Solved problems in classical electromagnetism: analytical and numerical solutions with comments j pi

Page 1


https://ebookmass.com/product/solved-problems-in-classical-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The classical Stefan problem: basic concepts, modelling and analysis with quasi-analytical solutions and methods Gupta S.C.

https://ebookmass.com/product/the-classical-stefan-problem-basicconcepts-modelling-and-analysis-with-quasi-analytical-solutions-andmethods-gupta-s-c/ ebookmass.com

Trigonometry Booster with Problems and Solutions 3e Edition Rejaul Makshud

https://ebookmass.com/product/trigonometry-booster-with-problems-andsolutions-3e-edition-rejaul-makshud/

ebookmass.com

Classical and Analytical Mechanics: Theory, Applied Examples, and Practice 1st Edition Poznyak

https://ebookmass.com/product/classical-and-analytical-mechanicstheory-applied-examples-and-practice-1st-edition-poznyak/ ebookmass.com

Detection Unlimited Georgette Heyer [Heyer

https://ebookmass.com/product/detection-unlimited-georgette-heyerheyer/

ebookmass.com

Assessing Bilingual Children in Context: An Integrated Approach – Ebook PDF Version

https://ebookmass.com/product/assessing-bilingual-children-in-contextan-integrated-approach-ebook-pdf-version/

ebookmass.com

Dieper dan pijn Hannah Hill

https://ebookmass.com/product/dieper-dan-pijn-hannah-hill/

ebookmass.com

Sophie Antonelli : A Dark Mafia Romance (Brutal Attachments Book 6) Z.Z. Brulant

https://ebookmass.com/product/sophie-antonelli-a-dark-mafia-romancebrutal-attachments-book-6-z-z-brulant/

ebookmass.com

Must Know High School ESL Danielle Pelletier

https://ebookmass.com/product/must-know-high-school-esl-daniellepelletier/

ebookmass.com

The Algorithmic Distribution of News James Meese

https://ebookmass.com/product/the-algorithmic-distribution-of-newsjames-meese/

ebookmass.com

https://ebookmass.com/product/feminist-lives-women-feelings-and-theself-in-post-war-britain-abrams/

ebookmass.com

SOLVEDPROBLEMSIN

CLASSICALELECTROMAGNETISM

SolvedProblemsin ClassicalElectromagnetism

Analyticalandnumericalsolutionswithcomments

J.Pierrus

SchoolofChemistryandPhysics,UniversityofKwaZulu-Natal, Pietermaritzburg,SouthAfrica

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

c J.Pierrus2018

Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2018 Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2018932794

ISBN978–0–19–882191–5(hbk.) ISBN978–0–19–882192–2(pbk.) DOI:10.1093/oso/9780198821915.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Preface

Thesedaystherearemanyexcellenttextbooksrangingfromtheintroductorytothe advanced,andwhichcoverallthecorepartsofatraditionalphysicscurriculum.The Solvedproblemsin... books(thisbeingthesecond)werewrittentofillagapfor thosestudentswhopreferself-study.Hopefully,theformatissufficientlyappealingto justifyenteringanalreadycrowdedspacewherethereisn’tmuchroomfororiginal insightandnewpointsofview.

Thisbookfollowsitspredecessor[1] bothinstyleandapproach.Itcontainsnearly 300questionsandsolutionsonarangeoftopicsinclassicalelectromagnetismthat areusuallyencounteredduringthefirstfouryearsofauniversityphysicsdegree. Mostquestionsendwithaseriesofcommentsthatemphasizeimportantconclusions arisingfromtheproblem.Sometimes,possibleextensionsoftheproblemandadditional aspectsofinterestarealsomentioned.Thebookisaimedprimarilyatphysicsstudents, althoughitwillbeusefultoengineeringandotherphysicalsciencemajorsaswell.In addition,lecturersmayfindthatsomeofthematerialcanbereadilyadaptedfor examinationpurposes.

Whereverpossible,anattempthasbeenmadetodevelopthethemeofeachchapter fromafewfundamentalprinciples.Theseareoutlinedeitherintheintroductionorin thefirstfewquestionsofthechapter.Variousapplicationsthenfollow.Inevitably,the author’spersonalpreferencesarereflectedinthechoiceofsubjectmatter,although hopefullynotattheexpenseofprovidingabalancedoverviewofthecorematerial. Questionsarearrangedinawaywhichleadstoanaturalflowofthekeyconceptsand ideas,ratherthanaccordingtotheir‘degreeofdifficulty’.Thosemarkedwitha ** superscriptindicatespecializedmaterialandaremostlikelysuitableforpostgraduate students.Questionswithoutasuperscriptwillinvariablybeencounteredinmiddle toseniorundergraduate-levelcourses.A * superscriptdenotesmaterialwhichison theborderlinebetweenthetwocategoriesmentionedabove.Inallcases,studentsare encouragedtoattemptthequestionsontheirownbeforelookingatthesolutions provided.

Itiswidelyrecognizedthatlearning(andteaching!)electromagnetismisoneof themostchallengingpartsofanyphysicscurriculum.Intheprefacetohisbook Modernelectrodynamics,Zangwillexplainsthat‘anotherstumblingblockisthenonalgorithmicnatureofelectromagneticproblem-solving.Therearemanyentrypoints toatypicalelectromagnetismproblem,butitisrarelyobviouswhichleadtoaquick solutionandwhichleadtofrustratingcomplications’.Theseremarksratherclearly

[1]O.L.deLangeandJ.Pierrus, Solvedproblemsinclassicalmechanics:Analyticalandnumerical solutionswithcomments.Oxford:OxfordUniversityPress,2010.

outlinethechallenge.Certainly,itismyfirmbeliefthatstudentsbenefitfromahigh exposuretoproblemsolving.Topicswhichrequiretheuseofacomputerareespecially valuablebecauseoneisforcedtoaskateachstageinthecalculation:‘Ismyanswer reasonable?’Forthemostpart,thecomputercannotassistinthisregard.Otherconsiderationsplayarole.Experiencedefinitelyhelps.Sodoesthatsomewhatelusiveyet much-prizedattributewhichwecall‘physicalintuition’.

Allthecomputationalworkiscarriedoutusing Mathematica R ,version10.0.The relevantcode(referredtoasanotebook)isprovidedinashadeboxinthetext.For easyreference,thosequestionsinvolvingcomputationalworkarelistedinAppendixJ. Readerswhousedifferentsoftwarefortheircomputeralgebraareneverthelessencouragedtoreadthesenotebooksandadaptthecode—wherevernecessary—tosuittheir ownenvironment.Thatistosay,studentsusingalternativeprogrammingpackages shouldnotbe‘putoff’byourexclusiveuseof Mathematica ;thisbookwillcertainly beusefultothemaswell.Also,readerswithoutpriorknowledgeof Mathematica can rapidlylearnthebasicsfromtheonlineHelpatwww.Wolfram.com(orvariousother places;tryasimpleinternetsearch).Frommyexperience,studentslearnenoughof thebasicconceptstomakeareasonablestartafteronlyafewhoursoftraining.All graphsofnumericalresultshavebeendrawntoscaleusingGnuplot.

Forabooklikethisthereare,ofcourse,certainprerequisites.First,itisassumed thatreadershavepreviouslyencounteredthebasicphenomenaandlawsofelectricity andmagnetism.Second,aworkingknowledgeofstandardvectoranalysisandcalculus isrequired.Thisincludestheabilitytosolveelementaryordinarydifferentialequations. Anacquaintancewithsomeofthespecialfunctionsofmathematicalphysicswillalso beuseful.Becausereaderswillhavediversemathematicalbackgroundsandskills, Chapter1isdevotedtosettingouttheimportantanalyticaltechniquesonwhichthe restofthebookdepends.Asafurtheraid,nineappendicescontainingsomespecialized materialhavebeenincluded.Inkeepingwiththemoderntrend,SIunitsareadopted throughout.Thishasthedistinctadvantageofproducingquantitieswhicharefamiliar fromourdailylives:volts,amps,ohmsandwatts.

Usuallyoneofthefirstdecisionstheauthorofaphysicsbookmustfaceisthe importantmatterofnotation:whichsymboltouseforwhichquantity.Acursory lookatseveralstandardtextbooksimmediatelyrevealsnotabledifferences(Φ or V forelectricpotential, dv or dτ foravolumeelement, S or N forthePoyntingvector, andsoon).Becausethechoiceofnotationissomewhatsubjective,colleaguesinthe samedepartmentoftenpossessdivergentopinionsonthistopic.Somyownpreferences andprejudicesarereflectedinthenotationusedinthisbook.Foreasyreference,a comprehensiveglossaryofsymbolsisappended.

Chapters2–4focusprimarilyonstaticelectricityandmagnetism.TheninChapters 5and6webeginthetransitionfromquasi-staticphenomenatothecompletetimedependentMaxwellequationswhichappearfromChapter7onwards.Forthemostpart thisisabookthatdealswiththemicroscopictheory,exceptinChapters9and10, whichtouchonmacroscopicelectromagnetism.WeendinChapter12withacollection ofquestionswhichconnectMaxwell’selectrodynamicstoEinstein’stheoryofspecial relativity.

Althoughthequestionsandsolutionsarereasonablyself-contained,itmaybe necessarytoconsultastandardtextbookfromtimetotime.Universitylibrarieswill usuallyhaveawideselectionofthese.Someofmyfavourites,listedbytheirdateof publication,are:

☞ Classicalelectrodynamics,J.D.Jackson,3rdedition,JohnWiley(1998).

☞ Introductiontoelectrodynamics,D.J.Griffiths,3rdedition,PrenticeHall(1999).

☞ Electricityandmagnetism,E.M.PurcellandD.J.Morin,CambridgeUniversity Press(2013).

☞ Modernelectrodynamics,A.Zangwill,CambridgeUniversityPress(2013).

Withoutthehelp,guidanceandassistanceofmanypeoplethisbookwouldnever havereachedpublication.Inparticular,Iextendmysincerethankstothefollowing:

☞ AllardWelterfordrawingthecircuitdiagramsofChapter6,forhisadviceon various Mathematica queriesandforresolving(usuallyinagood-naturedway!) somepedanticissueswithLATEX.

☞ KarlPenzhornforattendingtomyothercomputer-relatedproblemsandalsofor helpingwiththeCorelDRAWsoftwarewhichwasusedtoproducemanyofthe diagramsinthisbook.

☞ ProfessorOwendeLangewhoconceivedtheformatofthese Solvedproblemsin... books,andwithwhomIco-authoredRef.[1].Hopefully,atleastsomeofOwen’s professionalismandattentiontodetailhasrubbedoffontomesincewebegan collaboratingintheearly1990s.

☞ ProfessorRogerRaabforhisencouragementandadvice.Roger’sresearchinterests havestronglyinfluencedmycareer,andIstillrecallourfirstdiscussionontheuse ofCartesiantensorsandtheimportanceofsymmetryinproblemsolving.Indeed, mostofAppendixAandseveralquestionsatthebeginningofChapter1arebased onsomeofhisoriginallecturematerial.

☞ Formerlecturersandcolleagueswho,inonewayoranother,helpedfostermy continuingenjoymentofclassicalelectromagnetictheory.Inapproximatechronologicalordertheyinclude:PeterKrumm,DaveWalker,ManfredHellberg,Max Michaelis,RogerRaab,CliveGraham,PaulJackson,TonyEagle,OwendeLange, FrankNabarroandAssenIlchev.

☞ Severalgenerationsofbrightundergraduateandpostgraduatestudentswhohave providedvaluablefeedbackonlecturenotes,tutorialproblemsandothermaterial fromwhichthisbookhasgraduallyevolved.

Pietermaritzburg,SouthAfrica J.Pierrus December2017

Someessentialmathematics

Nearlyallofthequestionsinthisintroductorychapteraredesignedtointroducethe essentialmathematicsrequiredforformulatingthetheoryofelectromagnetism.All ofthetechniquesdiscussedherewillbeusedrepeatedlythroughoutthisbook,and readerswillhopefullyfinditconvenienttohavetheimportantmathematicalmaterial summarizedinasingleplace.TopicscoveredincludeCartesiantensors,standardvector algebraandcalculus,themethodofseparationofvariables,theDiracdeltafunction, timeaveragingandtheconceptofsolidangle.Ourprimaryemphasisinthischapter isnotonphysicalcontent,althoughcertaincommentspertainingtoelectricityand magnetismaremadewheneverappropriate.

Althoughthescalarpotential Φ,theelectricfield E andthemagneticfield B are familiarquantitiesinelectromagnetism,itisnotalwaysknownthattheyareexamples ofamathematicalentitycalledatensor.Furthermore,itissometimesnecessaryto introducemorecomplicatedtensorsthanthese.Thischapterbeginswithaseriesof questionsinvolvingtheuseofCartesiantensors.Wewillfindthatthecompactnature oftensornotationgreatlyfacilitatesthesolutionofmanyquestionsthroughoutthis book.Readerswhoareunfamiliarwithtensorsandtheassociatedterminology,orwho needtorevisethebackgroundmaterial,areadvisedtoconsultAppendixAbefore proceeding.Attheendofthisappendix,weincludea‘checklistfordetectingerrors whenusingtensornotation’.Thisguidewillbehelpfulforboththeuninitiatedand theexperiencedtensoruser.

Question1.1

Let r = x ˆ x + y ˆ y + z ˆ z bethepositionvectorofapointinspace.UseCartesiantensors tocalculate:

( a ) ∇i rj ,

( b ) ∇ · r ,

( c ) ∇r,

( d ) ∇r k where k isrational,

( e ) ∇i (rj /r 3 ) ,

( f ) ∇i {(3rj rk r 2 δjk )/r 5 } and ,

( g ) ∇e ik r where k isaconstantvector .

SolvedProblemsinClassicalElectromagnetism. J.Pierrus,OxfordUniversityPress(2018). c J.Pierrus.DOI:10.1093/oso/9780198821915.001.0001

Solution

(a)Theoperation ∇i rj (= ∂rj ∂ri ) producesatensorofranktwowithninecomponents.Sixofthesecomponentshave i = j ,andforthem ∂rj ∂ri =0.The remainingthreecomponentsforwhich i = j allhavethevalueone.Thus

i

j = δij , (1) where δij istheKroneckerdeltadefinedby(III)ofAppendixA.

(b)Expressing ∇ r intensornotationandputting i = j in(1)gives ∇ r = ∇i ri = δii . UsingtheEinsteinsummationconvention see(I)ofAppendixA yields

(c)Writing r = √

j anddifferentiatinggive

becauseof(1).UsingthecontractionpropertyoftheKroneckerdeltagives

But(3)istruefor i =

and z ,andso

(d)Considerthe ithcomponent.Then [∇

becauseof(3).Theresultis

Putting k = 1 givesanimportantcase

(seealsoQuestion1.6).

( e ) ∇i (rj /r 3 )= ∇i rj r 3 + rj ∇i r 3 = ∇i rj r 3 + rj

whereinthelaststepweuse(1)and(3).

( f )Similarly,

Comments

(i)Since ∇i rj = ∇j ri wecanwrite δij = δji (i.e.theKroneckerdeltaissymmetric initssubscripts).Itpossessesthefollowingimportantproperty:

Inthefinalstepleadingto(10), j iseither x, y or z .OfthethreeKroneckerdeltas (δxj , δyj and δzj )twowillalwaysbezero,whilstthethirdwillhavethevalueone. Becauseofthis, δij issometimesalsoknownasthesubstitutiontensor.

(ii)Subscriptsthatarerepeatedaresaidtobecontracted.Soin(10), i iscontracted in Ai δij .Equivalently,onecansaythat Ai δij iscontractedwithrespectto i (iii)Atensorissaidtobeisotropicifitscomponentsretainthesamevaluesunder apropertransformation.‡ δij isanexampleofanisotropictensor:anysecond-rank isotropic tensor Tij canbeexpressedasascalarmultipleof δij (i.e. Tij = αδij ).[1]

Question1.2

(a)Considerthecross-product c = a × b.Showthat ci = εijk aj bk , (1) where εijk istheLevi-Civitatensordefinedby

ijk =

(b)Provethat

1 if ijk istakenasanyevenpermutationof x, y , z 1 if ijk istakenasanyoddpermutationof x, y , z 0 ifanytwosubscriptsareequal. (2)

∇ × r =0 , (3) where r =(x,y,z ). ‡ ProperandimpropertransformationsaredescribedinAppendixA.

[1]H.Jeffreys, Cartesiantensors,Chap.VII,pp.66–8.Cambridge:CambridgeUniversityPress, 1952.

Solution

(a)TheCartesianform c = ˆ x(ay bz az by )+ ˆ y (az bx ax bz )+ ˆ z(ax by ay bx ) has x-component cx = ay bz az by = ε

+ εxzy az by asaresultoftheproperties (2)1 and(2)2 .BecauserepeatedsubscriptsimplyasummationoverCartesian components,wecanwrite cx = εxjk aj bk using(2)3 .Similarly, cy = εyjk aj bk and cz = εzjk aj bk .Nowthe ithcomponentof c is (a × b)i whichis(1).

(b)Followingthesolutionof(a)wewrite (∇× r)i = εijk ∇j rk =

ijk δjk = εijj =0. Hereweusethecontraction εijk δjk = εijj andtheproperty εijj =0 thesame conclusionalsofollowsfrom(4)ofQuestion1.5 .Thisresultistruefor i = x,y and z .Hence(3).

Comments

(i)TheLevi-Civitatensorisathird-ranktensor.Itisclearfrom(2)thatitisantisymmetricinanypairofsubscripts.

(ii) εijk isalsoknownasthealternatingtensororisotropictensorofrankthree:any third-rank isotropic tensor Tijk canbeexpressedasascalarmultipleof εijk (i.e. Tijk = αεijk ).[1]

Question1.3

(a)ConsidertheproductoftwoLevi-Civitatensorswhichhaveasubscriptin common.Showthat εijk ε mk = δ

Hint: Theproduct εijk ε mk isanisotropictensorofrankfour.Prove(1)bymaking alinearcombinationofproductsoftheKroneckerdelta.

(b)Use(1)toprovetheidentity

(A × B)

, (2) where A and B arearbitraryvectors.

Solution

(a)Becauseofthehint, εijk ε mk = aδij δ m + bδi δjm + cδim δj wheretheconstants a, b and c aredeterminedasfollows:

i = x,j = x, = x,m = x : εxxk εxxk =0= a + b + c. i = x,j = y, = x,m = y : εxyk εxyk = εxyz εxyz =1= b.

i = x,j = y, = y,m = x : εxyk εyxk = εxyz εyxz = 1= c.

Thus a =0 andweobtain(1).

(b)Equations(1)and(2)ofQuestion1.2give (A × B)k = εk m A Bm = ε mk A Bm . Multiplyingbothsidesofthisequationby εijk andusing(1)yield εijk (A × B)k = εijk ε mk A Bm =(δi δjm δim δj )A Bm .Contractingsubscriptsgives(2).

Comments

(i)Noticethefollowingcontractionsthatfollowfrom(1):

(ii)Makingthereplacements A → ∇; B → F in(2)gives

andif ∇ × F =0 then

Question1.4

Suppose A(t) and B(t) aredifferentiablevectorfieldswhicharefunctionsofthe parameter t.Provethefollowing:

( a ) d dt (A B)= B dA dt + A dB dt , (1)

( b ) d dt (A × B)= dA dt × B + A × dB dt , (2)

( c ) d dt α(t)A = A dα dt + α dA dt (3)

Here α(t) isadifferentiablescalarfunctionof t.

Solution

Theseresultsareallprovedbyapplyingtheproductruleofdifferentiation.

(a) d dt (A B)= d dt (Ai Bi )= Bi dAi dt + Ai dBi dt whichis(1).

(b)From(1)ofQuestion1.2itfollowsthat d dt (A × B) i = d dt εijk Aj Bk .So d dt (A × B) i = εijk dAj dt Bk + εijk Aj dBk dt = dA dt × B i + A × dB dt i .

Sincethisistruefor i = x, y and z ,equation(2)follows.

(c)Theresultisobviousbyinspection.

Comment

Theparameter t oftenrepresentstimeinphysics.Thus A(t) and B(t) aretimedependentfields,andaccordinglythederivatives(1)–(3)representtheirratesofchange.

Question1.5

Suppose sij and aij representsecond-ranksymmetricandantisymmetrictensors respectively.Usingthedefinitions

Solution

Thesubscriptnotationisarbitrary,andso

Substituting(1)in(3)gives

Comment

,whichproves(2).

Equation(2)isaspecialcaseofageneralproperty:theproductofatensor sijk ... symmetricinanytwoofitssubscriptswithanothertensor amkni... thatisantisymmetric inthe same twosubscriptsiszero.Thatis,

Question1.6

Suppose r =(x,y,z ) and r =(x ,y ,z ) representpositionvectors‡ ofpointsPand P respectively.Provethefollowingresults:

denotedifferentiation withrespecttotheunprimedandprimedcoordinatesrespectively. ‡ Thecommonorigin O ofthesevectorsiscompletelyarbitrary.

Solution

Itisconvenienttolet R = r r .Then

But

using(1)and(3)

ofQuestion1.1.Substitutingthislastresultin(2)gives(1)1 .Similarly,(1)2 follows, since ∂R/∂ri = ∂R/∂ri .

Comment

Inelectromagnetism,itisimportanttodistinguishbetweentheunprimedcoordinates ofafieldpointPandtheprimedcoordinateslocatingthesources ofthefield.Aswe haveseeninthesolutionabove,mathematicaloperationssuchasdifferentiationand integrationcanbewithrespecttocoordinatesofeithertype.

Question1.7

ExpresstheTaylor-seriesexpansionofafunction f (x,y,z ) aboutanorigin O inthe form

Solution

TheTaylor-seriesexpansionof f (x,y,z ) about O is f (x,y,z )=[f (x,y,z )]0 + ∂f (x,y,z ) ∂x 0 x

2 f (x,y,z )

2 f (x,y,z )

0 zx +

2 f (x,y,z )

2 0 z 2 + ··· , (2) which,intermsoftheEinsteinsummationconvention,is(1).

Thesebeingelectricchargesandcurrents.

Comments

(i)Notethecompactformofthetensorequation(1),andcomparethiswith(2).

(ii)Sometimesthefunction f isitselfacomponentofavector(say,theelectricfield y -component Ey ).Then,usingtensornotationtoexpressthecomponentofa vector,wehave

Question1.8

Let A, B, C, f and g representcontinuousanddifferentiable‡ vectororscalarfields asappropriate.Usetensornotationtoprovethefollowingidentities:

andallothercyclicpermutations

( i ) ∇ (∇ × A)=0 , (9)

( j ) ∇ × ∇f =0 , (10) ( k ) ∇ × (∇ × A)= −∇2 A + ∇(∇ · A), (11) ( l ) ∇ (∇f × ∇g )=0 , (12) (m) ∇(A B)=(A ∇) B + A × (∇ × B)+(B ∇) A +

Solution

( a )Thevariouspermutationsin(1)mayallbeprovedbyinvokingthecyclicnatureof thesubscriptsoftheLevi-Civitatensor.Consider,forexample,(1)1 .Usingtensor notationforascalarproductand(1)ofQuestion1.2gives

Now εijk = εkij ,andso A · (B × C)= εkij Ai Bj Ck =(A × B)k Ck ,whichproves theresult.Theremainingcyclicpermutationscanbefoundinasimilarway.

‡ Supposethesefieldshavecontinuoussecond-orderderivatives,so ∇i ∇j Ak = ∇j ∇i Ak ,etc.

( b )Clearly, (A × B) · (A × B)=(A × B)i (A × B)i = εijk Aj Bk εilm Al Bm =(δjl δkm δjm δkl )Aj Al Bk Bm = Ai Ai Bj Bj Ai Bi Aj Bj (subscriptsarearbitrary) =(A · A)(B · B) (A · B)2 . Hence(2).

( c )Itissufficienttoshowthat [A × (B × C)]i = Bi (A · C) Ci (A · B).From(1)of Question1.2 [A × (B × C)]i = εijk Aj (B × C)k = εijk Aj

jl )Aj Bl Cm , usingthecyclicpropertyof εklm and(1)ofQuestion1.3.Contractingtherighthandsidegives Am Bi Cm Al Bl Ci = Bi (A · C) Ci (A · B) asrequired.

( d )Considerthe ithcomponent.Then ∇i (fg )= g ∇i f + f ∇i g bytheproductruleof differentiationandtheresultfollows.

( e ) ∇ (f A)= ∇i (f A)i = ∇i (fAi )= Ai ∇i f + f ∇i Ai = A ∇f + f (∇ A)

( f )Considerthe ithcomponent.Then [∇ × (f A)]i = εijk ∇j (fAk )= εijk (Ak ∇j f + f ∇j Ak )=(∇f × A)i + f (∇ × A)i

( g ) ∇ (A × B)= ∇i (A × B)i = ∇i εijk Aj Bk = εijk (Bk ∇i Aj + Aj ∇i Bk ) =(εkij ∇i Aj )Bk (εjik ∇i Bk )Aj (propertiesof εijk ) =(∇ × A)k Bk (∇ × B)j Aj =(∇ × A) B (∇ × B) A

( h ) [∇ × (A × B)]i = εijk ∇j εklm Al Bm =(δil δjm δim δjl )∇j (Al Bm ) = ∇m (Ai Bm ) −∇l (Al Bi ) (contractsubscripts) = Bm ∇m Ai + Ai ∇m Bm Bi ∇l Al Al ∇l Bi (productrule) =(B · ∇)Ai (A · ∇)Bi + Ai (∇ · B) Bi (∇ · A) , whichprovestheresult. ( i ) ∇ · (∇ × A)= ∇i (∇ × A)i = ∇i εijk ∇j Ak = εijk ∇i ∇j Ak =0 , since ∇i ∇j Ak issymmetricin i and j ,whereas εijk isantisymmetricinthese subscripts(seeQuestion1.5).Hence(9). ( j ) [∇ × ∇f ]i = εijk ∇j ∇k f =0 asin(i).Hence(10).

( k ) [∇ × (∇ × A)]i

(cyclicpropertyof εijk )

(contractingsubscripts)

asrequired.

( l )Thisresultfollowsimmediatelyfrom(7)and(10)above.

(m) ∇i (A · B)= ∇i (Aj Bj )

, whereinthelaststepweuse(4)ofQuestion1.3.Thisprovestheresult.

Comments

(i)Equations(1)and(3)arethewell-knownscalarandvectortripleproducts respectively.Wenotethefollowing:

☞ In(1)thepositionsofthedotandcrossmaybeinterchanged,providedthat thecyclicorderofthevectorsismaintained.

☞ Theidentity(3)isusedoftenandisworthremembering.Foreasyrecall,some textbookscallitthe‘BAC–CAB rule’.See,forexample,Ref.[2].

(ii)Suppose A, B and C arepolarvectors.‡ Thetransformation A · (B × C) p → A · (B × C) resultsinthescalartripleproductchangingsignunderinversion, andsoitisapseudoscalar. If A, B and C arethespanningvectorsofacrystal lattice,then A (B × C) isthepseudovolumeoftheunitcell.†

(iii)Inelectromagnetism(1)–(13)areveryusefulidentities.Althoughprovedherefor Cartesiancoordinates,theresultsarevalidinallcoordinatesystems.

Question1.9

Considerthescalarfunctions f (r) and g r(t),t .Suppose r = r(t) isatime-dependent positionvector.Showthat

‡ ThedistinctionbetweenpolarandaxialvectorsisdescribedinAppendixA. SeealsoAppendixA.Intheabove,pistheparityoperatordescribedonp.598.

† Inthisexample,the volume oftheunitcellis |A (B × C)| Thisalsoappliestootherresultsinthischapter,suchasGauss’stheoremandStokes’stheorem.

[2]D.J.Griffiths, Introductiontoelectrodynamics,Chap.1,p.8.NewYork:PrenticeHall,3edn, 1999.

Solution

Sincebothproofsaresimilar,weconsiderthatfor(1)2 only.Thetotaldifferentialof g (x,y,z,t) is

=

Then

whichis(1)2 since dr/dt =(dx/dt,dy/dt,dz/dt) and ∇ =(∂/∂x,∂/∂y,∂/∂z )

Comments

(i)Equation(1)1 isthechainruleofdifferentiation.Equation(1)2 isoftencalledthe convectivederivative.Itiscomposedoftwoparts:thelocalorEulerianderivative ∂g ∂t andtheconvectiveterm v ∇ g ,where v = dr/dt isthevelocityofan elementofchargeormassasittravelsalongitstrajectory r(t)

(ii)Suppose T (r,t) representsatemperaturefield.Thelocalderivative ∂T ∂t providesthechangeintemperaturewithtimeatafixedpointinspace,whereasthe convectiveterm v ∇ T accountsfortherateatwhichthetemperaturechanges inafixedmassofairasitmoves,forexample,inaconvectioncurrent.

(iii)Forthevectorfields f r(t) and g r(t),t ,thesederivativesare

Question1.10

Theflux φ ofanarbitraryvectorfield F(r,t) is

= s F da , where s isanysurfacespanninganarbitrarycontour c.Supposetheposition,sizeand shapeof c (andtherefore s)changewithtime.Showthat

Hint: Let r u(t),v (t) beaparametricrepresentationof s where u1 ≤ u ≤ u2 and v1 ≤ v ≤ v2 seeAppendixH .Then

Solution

Differentiating(2)gives

Considerthesecondterminsquarebracketsin(3).Using(1)1 ofQuestion1.9yields

Usingtensornotation,(4)canbewrittenas

(subscriptsarearbitrary)

(rearrangingterms).(6)

Comparing(5)and(6)showsthat

,whichistrueforall componentsofthisvector.Then(3)becomes

whichis(1).

Comment

Equation(1)isausefulresultforcalculatingemfsinnon-stationarycircuitsormedia. SeeQuestion5.4.

Question1.11

Usetherelevantdefinitionandtheresultthat r isapolarvectortodeterminewhether thefollowingvectorsarepolaroraxial:(a)velocity u,(b)linearmomentum p, (c)force F,(d)electricfield E,(e)magneticfield B and(f) E × B. (Assumethattime,massandchargeareinvariantquantities).

Solution

(a) u = dr dt ispolarsince t isinvariantand r ispolar.

(b) p = m u ispolarsince m isinvariantand u ispolar.

(c) F = dp dt ispolarsince t isinvariantand p ispolar.

(d) E = F q ispolarsince q isinvariantand F ispolar.

(e)Applytheparitytransformationtotheforce

Clearly, F = q u × B requires B = B whichshowsthat B isaxial.

(f) E × B p → ( E) × B = E × B whichispolar.Thisvectorrepresentstheenergy fluxperunittime‡ inthevacuumelectromagneticfield see(7)ofQuestion7.6

Comments

(i)Thepolar(axial)natureoftheelectric(magnetic)fieldestablishedintheabove solutionabovecanbeconfirmedbythefollowingintuitiveapproach.Wesuppose uniform E-and B-fieldsarecreatedbyanidealparallel-platecapacitorandan idealsolenoidrespectively,andconsiderhowthesefieldsbehavewhentheirsources areinverted.Thisisillustratedinthefiguresbelow;noticethat E reversessign, whereas B doesnot.

E-field:cross-sectionthroughcapacitorperpendiculartotheplates

{source q at r} p → {source q at r}

‡ Apartfromafactor μ0 ,whichisapolarconstantofproportionality.SeeComment(ii)onp.14.

B-field:cross-sectionthroughsolenoidperpendiculartothesymmetryaxis

{source Idl at r} p → {source Idl at r} p

(ii)Suppose c = a × b.Clearly, c is:

☞ polarifeither a or b ispolarandtheotherisaxial(seethe E × B example above).

☞ axialif a and b areeitherbothpolarorbothaxial.

(iii)Let a and b representarbitraryvectorsthatsatisfylawsofphysicswhichwe expressalgebraicallyas:

b = α a and bi = βij aj . (1)

Here a istakentobethe‘cause’and b the‘effect’.Theconstantsofproportionality

α and βij aretensorsofrankzeroandtworespectively. Underrotationofaxes, theybehaveasfollows:

☞ α and βij arepolarif a and b areeitherbothpolarorbothaxial,

☞ α and βij areaxialifeither a or b ispolarandtheotherisaxial.

So,forexample,intheBiot–Savartlaw see(7)2 ofQuestion4.4

andweconcludethat μ0 isapolarscalarsinceboth dB and Idl × r areaxialvectors.

(iv)Theseresultscanbegeneralizedtophysicaltensorsandphysicalpropertytensors ofanyrank.[3]

(v)Considerationsofsymmetryandthespatialnatureoftensorscansometimesbe exploitedtogainusefulinsightintoaphysicalsystem.Consider,forexample,a sphereofchargewhichissymmetricaboutitscentre O .Supposethesphereis spinningaboutanaxisthrough O .Inversionthrough O obviouslyleavesthesphere unchangedaswellasallitsphysicaltensorsandphysicalpropertytensors.

Thefollowingterminologyisusedintheliterature(see,forexample,Ref.[3]): a, b arecalled physicaltensors(heretheyarephysicalvectors)and α, βij arephysicalpropertytensors see alsoComment(viii)ofQuestion2.26

[3]R.E.RaabandO.L.deLange, Multipoletheoryinelectromagnetism,Chap.3,pp.59–72. Oxford:ClarendonPress,2005.

Becausepolarvectorschangesignunderinversionitfollowsthattheelectricfield at O isnecessarilyzero,whereasthemagneticfield,beinganaxialvector,may haveafinitevalueatthecentre.Symmetryargumentsalonecannotrevealthe valueof B at O ;thiscanbedeterminedeitherbysolvingtherelevantMaxwell equationorbymeasurement.

(vi)Inadditiontocharacterizingphysicaltensorsandphysicalpropertytensorsby theirspatialproperties,itisalsopossibletoconsiderhowsuchquantitiesbehave undera time-reversaltransformation T.Inclassicalphysics,timereversalchanges thesignofthetimecoordinate t T → t = t.Formotioninaconservativefield thetime-reversedtrajectoryisindistinguishablefromtheactualtrajectory;[3] r T → r = r.Withthisinmind,weconsidertheeffectofatime-reversaltransformationonthefollowingfirst-ranktensors:

☞ u = dr dt T → dr dt = u

☞ p = m u T →−p

☞ F

Tensorswhichremainunchangedbytime-reversaltransformationsarecalledtimeeven(F and E above),whilstthosewhichchangesignaretime-odd(u, p and B above).Thespace-timesymmetrypropertiesofthesefivevectorsarethus:

☞ u and p aretime-oddpolarvectors,

☞ E and F aretime-evenpolarvectors,and

☞ B isatime-oddaxialvector.‡

(Inthebulletedlistsabove,ithasbeenassumedimplicitlythat m and q are time-even,polarscalars.[3] )Ref.[3]alsoprovidesinterestingapplicationsofthese symmetrytransformationstophysicalsystems.Forexample,itisshownthatthe Faradayeffect inafluid(whetheropticallyactiveorinactive)isnotvetoedbya space-timetransformation,whereastheelectricanalogueofthiseffect,whichhas neverbeenobserved,isvetoed.[3]

(vii)Thesymmetriesreferredtoin(vi)abovearepartofamuchmoregeneralidea basedonNeumann’sprinciplewhichstatesthateveryphysicalpropertytensorof asystemmustpossessthefullspace-timesymmetryofthesystem.(Thisisquite apartfromanyintrinsicsymmetryofthetensorsubscriptsthemselves.)

‡ Anexampleofatime-evenaxialvectoristorque, Γ = m d dt (r × p).

Inthiseffect,amagnetostaticfield B appliedparalleltothepathoflinearlypolarizedlightina fluidinducesarotationoftheplaneofpolarizationthroughanangleproportionalto B

Turn static files into dynamic content formats.

Create a flipbook