainablepolymers.”Eventhough “sustainablepolymers”aregenerallyacceptedtomeaneitherbiodegradablepolymers (derivedfrombio-resourcesorfossilfuel)orjustpolymersproducedfromarenewable source,whichcouldbenon-biodegradable,however,biodegradablepolymersarepreferable,sincetheyaremoreenvironmentallybenign,consideringtheirbio-aidedmineralization(returningintonaturewithoutleavingavisibleresidue)attheendoftheirlifecycle. Limitedfossilfuel,innovationsinthedevelopmentofsustainablepolymermaterialsfrom biodegradablepolymers,completebiologicaldegradability,thereductioninthevolumeof garbageandcompostabilityinthenaturalcycle,protectionoftheclimatethroughthe reductionincarbondioxidereleased,stringentgovernmentandmunicipallegislations, fastdevelopmentofenvironmentallyconscioussocietiesandtheapplicationpossibilities ofagriculturalresourcesfortheproductionofbiodegradablepolymers,aresomeofthe reasonswhysuchmaterialshaveattractedimmenseacademicandindustrialinterests.

Onefundamentalpolymerinthisregardispolylactide(PLA),whichcanbesourced fromrenewablefeedstocks,andatthesametime,isbiodegradable,makingitsusenot onlysustainablebutalsohavingalessnegativeimpactontheenvironment.Itistheoldest andpotentiallyoneofthemostexcitingandvaluablebio-basedbiodegradablepolymers. Thisisbecauseofitsrenewableorigin,controlledsynthesis,goodmechanicalproperties, inherentbiodegradability,andbiocompatibility.

1.2Polylactide:Advantagesandchallenges

Polylactide(PLA)isaversatilebio-basedbiodegradablepolymerandhigh-molecularPLA generallyproducedbythering-openingpolymerizationoflactide.Poly(lacticacid)and polylactidearethesamechemicalproducts,andbothareabbreviatedasPLA.Theonly differencebetweenthesepolymersishowtheyareproduced [22–27].Whencompared tootherpolymers,suchashigh-densitypolyethylene(HDPE),polystyrene(PS),PP,and PET,PLAhasgoodmechanical,optical,physical,andbarrierproperties.Thetensile strengthofPLAliesbetween44and82MPa,andisclosetothatofPS.Thedetailsregarding thescienceandtechnologyofPLAcanbefoundin Chapter3.Asaresultofthebrightmarketprojectionsandrelativelygoodproperties,PLAisconsideredtobeasustainablealternativetotraditionalpetroleum-basedplastics.

Despitethegoodproperties,PLAhaslowflexibility(elongation-at-breakofPLAis between2.5%and6%),lowimpactstrength,andlowthermalstability-especiallyfor melt-processedmaterialswhencomparedtootherconventionalpolymers,whichlimits itsapplications [22–27].Likewise,itsbarrierpropertiesarenotgoodenoughforcertain applications,forexample,thepackagingoffoodproductswithhighmoisturecontent underamodifiedenvironment.Itsthermalstabilityisrelativelylowcomparedtoconventionalthermoplastics,andhencelossofmolecularweightusuallyoccurswhenmeltprocessed.Duetothethermalinstability,recyclingPLAorcombiningitwithotherpolymers inrecyclestreamisnotadvisable.Thereisamarketrequirementforanewgenerationof PLAmaterialsthatcanwithstandhightemperaturesandaresuitableformicrowavable foodpackagingandbottleswithhigherbarrierpropertiesforoxygen-sensitivefoodand beverages.Duetotheseconcerns,aconcertedresearchefforthasbeenfocusedonthe modificationofthepropertiesofPLAtosuitspecificrequirements.

VariousresearchershaveemployedvariousstrategiestoaddressthementionedchallengesofPLAthatincludebrittleness,lowimpactresistance,lowthermalstabilityfor melt-processedarticles,highwatervaporpermeability,relativelylowheatdistortiontemperature,andlowcrystallizationrate,assummarizedin Fig.1.2[28].Dependingonthe particularapplication,anyofthesepropertiesmaybetargetedforimprovement.The strategiesemployedinthemodificationofPLAareeitheratthepelletmanufacturing stage,i.e.,controlofstereochemistryandco-polymerization,oratthearticleprocessing andproductdevelopmentstage,i.e.,plasticization,reactiveprocessingwithcoupling agentstoincreasethemolecularweight,blendingwithsofterpolymersandincorporation ofnanoparticlestoformbionanocomposites.Eachofthesestrategieshasitsprosandcons inthatimprovementincertainpropertiesmayleadtodeteriorationinothers,asillustratedin Fig.1.2.

Inthisdirection,acheaperwaytomodifyPLAforbetterpropertiesisbyblendingwith currentlyexistingpolymers,especiallybiodegradablepolymers,toimproveflexibilityand impactstrengthratherthandevelopingnewpolymericmaterialstogether.Inthisregard, severalresearchershaveembarkedonblendingPLAwithvariousbio-basedbiodegradable polymerssuchasstarch,chitosan,vegetableoils,lignin,naturalrubber,etc.,and

Challenges of PLA

Brittleness/low impact resistance

Thermal instability

Barrier properties

Heat deflection

temperature (HDT)

Low crystallization rate

Strategies of PLA modification

Stereochemistry control

Co-polymerization

Plasticization

Reactive processing with

agent

Blending with softer polymers

Nanocomposites technology

(e.g. use of nanoclay)

Consequences

• Low modulus

• Higher modulus

• Improved tensile strength

• Improved impact resistance/ductility

• Higher HDT

• Improved scratch resistance

• Controlled biodegradation rate

• Improved barrier properties

• Improved thermal stability

• Improved crystallization rate

• Improved flame retardancy

• Lower thermal stability

Scope of the current study

FIG.1.2 ChallengesandthemodificationstrategiesandtheireffectonthepropertiesofPLA. ReproducedfromOjijo V.Developmentofenvironmentally-friendlypolymericmaterialsbasedonpolylactideandpoly[(butylenesuccinate)co-adipate]blends[PhDthesis].TUT;2013.Thisisanopen-accessthesisdistributedunderthetermsandconditionsof theCreativeCommonsAttribution(CCBY)license.

fossil-basedbiodegradableandyetsofterpolymerssuchaspoly(ε-caprolactone), poly(butylenesuccinate),poly[(butylenesuccinate)-co-adipate],etc.Thesynthesis,characterization,andpropertiesofthemostimportantbio-basedandfossil-basedbiodegradablepolymersusedforthepreparationofblendswithPLAarereportedin Chapter4.

1.3Polymerblendtechnology

Apolymerblendisamixtureofatleasttwomacromolecularsubstances,polymersor copolymers,inwhichtheingredientcontentisabove2% [29].Thebenefitsofpolymer blendsaremulti-foldandhaveevolvedovertheyears.Inthe1960s,blendingwascarried toenhanceaspecificpropertyofapolymer,mostlyimpactstrength.Inthenextdecade, blendingwasusedfordilutingengineeringpolymerswithcommoditypolymersfor loweringcosts.Inthe1980s,blendingwasusedforenhancingtheprocessibilityof high-temperaturespecialtyresins.Intoday’sworld,blendingiscarriedouttoachievea specificsetofpropertiesforaparticularapplication.Forexample,thematerialusedfor automotivebodypanelsshouldbeeasytomoldtoaccuratedimensions,shouldretain itsshapeupto85°C,shouldbeimpactresistantattemperaturesaslowas 40°C,have resistancetogasoline,motoroil,andsoapsolution,shouldbepaintable,cost-effective, recyclableandsoon.Itisnotpossibletomeetallrequirementsusingasinglepolymer. Theonlysolutionistocombinethecharacteristicsofseveralpolymersbypreparinga polymerblend [30].

Theessentialcharacteristicofapolymerblendisthephasebehavior,sincetheperformanceoftheblendsdependsonthepropertiesofpolymericcomponentsandhowthey arearrangedinspace.Thespatialarrangementiscontrolledbythermodynamicsand flow-inducedmorphology.

Polymerblendscanexhibitmiscibilityorphaseseparationatvariouslevelsofmixing inbetweentheextremes,forexample,partialmiscibility.Homogeneousmiscibilityin polymerblendsrequiresnegativefreeenergyofmixing:

where ΔGmix, ΔHmix, ΔSmix,and T arethechangesinthefreeenergyofmixing,enthalpy, entropy,andabsolutetemperature,respectively. ΔGmix mustbe <0.

Amisciblepolymerblendisapolymerblendthatishomogeneousdowntothemolecularlevel.Itisassociatedwithanegativevalueoffreeenergyofmixing:

andapositivevalueofthesecondderivative:

Animmisciblepolymerblendisonewithapositivevalueoffreeenergyofmixing [1]:

Miscibleblendsusuallyexhibitpropertiesthatareanaverageofthoseoftheblend components.Themiscibleblendofpoly(phenyleneoxide)(PPO)withpolystyrene(PS) exhibitsalowerprocessingtemperatureandcostthanthatofPPOandahigherheat distortiontemperaturethanthatofPS.Incontrast,animmiscibleblendcanexhibitpropertiesthataresuperiortothoseofeithercomponent.Themostcommonexampleisthe enhancementofthetoughnessofpolymersbyblendingwith10%–20%ofan elastomer [31].

MixingPLAwithotherbio-basedandbiodegradablepolymersusuallyresultsinan immisciblesystemcharacterizedbyacoarse,unstablemorphologyandpooradhesion betweenthephases.Suchblendshavelarge-sizeddomainsofthedispersedphaseand pooradhesionbetweenthephases,whichleadstoinferiorandirreproducibleperformance,theirreproducibilityoriginatingfromtheinstabilityofmorphology.Theperformanceofimmiscibleblendsisenhancedbycompatibilization.Compatibilizationisthe processofmodificationoftheinterfacialpropertiesinimmisciblepolymerblends,resultingintheloweringoftheinterfacialtensioncoefficientandstabilizationofthedesired morphology,thuscreatingapolymeralloy.Apolymeralloyisanimmiscible,compatibilizedpolymerblendpossessingamodifiedinterfaceandmorphology.Therearethree objectivesofthecompatibilizationprocess:(1)adjustmentoftheinterfacialtensionso astoachievethedesireddegreeofdispersion;(2)ensuringthatthemorphologygenerated duringthealloyingstagewillresultintheoptimumstructureduringtheformingstage;

and(3)increasingtheadhesionbetweenthephasesinthesolid-state,thusfacilitatingthe stresstransferandenhancingperformance [32].

Compatibilizationisusuallyaccomplishedby(i)additionofasmallamountofa co-solventwhichismiscibleinbothphases,(ii)additionofacopolymer,onepartofwhich ismiscibleinonephaseandanotherpartintheotherphase,(iii)reactivecompoundingso astomodifyatleastonepolymerfordevelopingregionsoflocalmiscibility,and (iv)additionofalargeamountofacore-shellcopolymerwhichactsasanimpactmodifier aswellasacompatibilizer [29].Thesestrategiesresultindifferentalloyspossessingdifferentsetsofproperties.Forexample,theadditionofasmallamountofblockcopolymer mostlyinfluencestheinterfacialtensioncoefficient,andhencethesizeofdispersion,but usually,ithasasmallimpactontheshearsensitivityoftheblendmorphology.Researchon compatibilizationhasmostlyfocusedondi-blockortri-blockcopolymers.Theadditionof alargeamountofacore-shellcopolymerhasbeenfoundtobeparticularlyeffectivein blendsoftwobrittle,immisciblepolymersthatalsoneedimpactmodification.Thethird strategy,reactivecompatibilization,hasbeenfoundtogenerateathickinterphase,which exhibitsexcellentstabilityunderhighstressandstrain,suchasthosegeneratedduring injectionmolding [33]

ForimmisciblePLA-basedblends,thecontrolofprocessingparametersduringmelt blendingprocessplaysanimportantroleintheevolutionofthephasemorphologywhich subsequentlyimpactsontheproperties.Itisessentialtoknowtherheologicalproperties ofthepolymertounderstandthemorphologicaldevelopment,especiallyincaseswhere thecontributionsofthermodynamicstouniformmorphologiesarelow.

Itiswellacceptedthatflow-inducedstructuralevolutioninimmisciblepolymerblends isgovernedbyseveralfactorssuchasthemixingconditions,theinterfacialtension betweenthephases,volumefraction,andviscosityratiooftheconstituentpolymers. Inthisdirection,areviewbyBriscoeetal. [34] ofimmisciblefluidmixing,sinceTaylor’s seminalworkin1934 [35],summarizesthefactorsthatinfluencetheshearstrainrequired toproducebreak-upinasteadylaminarflowas:(i)thedispersedandcontinuousphase viscosities, ηd and ηm,respectively,(ii)theinitialradiusofthedispersedphase, R and (iii)theinterfacialtension, σ .ForNewtonianflow,dropletdeformationisgovernedby twodimensionlessnumbers:theviscosityratio:

andthecapillarynumber, Ca,givenbytheratioofdeformingviscousstresstotherestoring stressfrominterfacialtensioninthefollowingformproposedbyBriscoeetal. [34].

where ηm istheviscosityofthemajormatrix(PLAinthiscase), _ γ istheshearstrainrate, R is theradiusofthedispersedphase(PBSAinthiscase),and σ istheinterfacialtension.The numeratoristhedeformingstresses,whilethedenominatoristherestoringinterfacial stress.

FIG.1.3 Schematicrepresentationoftheprocessesoccurringduringmelt-blendingoftwopolymers. Reproduced withpermissionfromKoningC,VanDuinM,PagnoulleC,JeromeR.Strategiesforcompatibilizationofpolymer blends.ProgPolymSci1998;23:707–57.Copyright1998,ElsevierScienceLtd.

Arepresentationoftheprocessesthatoccurduringmeltblendingoftwopolymerswas givenbyKoningetal. [36],asshownin Fig.1.3.Basically,inthebeginning, Ca issmall,and theinterfacialstresswithstandstheshearstress,andanellipsoidaldropshapepersists.

Aboveacriticalvalue, Ca,typicallyattheinitialstageofmixingwhenthedispersed domainsarelarge,theshearstressdominatestheinterfacialstressanddropsarestretched affinely(withvariousotherbiobasedandbiodegradablepolymermatrix)intolongthin threads.Ifthelocalradiusofthethreadbecomessufficientlysmall,interfacial(“Rayleigh”) disturbancesgrowonthethreadandresultinthebreakupoftheseliquidthreadsinto smalldrops.Aboveacertaindiameter,thesesmalldropsmaybestretchedandbroken again.Forverysmalldrops, δ/R ishighenoughtopreventfurtherstretchingandbreakup. Empiricalrelationshipsbetweenthe Ca andviscosityratio, p,havebeendeveloped,and hencethedropletsize,asafunctionofprocessingparameters,maythenbepredicted forlowandconstantconcentrationsofthedispersedphase [36].However,themorphologyofcertainblendsisnotinequilibriumandmaychangedependingonpost-processing treatments.PLAhasaslowcrystallizationrateduringprocessingwhencomparedtoPBSA. Therefore,annealingtheblendstoallowcrystallizationofPLAcomponentswouldleadto aprobablefurtherphaseseparationanddeteriorationofcertainproperties,e.g.,strength. EventhoughPLAandbiodegradablepolymerblendsareimmiscible,somelevelofan interminglingofchainsofbothpolymersattheinterfaceisexpected.Formaximizing thebenefitsfromthetwopolymers,notonlyshouldthesizeofthedispersedphasebe smallbutalsothedropletsurfaceareaperunitvolumeoftheblendvolume,shouldbe maximumasillustratedin Fig.1.4[37]

Therefore,inthecaseofPLA-basedimmiscibleblendsystems,thereexistsverylittle interfacialinteractionbetweenthetwophases.Assuchsomelevelofmiscibilityisonly achievedatcertaincompositionalratiosunderappropriateprocessingconditions.Bearingthisinmind,compatibilizershavebeenusedtomodifytheinterfaceoftheblendcomponents,therebyenablingcontrolofthemorphologyandultimatelyimprovementin properties.

FIG.1.4 (A)SurfaceareaofPBSAdomainsperunitvolumeofblendand(B)typicalstress-straincurvesshowingfailure typeforselectedblends.Theinsetscanningelectronmicroscopyimagesshowthesurfacemorphologyofvarious blends. ReproducedwithpermissionfromOjijoV,RaySS,SadikuR.Roleofthespecificinterfacialareaincontrolling propertiesofimmiscibleblendsofbiodegradablepolylactideandpoly[(butylenesuccinate)-co-adipate].ACSAppl MaterInterfaces2012;4:6690–701.Copyright2012,AmericanChemicalSociety.

Ablendwithdroplet/matrixmorphologywillexhibitsignificantimprovementof impactpropertiesascomparedtomatrixpolymer,ablendwithfibrillarmorphologywill exhibitsuperiorunidirectionaltensilepropertiesandonewithsheet-likeinclusions (lamellarmorphology)willpossesssuperiorbarrierproperties [38–40].Ina co-continuousmorphology,bothcomponentscanfullycontributetothepropertiesof theblend [40].Thetypeofmorphologythatdevelopsdependsonthenatureofthepolymers(interfacialtension,viscosities,andviscosityratios),theirvolumefraction,andthe processingconditionsemployed.Thevolumefractionoftheminorphasecorresponding totheonsetofcontinuityofonephasewithintheother(percolationthreshold)isdependentontheshapeofthedispersedparticles [41].Thiscanbeobservedabove16vol%ofthe minorcomponentincaseofdroplet/matrixmorphology.Incaseoffibrillarmorphology, thevaluemaybemuchlower.However,thepercolationthresholdsimplymarkstheonset ofcontinuityoftheminorphase.Notallmaterialoftheminorphaseisco-continuous then.Asthevolumefractionoftheminorphaseincreases,moreandmorematerialofthis componentbecomesapartofthepercolatingstructure,i.e.,co-continuous,tillastageis reachedwhenafullyco-continuousstructureisformed.Willemseetal. [38] haveshown thatthevolumefractionwhichmarkstheformationofafullyco-continuousstructureisa functionofmatrixviscosity,interfacialtension,andtheshearrateduringblending.Most blendshavedroplet/matrixstructure [42].Thefundamentalofpolymerblendtechnology hasbeenextensivelyreportedin Chapter5.

Theprocessing,morphologydevelopment,properties,andbiodegradabilityofvarious typesofsustainablePLA-basedblendsarecoveredin Chapters9–19.AmongallPLA-based

PLA and Chitosan Blends

PLA and Plant Oil Blends

PLA and PCL Blends

PLA and NR Blends

PLA and PBA Blends

PLA and PBS Blends

PLA and PBAT Blends

PLA and Starch Blends

PLA and Lignin Blends

PLA and PBSA Blends

FIG.1.5 ResearchoutputdocumentsofvariousPLA-basedblendsofbio-basedandbiodegradablepolymers. Courtesy Scopus,16thSeptember2021.

blends,PLA-PCL,PLA-PBS,andPLA-PBATblendsareleadingblends(Fig.1.5).Thismay beduetothenatureofinherentcharacteristicsofPCL,PBS,andPBAT,whichareknown fortheirhighflexibility.Therefore,mixingPCL,PBS,andPBATwithPLAimprovesthe elongationatbreakandimpactstrengthofPLA.

1.4Polylactideblendsresearchoutputs

ConsistentwiththeincreasingamountoffundingforPLA-basedblendsdevelopment, researchoutput,e.g.,journalarticles,conferencepapers,bookchapters,etc.,havesteadily increasedfrom2001.Thisisreportedin Fig.1.6A,while Fig.1.6Breportsthecomposition oftheseresearchoutputs.Withcontinuedresearchanddevelopmentinterestfromacademiaandindustry,alongwithincreasinguseofPLAinsustainableproducts,increasing researchoutputsisexpectedtocontinue. Fig.1.6Cshowsthatthehighestnumberof researchanddevelopmentoutputsarefromChina.

1.5Sustainability

Theconceptofsustainabledevelopmentwasintroducedin1987bytheWorldCommissionofEnvironmentandDevelopment,initsBrundtlandReport,accordingtowhich “sustainabledevelopmentisadevelopmentwhichmeetstheneedsofthepresentwithout compromisingtheabilityofthefuturegenerationstomeettheirownneeds” [43].Sustainabilitycomprisesenvironmental,social,andfinancialdimensions,whichareinterrelated andneedtobeaddressedsimultaneouslyforachievingsustainabledevelopment [44]. PLA Stereocomplex

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.