Quick(er) calculations: how to add, subtract, multiply, divide, square, and square root more swiftly

Page 1


Quick(er)Calculations:Howtoadd,subtract, multiply,divide,square,andsquarerootmore swiftly1stEditionTrevorDavisLipscombe

https://ebookmass.com/product/quicker-calculations-how-toadd-subtract-multiply-divide-square-and-square-root-moreswiftly-1st-edition-trevor-davis-lipscombe/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Square of Sevens 1st Edition Laura Shepherd-Robinson

https://ebookmass.com/product/square-of-sevens-1st-edition-laurashepherd-robinson/

ebookmass.com

The Square of Sevens Laura Shepherd-Robinson

https://ebookmass.com/product/the-square-of-sevens-laura-shepherdrobinson/

ebookmass.com

The DioField Chronicle Digital Artbook Square Enix

https://ebookmass.com/product/the-diofield-chronicle-digital-artbooksquare-enix/ ebookmass.com

Critical Leadership Theory: Integrating Transdisciplinary Perspectives 1st ed. Edition Jennifer L.S. Chandler

https://ebookmass.com/product/critical-leadership-theory-integratingtransdisciplinary-perspectives-1st-ed-edition-jennifer-l-s-chandler/

ebookmass.com

Concrete Composite Columns: Behavior and Design Chong Rong

https://ebookmass.com/product/concrete-composite-columns-behavior-anddesign-chong-rong/

ebookmass.com

The Feline Patient 5th Edition

https://ebookmass.com/product/the-feline-patient-5th-edition/

ebookmass.com

Air Pollution and Climate Change: The Basics John K. Pearson

https://ebookmass.com/product/air-pollution-and-climate-change-thebasics-john-k-pearson/

ebookmass.com

American English File 3th Edition Starter. Workbook without Answer Key (American English File Third Edition) (Spanish Edition) Varios Autores

https://ebookmass.com/product/american-english-file-3th-editionstarter-workbook-without-answer-key-american-english-file-thirdedition-spanish-edition-varios-autores/

ebookmass.com

Introduction to Spatial Mapping of Biomolecules by Imaging Mass Spectrometry Bindesh Shrestha

https://ebookmass.com/product/introduction-to-spatial-mapping-ofbiomolecules-by-imaging-mass-spectrometry-bindesh-shrestha/

ebookmass.com

Jane Austen's Pride & Prejudice Sequel Bundle: 3 Reader

Favorites -- Mr. Darcy Takes a Wife, Mr. Darcy's Diary, Mr. & Mrs. Fitzwilliam Darcy: Two Shall Become One Linda Berdoll https://ebookmass.com/product/jane-austens-pride-prejudice-sequelbundle-3-reader-favorites-mr-darcy-takes-a-wife-mr-darcys-diary-mrmrs-fitzwilliam-darcy-two-shall-become-one-linda-berdoll/ ebookmass.com

QUICK(ER)CALCULATIONS

QUICK(ER) CALCULATIONS

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©TrevorDavisLipscombe2021

Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2020948798

ISBN978–0–19–885265–0

PrintedandboundintheUKby TJBooksLimited

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

ToKath

Thesumthattwomarriedpeopleowetooneanotherdefiescalculation.Itisaninfinite debtthatcanonlybedischargedthroughalleternity.

JohannWolfgangvonGoethe, ElectiveAffinities Book1,Chapter9

ForMary,Ann,Clare,Therese,andPeter “DadwatchingyoudomathhomeworkislikeMichaelPhelpswatchingyoudrown.”

Preface

Multiplicationisvexation

Divisionisasbad

Theruleofthreedothpuzzleme Andpracticedrivesmemad.

FromanElizabethanmanuscriptof1570 (asquotedin Bartlett’sFamiliarQuotations 15thand125thAnniversaryedition (Boston,MA:LittleBrown,1980),p.917)

Coffeeshopscrowdontoeverycityblock,orsoitseems.Somediscerningsoulsrefusetodrinkatsuchplaces.Instead,theypurchasefair-trade beans,grindthemup,anduseaFrenchpresstoproducethelife-giving liquid.Othersforegothebriochesoldbysupermarkets,preferringto buytheirbakedgoodsfromsmallcraftbakeries.

Whatbetterwaytoaccompanyyourhand-craftedcoffeeandcroissantthanwithartisanalarithmetic?Stowyourcomputerandusethe mostaffordableandecofriendlycalculatoryoupossess—yourbrain. Thisbookshowsyouhowtocarryoutsimplearithmetic—addition, subtraction,multiplication,division—aswellashowtosquareorto findroots(square,cubic,andevenquintic)quickly.Faster,infact,than youcouldwalkacrosstheroom,findacalculator,putinthenumbers, andhitthebigredbuttonwithaConit.Oruseyourlandlinetocall yoursmartphone,findit,andgettothecalculatorfunction.

Whybother?Ioffertwodifferentanswers,neitherofwhichisoriginal. First,“Forthosewhobelieve,noexplanationisnecessary;forthose whodonotbelieve,noexplanationispossible,”whichisvariously attributed,inchronologicalorder,toSaintThomasAquinas,Saint IgnatiusofLoyola,andFranzWerfel—thescript-writerforthemovie TheSongofBernadette.Inthiscontext,thosewhohavefunfrolickingwith formulasneednoexplanationforwhytheyshouldattempttocarryout fantasticallyfastarithmetic.

ThesecondanswerbelongstoSirGeorgeMallory,whorepeatedly triedtoclimbMountEverest,andwhoeventuallydiedonitsslopes. Whenaskedwhyhemadesomanyattempts,Malloryreplied“Because it’sthere”—aphraseoftenmisattributedtoSirEdmundHilary,who, withTenzingNorgay,firstconqueredthemountainin1953.Inother

words,weshouldpracticequickcalculationssimplybecausewecan. Afterall,internationalgrandmastersplaychessnotonlyagainstother internationalgrandmasters,butalsoagainsttheclock.1 Likewise,inthe cutthroatworldofcrosswordcompetitions,it’snotsufficientmerely tocomplete,say, TheTimes or TheNewYorkTimes puzzle—youhaveto dosofasterthaneveryoneelsedoes.So,whynotcalculateagainst theclock?Ihopethisshortbookwillbeastepinthatdirection.As afurtherincentive,every2years,the WeltmeisterschaftenimKopfrechnen (looselytranslatedastheWorldCupinMentalArithmetic)takesplace inGermany.Togiveaflavorofthecompetition,eventsincludeadding 10ten-digitnumbers,multiplying2eight-digitnumbers,andcalendar calculations(inwhichcontestantsperusealistofdatesfrom1600–2100 andhave1minutetostatecorrectlyonwhichdayoftheweektheyfell). Toprovideabenchmark,thecurrentWorldRecordstandsat66correct answersintheallotted60seconds.Asforcalendricalcalculations,see “InterludeIII:Doomsday”lateroninthisbook.

SirEdmundHillary,togetherwithCharlesLindbergh—thefirstpersontoflysoloacrosstheAtlantic—showthatrapidmentalmathematicscansaveyourlife.Hillary,ashereportsinhisbook HighAdventure, pushedontothesummitofMountEverest,butknewoxygenwasrunninglow.Everest(orSagarmathainNepalese),rises29,029feet(8,840m) abovesealevel—althoughChinaandNepaldisputetheactualheightof themountain,whosesummitformspartoftheirborder.Shouldheand Tenzingcontinue,orretracetheirstepsdownthemountain?Hillary’s quickestimateconvincedhimtogoon.Theydidso,andclaimedthe honorofbeingthefirsttwopeopletostandatoptheworld’stallest mountain.

Lindberghhadasimilarpredicament,requiringrapidaviationarithmetic:didhehaveenoughfueltomakeitovertheocean?Awrong answerwouldhavespelleddisaster.The450gallons(1,704liters)offuel inhisplane,hereckonedcorrectly,sufficedtopowerthe SpiritofSt.Louis fromRooseveltField,NewYork(nowthehomeofashoppingmall)to Paris,touchingdownattheLeBourgetAerodromeontheeveningof May21,1927.

1 There’saformulatoratechessprowess,theEloratingsystem.Ifyouplay N games,win W,lose L,andplayopponentswhoseratingssumto R,thenyourrating is [R + 400 (W L)] /N .Asyoucan’tlosemoregamesthanyouplay,yourscorewill increaseifyouplayonlythosepeoplewhoseratingsarehigherthan400.

Therearepracticalbenefits—lessdrasticthansavingalife—incalculatingmorequickly.Inaneraoftimedmultiple-choicetests,the quickeryouperformaparticularmathematicaloperation,themore timeyoucandevotetotheotherquestions.That’swhysomesections inthisbookaredevotednotto exact answers,butto approximate ones.If youcancalculateanapproximateanswerswiftlytowithinacouple ofpercentoftheactualanswer,that’softensufficienttodetermine whichmultiple-choiceanswertoselect.Oratleastthatpermitsyou toeliminateacoupleofanswers,therebyincreasingyourchancesof plumpingfortherightonepurelybyguesswork.

IsaacNewtonwrotethatifhehadseenfurtherthananyoneelse,it wasbecausehehadstoodontheshouldersofgiants.Likewise,mathematicaltechniquestocalculatequicklyarenotrecentinventions.They comefromavarietyofculturesandfromacrosstheglobe.Western scholarsonlyrecentlybegantopayseriousattentiontothemathematicsofothercultures,givingrisetothesubjectofethnomathematics. Likewise,thehistoryofmathematicsrevealsmanydifferentwaysthat non-Europeanculturesdevisedtomultiply,divide,andextractsquare roots,someofwhichareincludedinthisslimvolume.Iamprivileged togiveaglimpseintohowothercultureshavecalculated,andhope somereadersmaydelvefurtherintothetopic.Therearesomefresh techniquesoriginaltothisbook,however,suchasthesectiononmultiplyinganddividingbyirrationalnumbersandtheentriesonsquaring certainthree-digitnumbers.

Ihopethat Quick(er)Calculations achieveswhattheBBCsetsoutto do:inform,educate,andentertain.Bytheend,Itrustthatyouwillbe abletocomputeanswerstobasicarithmeticalproblemsfarfasterthan youhaveuptothispoint.Beingabletodosomaybeofgreathelpfor thosestillinhighschool,studyingmathematics,physics,orchemistry. Itshouldalsohelpthosewhohavealreadyenteredintoprofessions,who arecard-carryingscientists,engineers,accountants,andactuaries.Ialso hopethebookwillfamiliarizeyouwith,andgiveyoumoreappreciation for,thoseofdifferenttimesandplaceswhohavedevisedingeniousways tocalculateanswerstoquestionswestillposetoday.

TrevorLipscombe Baltimore,Maryland FeastoftheAssumptionoftheBlessedVirginMary,2020

Acknowledgments

Anotherdamnedthicksquarebook!Alwaysscribble,scribble, scribble!Eh!Mr.Gibbon.

WilliamHenry,DukeofGloucester, afterreceivingvolumeIIofGibbon’s DeclineandFalloftheRomanEmpire

Myfamilyisusuallypleasantandpeaceful.Exceptduringthecardgame “Pounce.”Intensecompetitiontakescontroland,withtheroundcompleted,I’minvariablyinlastplace.Somethingoddhappens,though, whenwetotupthescores.Someonesays,“Addon30,takeoff4,”or somethinglikeit,pokinggentlefunatthewayIdomath.Onenight, afterbeingdrubbedyetagain,theideaforthisbookpounced(badpun intended)uponme.

Iowethanks,then,toQuickHandsMcGee,theEvens,andtheOdds (youknowwhoyouare)forservingasmyinspiration.Ialsothank themforallthetimeswe’vespentovertheyearsenduringthatmost unenjoyableofthings,mathematicshomework.It’stherethatmykids sufferedwhileIdidthewhole“Takeoff60,addon3”routine,and theyputupwithmyoft-ventedfrustrationthatno-oneteacheselegant mathematicsingradeschool,middleschool,highschool. ...

Myownhigh-schoolmathematicsteachersdeserveagreatdealof thanks.JohnEvansandKenThomasoftheHughChristieSchoolin Tonbridge,Kent,werealwaysencouragingandhelpedsteermesuccessfullydowntheroadtouniversity.Ihopethisbookdoesthem, andtheschool,proud,andhelpstheircurrentandfuturestudentsdo arithmeticmorequickly.

Myschoolreport,fromwhenIwas10yearsold,asserts“Trevormust bemuchmorecarefulinMechanicalArithmetic.Hemakesmorecarelesserrorsthanheshould.”ItturnsoutthatwhatMissWatsonwrote atIcknieldPrimarySchoolinLutonseveraldecadesagoremainstrue today.Iamespeciallythankful,then,forCamilleBramall’sattentive copyediting;shehasgraciouslyrootedoutmorecarelesserrorsthan Ishouldeverhavecommitted.Thosethatremainaremyfaultalone, servingassuresignsIshouldhavepaidmoreattentiontowhatMiss Watsonwastryingtoteachme.

MygratitudealsoextendstothoselaboringinthevineyardsofOxford UniversityPress,inparticularSonkeAdlungandKatherineWard,for seeingsomethingofmeritinmyefforts.Ihopeyouwill,too.

Multiplyordivideby647

Multiplyordivideby748

Multiplyordivideby851

Multiplyby952

Multiplyby1154

Multiplyordivideby1256

Multiplyby1357

Multiplyby1457

Multiplyordivideby1558

Multiplyordivideby15,25,35,ornumbersendingin559

Multiplyby16,26,36,ornumbersendingin662

Multiplyby18,27,36,ormultiplesof962

Multiplyby19,29,39,ornumbersendingin963

Trythese 65

Multiplyby21,31,41,ornumbersendingin166

Multiplyby32,42,52,ornumbersendingina267

Multiplyordivideby7568

Trythese 69

Multiplyby11171

Multiplyordivideby12573

Multiplyby316 2 3 ,633 1 3 ,and95073

Multiplyby999or1,00174

5.CalculationswithConstraints:MultiplyandDivide byNumberswithSpecificProperties81

Multiplytwonumbers,10apart,endingin581

Multiplytwonumbers,20apart,endingin582

Multiplyaone-ortwo-digitnumber,lessthan50,by9883

Multiplyaone-ortwo-digitnumberby9985

Multiplyaone-ortwo-digitnumberby10185

Multiplyaone-ortwo-digitnumber,lessthan50,by10286

Trythese

86

Multiplytwonumbersthatdifferby2,4,6,or2087

Multiplytwo“kindred”numbers89

Multiplyby23,34,45,ornumbers“remainder1” whendividedby1190

Multiplyby24,36,42,48,ornumberswhereone digitistwicetheother90

Multiplytwonumbers(orsquareanumber) justunder10092

Multiplytwonumbers(orsquareanumber) justover10092

Multiplytwonumberseithersideof10093

Multiplytogethertwotwo-digitnumbers94

InterludeIV:MulticulturalMultiplication

6.SuperPowers:CalculateSquares,SquareRoots, CubeRoots,andMore103

Squareanytwo-digitnumberendingin1or9105

Squareanynumberendingin5106

Squareanynumberendingin6or4107

Squareanytwo-digitnumber108

Squareanythree-digitnumberwithmiddledigit0or9109

Squareanythree-digitnumberwithmiddledigit4or5110

Squaring,sortof

Squareroots,Babylonianstyle113

Squareroots,Chinesestyle115

Squareroots,Indianstyle116

Squareroots,Frenchstyle118

Findthesquarerootofamysteryperfectsquare121

Findthecuberootofamysteryperfectcube122

Findtherootofamysteryfifthpower122

Trythese 123

7.Close-EnoughCalculations:QuickandAccurate Approximations125 Divideby9125 Divideby11127

Introduction

Thedifferentbranchesofarithmetic—ambition,distraction, uglification,andderision.

TheMockTurtle, Alice’sAdventuresinWonderland,byLewisCarroll.

Mymother—aformidableLondonerwholivedthroughtheBlitzand whowoulddelightinbeingdescribedasaNoNonsensePerson—hadan unusualwayoftellingtime.Iftheclockshowed6:25,sheproclaimedit “Fiveandtwentypastsix.”Tenminuteslater,naturally,shereported thetimeas“Fiveandtwentytoseven.”

Mymum’swaytoreporttimeshowsaninsight.Namely,sometimes it’seasiertobreakacalculationupintotwosteps,ratherthanone. Ratherthanadding25,insteadadd20,thenadd5.Dissolvingadifficult problemintotwosimpleronesliesatthecoreofacceleratingyour arithmetic.Twootherkeyingredients—which,dependingonyour viewpoint,areeithertrivialandobviousordeeplyprofound—isthat youcanadd0toanysumwithoutdoinganyharm,ormultiplyany expressionby1withoutchangingtheoutcome.Enigmatically,much dependsonwhatthe0andthe1happentobe.Whenpresentedwitha complicatedsum,itmaybeeasiertoadd3toit,tocreateafarsimpler addition,andthensubtract3attheend.As3 3 = 0,youhaveadded 0—andthushavethesameanswer—buthavemadethecalculation quicker.Likewise,forsomedivisions,multiplyingthetopby4may makelifeeasierand,ifyoudivideby4lateron,youwillhavemultiplied by4/4,whichis1,leavingtheanswerunchanged.Allshallberevealed.

Thisbookbeginswithabriefglanceathowyoumaycalculate currently,anddispensesadviceonhowtoimprovebothspeedand accuracy.Thencomesachapterdevotedtoadditionsandsubtractions, beforeturningtotheaccountingchallengeofsumminguplong columnsofnumbersatspeed.Fromthisfollowsabird-by-birdguide, sotospeak,tomultiplicationanddivisionbyspecificnumbers.Someof thetipsandtechniquesholdformorethanonenumberso,ifyouread straightthroughthatsection,therewillbesomerepetition.Thisisgood formakingapoint,butitalsomeansthatatanytimeyouwishtolearna techniqueforaspecificnumber,youcansimplygotothenumberitself

andseewhattodo.Thenextdivision(punintended),dealswithnonspecificnumbers.Thingssuchas“multiplyingtwonumbers,bothof whicharejustover100.”Theselendthemselvestoimpressingfriends, relatives,students,orevenanaudience(“givemetwonumbers,any twonumbers,between100and110...”).

Practicalapplicationsforsquarerootsabound,especiallyifyouknow ofPythagoras’theorem.Thisgivesrise,then,toachapterdevotedto findingthesquareroot,approximately,ofagivennumber.Thissection alsodealswithanotherwaytoimpresspeople,inthattheycanuse acalculatortosquare,cube,orraisetothefifthpoweranytwo-digit numbertheychoose,andyoucandivinethatoriginalnumberina matterofsecondsusingonlyyourbrain—oftensimplybyinspection.

Thebookcloseswithsomeapproximatewaystomultiplyanddivide. Forexample,todivideby17,youcangetfairlyclose(within2percent) bymultiplyingthenumberby6anddividingby100.Therearealsoa numberofwaystocalculatemultiplesof √2,theGoldenRatio, e,and π .Formoredetails,readon!

Scatteredwithinthesesectionsareinterludes.Thesearedigressions, hopefullyenjoyable,thattouchlightlyonthemoretechnicalmaterialinthebook.Theydealwithsupermarketcheckouts,determiningwhatdayoftheweekaparticulardatefellon(usefulforthose mullingarunattheWorldCupinMentalArithmetic),andalook atcalculationsthroughnon-modernornon-Westerneyes.Theinterludesalsopresentamathematicaltrickinvolvingthenumber111,111 and—alwaysimportant—thewaystoestimatethenumberofextraterrestriallifeforms.

Thechallengeinwritingabookonhowtoadd,subtract,multiply, divide,andfindsquarerootsistodosoinawaythatitdoesn’tendup withthethrillingprosefoundinrentalagreementsortheinstructions thatcomewithdo-it-yourselffurniture.Pepperedwithineachchapter, then,areanumberoffanciful“applications.”Theseincludethenumber ofpeoplewhoaccompaniedKingHenryVIIItoFranceandtookpart inoneofhistory’sgreatestbinges,theFieldoftheClothofGold;the amountofbreadconsumedannuallybythecourtofKingCharlesI; thenumberofgoalsscoredbyCharltonAthleticduringtheiryearsin thePremierLeague;andthenumberoflinesofpoetryinShakespeare’s sonnets.Whilethesearefar-fetched,youcanapplythemethodsinthe booktocalculatetheanswers.Arguablymoreimportant,theyshow thatyoucanfindopportunities,orexcuses,tousequick(er)calculations almosteverywhere.

Challenge

Theaimofthisbookistohelpyoucalculatemorequickly.Tobegin,I inviteyoutorisetothischallenge.Trythe25questionsbelow(26ifyou feeluptoit),beforereadingthebook,andseehowlongittakes.Once you’vereadthebookandlearnedthestreamlinedwaystocalculate, trythemagaintoseehowmanyseconds,orminutes,youhaveshaved fromyourtime.Tohelp,sectionsofthebookthatmaylaterassistyou aregiveninparentheses.

Pencilandbrainsharp?Go!

1.171–46(Subtractbyadding)

2.1.27 + 0.98(Two-stepsubtraction)

3.Thebirthdaysofmyfamilyfallonthefollowingdaysofthe month.Addthem:14,17,2,23,13,20,27(Tallyingintens)

4.Thefirst10Fibonaccinumbersare1,1,2,3,5,8,13,21,34,55. Addthem(Addingnumbersmystically)

5.Oneofmykids,preparingtorunamarathon,kepta“joglog” totrackhermiles.Overa10-dayperiod,sheranthefollowing numberofmileseachday:8,3,2,3,9.5,4,4,3,2,3.Howmany milesdidsherunintotal?(Cancelasyoucalculate)

6.87 × 1.1(Multiplyby11)

7.4.1 × 1,800(Multiplyby18)

8.53 × 2.9(Multiplyby19,29,39...)

9.2,100 × 4.3(Multiplyby21,31,41...)

10.3,018/7.5(Multiplyordivideby75)

11.620 × 11.1(Multiplyby111)

12.9.5 × 130(Multiplyby316 2 3 ,633 1 3 ,and950)

13.8.5 × 75(Multiplytwonumbers,10apart,endingin5)

14.430 × 0.98(Multiplyaone-ortwo-digitnumber, lessthan50,by98)

15.27 × 2.9(Multiplytwonumbersthatdifferby2,4,6,or20)

16.2,300 × 2.7(Multiplytwo“kindred”numbers)

17.940 × 9.7(Multiplytwonumbersjustunder100)

18.1072 (Multiplytwonumbers(orsquareanumber) justover100)

19.792 (Squareanytwo-digitnumberendingin1or9)

20.4.52 (Squareanynumberendingin5)

21.39.12 (Squareanythree-digitnumberwithmiddledigit0or9)

22.What,approximately,is √7.9?(Squareroots—anystyle!)

23.Whatisthecuberootof175,616?

(Findthecuberootofamysteryperfectcube)

24.What,roughly,is130/1.7?(Multiplyordivideby17)

25.What,approximately,is8π ?(Multiplyby π )

26.(Bonus)January3,1957wasaThursday.Thespaceracebegan onOctober4,1957,whentheSovietUnionlaunchedthesatellite Sputnik.Whichdayoftheweekwasthat?

(AppendixICalculatingDoomsday)

1 ArithmeticalAdvice

2 + 2in#Theologycanmake5

AtweetonJanuary5,2017byFr.AntonioSpadaro, SJ,aclosefriendofPopeFrancis,causingmuchhead scratchingamongmathematiciansandtheologians

IntheendthePartywouldannouncethattwoandtwomade five,andyouwouldhavetobelieveit.Itwasinevitablethatthey shouldmakethatclaimsoonerorlater:thelogicoftheirposition demandedit.

GeorgeOrwell, 1984

Beforedelvingintothedelightsofquickercalculations,thereareafew pointersworthfollowing.Thesewillhelpspeedthingsupandreduce mistakes.

Takelesstimeonyourtimestable

Consider7 × 9 = 63.

Howdidyoureadit?Asyoungsters,weoftenlearntoreciteour multiplicationtablesalongwithotherkidsintheclass.Ifso,youmay havechanted“seventimesnineequalssixty-three.”True—butslow.1 Shredsecondsfromthetimeittakestotellyourtimestablebyreplacing thislaboriousprocesswithaquestion.“Sevennines?Sixty-three.”This providesagoldenopportunitytorefreshyouracquaintancewiththe multiplicationtables,butinthisnewformat.There’sanaddedbonus: Notonlydoesthenewwayshavetwosyllablesoffthephrase,it’salso, well,anewwaytosayit.Inotherwords,youdon’thavetorepeat yourmultiplicationtablesintheslowsing-songwaythatyoumayhave

1 AnearlyEnglisharithmeticbookfrom1552,theanonymous AnIntroductionforto LernetoreckenwiththepenorwyththecountersaccordyngetothetrewecastofAlgorisme tellsus“7tyme 9maketh63,”soslow-pacedmultiplicationisnothingnew.Thebook,though,went througheighteditions,makingitasixteenth-centurymathematicalbestseller.

2Quick(er)Calculations

learned.Reciteyourseventimestableyourusualway,buttimeyourself. Thentrythecompactway,sayingasswiftlyasyoucan,“Oneseven? Seven.Twosevens?Fourteen...”Betteryet,timehowlongittakesyou togoallthewayfrom“Onetimesoneisone”upto“Twelvetimes twelveisonehundredandforty-four”andcomparewiththetimeit takestogofrom“Onceone?One”upto“Twelvetwelves?Onehundred andforty-four!”Seehowmuchtimeyoucansave!

Thecaseofthecrookedcolumns

Yourhandwritingispreciselythat:yours.Evenifitisunintelligible tootherreaders,aproblemthatplaguesmedicaldoctors,thatwon’t matterwhenyoutrytodoquickcalculations,unlessyouhavesome numbersthatcanbeeasilymistakenforothers.

Abiggerpoint,though,iskeepingthetensandtheunitscolumns aligned.Itisalltooeasytowritedownasum,say,as:

34+ 17

Inwhichthe4driftsdangerouslytotheright,or,vieweddifferently,the 7crowdsoutthe1.Overthecourseofthecalculation,especiallyifdone atspeed,thingscangetmessedupandsuddenlyyouarecalculating:

304+ 170 Puttingzeroswherethesort-ofblankspaceswere.Insteadofgettingthe result51,theansweronofferis474.So,please,keepcolumnsaligned. Thismayseemlikenobigdeal,andwhenyouaddjusttwonumbers oftwodigits,itprobablyisn’t.Butifyouhavetoadduplonglistsof numbersthathavemultipledigits,mistakescanrackuprapidly.

WelshmathematicianRobertRecorde(ca.1512–1558)wrotesomeof thefirstbooksinEnglishonarithmetic.In TheGroundofArtes,published in1543,Recordeadvisesstudentsengagedincurrencycalculations: “Ifyourdenominationsbepounds,shillings,&pennies,writepounds underpounds,shillingsundershillings,andpenniesunderpennies: Andnotshillingsunderpennies,norpenniesunderpounds.”2 Authors

2 “Yfyourdenominationsbepoundes,shyllyns,&pennes,wrytepoundesunder po[ndes],shyllyngesundershyllynges,andpennysunderpe[n]nys:Andnotshyllynges underpennys,norpe[n]nysunderpoundes.”

ofarithmeticbookshavebeenurgingreaderstokeepcolumnsaligned foratleast550years!

Guesswhat?Makeestimates

Asyourmentalmathheatsup,thetimetocalculatequantitiesdrops impressively.Theabilitytomessup,however,increases—unlessyou makeestimates.Guessingananswertakesafractionofasecondbut cancatchembarrassingmistakes.Inthepreviousexample,ifyoustart byobservingthat34isroughly30and17isalmost20,you’dexpectan answerofabout30 + 20 = 50.Ifyougettheanswer51,thenyou’dfeel happyandconfident.Mixupyourcolumnsandget474andyourrough estimateof50screamsatyoutogobackandcheck.

Thereisasubtleartinestimation,whichisperhapsnotquiteso subtle.Inanaddition,suchas34 + 17,ithelpstooverestimateone number(say20for17)andcompensateforthatbyunderestimatingthe othernumber(30for34).Thatway,youendupwitharapidestimate that’slikelytobefairlyclosetotherealanswer.Forsomethingmore complicated,suchas513/3.78,youmightbrackettheanswerwithtwo estimates.Forafraction,youcanoverestimatethetop(thenumerator) andunderestimatethebottom(thedenominator),bothofwhichoverestimatethefraction.Thus,513/3.78 < 540/3andso513/3.78 < 180. Thendothereverse—underestimatethenumerator,overestimatethe denominator,andsounderestimatetheanswer.Herewecouldset 513/3.78 > 500/4 > 125.Whateveranswerwegetisonlyreasonableif itliesbetween125and180.

What’sthepoint?Extrazerosanddecimals

Anothervitaltiptobeefupyourcalculationistoignoreinconvenience— suchaszerosattheendofnumbers,ordecimalsinthemiddle.These canbestrippedout,sothattheydon’tgetinthewayofcalculation, andthenreinsertedlateron.Afterall,youhavealreadyestimated theanswer—soyouknowhowmanyzerostoaddorwheretoinsert thefinaldecimalpoint.There’snoneedtoslowyourselfdownby keepingtrackofallthosedecimalpointsorextrazerosateachstepof thejourney.

Consider,forexample,0.9 × 1.2.Inregularmode,youwouldwrite thesenumbersoneabovetheother,startmultiplyingwiththedecimals

inplacetocomeupwithananswer.Don’t.Letcriticsturnredwith anger,whitewithfear,orwatchyouandgogreenwithenvy.

First,makeanestimate:0.9isroughly1.So,too,is1.2.Weexpectour answertobeabout1 × 1 = 1.Removethedecimalpointstoleave9 × 12, whoseansweryou’veknownsinceyourearlydays,since9 × 12 = 108. Astheanswerisabout1,stickthedecimalpointintogettheactual answer,namely0.9 × 1.2 = 1.08.

Asasecondexample,thinkof1,300 × 40.Asbefore,estimate.We know1,300ismorethan1,000,sotheanswerisgoingtobeabitmore than1,000 × 40 = 40,000.Now13 × 4—aseverycardplayerknows— is52.Andso,astheanswerslightlyexceeds40,000,wemusthave 1,300 × 40 = 52,000.

Letmemakeanappeal:clothethenakeddecimalpoint!It’sbadstyle towriteonetenthas.1,thereasonbeingthatitistooeasytooverlook thedecimalpoint.No-oneeverwrites01,soifyoualwayswrite0.1,you knowit’sonetenth,andyouareunlikelytomistakeitfor01.

And,nowourdecimalpointsareclothedinalltheirsplendor,here’s areminderaboutscientificnotation,whichwon’tbeusedmuchinthis book,Iadmit.Ratherthanwrite12,345,forexample,youcanwriteitas 1.2345 × 104 .Ifyoustruggletorememberthepowerof10that’sused, imagineadecimalpointbeinginserted,whichwouldgive12,345.0.How manynumbersaretherebeforethedecimalpoint?Five.Subtract1,to get4,so12,345 = 1.2345 × 104 .Butnowlet’ssupposewehavethe number0.054321.Thefirstnon-zeronumberafterthedecimalpointis a5,whichoccurstwoplacesin.Hence,wewritethisas5.4321 × 10 2 Ifyoufeeltheneed,12,345 × 0.054321 = 1.2345 × 5.4321 × 102 ,for whenyoumultiplypowersof10together,youaddtheexponents.As 12 × 5.5 = 66,wecanestimatetheanswerasabout660.

The × factor

Supposeyoufeelasuddenurgetomultiply78 × 37.Thislooksnasty. Thevitalpointtorememberisthatallnumbers,withtheexceptionof primenumbers,havesmallerfactors.Forexample,111 = 37 × 3,so that37 = 111/3.Tocalculate78 × 37,itmaybequickertocomputeit as78 × 37 = 78 × 111/3 = (78/3) × 111 = 26 × 111,andthenusethe swiftmethodeitherformultiplyingby13anddoubling(tomultiply by26),ormultiplyby111swiftlybyshunting(seethenextsection!). Choosewhicheverfactorizationyouprefer!

Oneofthegloriesofpre-decimalcurrencyinEnglandandtheImperialsystemofmeasurementmaywellhavetodowithfactors.Twelve canbedividedby1,2,3,4,and6,whichmaybethebasisforhaving12 inchesinafootand12penniesina(pre-decimal)shilling.Likewisethe number60canbedividedby1,2,3,4,5,and6.(Itcanbedividedexactly byothernumbersaswell,butweonlyneedtocheckuptothesquare rootof60.Theotherfactorswillbethecomplementsofthese;thatis, thenumbersyouneedtomultiplybytheseinordertoget60.Theother divisorsare60,30,20,15,12,and10.)Thenumber60havingsomany integersasdivisorsmayexplainwhytheAncientBabyloniansusedthe sexagesimalsystem,countingin60s.Weacknowledgethisinthemetric system,wherearightangleremains90◦ .Thegradian,with100gradians inarightangle,nevercaughton.Sure,the45 45 90 ◦ triangle becomesa50–50–100gradiantriangle(anglesinatriangleaddupto 200gradians),buttheotherstandardtrianglegoesfrom30 60 90 ◦ to33.333 66.666 100gradians,whichisuser unfriendly.

Shuntingforshow

It’sjustajumptotheleft,andthenasteptotheright.

“TheTimeWarp”

Tobebrief—whichhelpssavespaperandthereforetrees—I’llusethe wordshunting.Toshunt,Imeanshiftanumberovertotheleftorto theright.Thenumber1,shuntedtwoplacestotheleft,is100,andtwo placestotherightitbecomes0.01.

Asimpleexampleofshuntingisifyouwanttomultiply47 × 111. Simplywrite47downthreetimes,butshuntedoveroneplaceeach time,toget:

Thisyouaddupswiftlytoget5,217.

How?

Thereareseveralbooksavailableonthesubjectofquickcalculations— nottomentionsomewebsitesandYouTubevideos.Thesecanbegoodat

teachingthetricksandtechniquesincarryingoutacalculation.Edward H.Julius,forexample,haswrittenseveralbooksonRapidMath.Ashout outshouldalsogotoJacowTrachtenberg,whodevelopedanentire systemforrapidcalculationswhiledetainedinaNaziconcentration camp. 3

Few,ifany,otherbooksexplain why or how aparticularmethodworks. Thisbookdoes:manysectionshaveshortexplanationsofwhythings work.Thesenearlyalwaystieintosomesimpleformulasfromhighschoolmathematics,onesyoumayneverhaveusedtoaccelerateyour arithmetic.

Trythese

Estimatethreeways:firstoverestimate,thenunderestimate,andfinally, constructa“bestestimate.”Do not workouttheanswer—theidea hereistolearntoestimaterapidly.Sometimes,rapidestimatesform partofoffbeatjobinterviews.“Howmanypingpongballscanfitina 747airplane”isastandardnon-standardquestion(goahead,findthe data,andcomeupwithyourownestimate!)orhowmanybabies areborneachyearintheUK.(Ifthereare66millionBritswholive onaverageto75,andthepopulationisn’tgrowing,that’sabout66/75 millionbabies,or880,000littleoneseachyear.)Herearesomefarmore straightforward“plugandchug”questionstogetyoustarted.

1.4π

2.1.87 × 2.34

3.24,000 × 26

4.0.007 × 265

5.0.05/547

6.547/0.051

7.456 4.63

8.0.93 0.296

9.412 + 891

10.1,075 + 2,342

3 Forhismethod,seeJacowTrachtenberg, SpeedSystemofBasicMathematics (NewYork: SouvenirPress,1989).

2 SpeedierSubtractionsandSums

Lifeispaintingapicture,notdoingasum.

OliverWendellHolmes,Jr. “TheClassof’61,”from Speeches (1913)

Thereisnorealmakingamendsinthisworld,anymorenoryou canmendawrongsubtractionbydoingyouradditionright.

GeorgeEliot(MaryAnnCross[néeEvans]), AdamBede,chapter18

Englandisknownformanythings,oneofwhichisitspubs.Ifyouhead totheRoseandCrownoneevening,youwillprobablyfindthelocals enjoyingagameofdarts—asportsopopularinGreatBritainthatitis frequentlytelevised.Playersusuallystartwithascoreof501andthrow threedarts,carryingonuntiloneofthem—eitherbylandingona doubleorhittingthebull’seye—endsupatzero.

Theimpressivethingisthatmostdartsplayers,iftheyscore57, say,canworkouttheirnewlowertotalrapidly.Shouldyouwantto computemorequickly,keepingscoreinadartsmatchisagoodwayto developthatskill(and,forcardplayers,cribbagealsohonesyourtalent fortottingup).

Supposethegamecomesdowntothelastfewdarts,andtheplayer has81beforescoring57.Traditionally,youwouldcalculatethenew scorebywriting:

Thingsturnnasty,rapidly.Youcan’ttake7from1,youhaveto “borrow”a10fromthetenscolumn.So,youcrossoutthe8,replaceit bya7,thenadda10totheonescolumn.Thislookslike:

8 1 1

Turn static files into dynamic content formats.

Create a flipbook