Quantum field theory and critical phenomena 5th edition jean zinn-justin - The ebook is ready for in

Page 1


QuantumFieldTheoryandCriticalPhenomena5th

https://ebookmass.com/product/quantum-field-theory-andcritical-phenomena-5th-edition-jean-zinn-justin/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Combinatorial Physics: Combinatorics, Quantum Field Theory, and Quantum Gravity Models Adrian Tanasa

https://ebookmass.com/product/combinatorial-physics-combinatoricsquantum-field-theory-and-quantum-gravity-models-adrian-tanasa/

ebookmass.com

From Random Walks to Random Matrices - Selected Topics in Modern Theoretical Physics 1st Edition Jean Zinn-Justin

https://ebookmass.com/product/from-random-walks-to-random-matricesselected-topics-in-modern-theoretical-physics-1st-edition-jean-zinnjustin/

ebookmass.com

Introduction to Quantum Field Theory with Applications to Quantum Gravity 1st Edition Iosif L. Buchbinder

https://ebookmass.com/product/introduction-to-quantum-field-theorywith-applications-to-quantum-gravity-1st-edition-iosif-l-buchbinder/

ebookmass.com

Gardner’s Art through the Ages: Non-Western Perspectives 13th Edition eBook

https://ebookmass.com/product/gardners-art-through-the-ages-nonwestern-perspectives-13th-edition-ebook/

ebookmass.com

John Lewis : in search of the beloved community 1st Edition Raymond Arsenault

https://ebookmass.com/product/john-lewis-in-search-of-the-belovedcommunity-1st-edition-raymond-arsenault/

ebookmass.com

Pearson Edexcel a Level Politics: Uk Government and Politics, Political Ideas and Global Politics David Tuck

https://ebookmass.com/product/pearson-edexcel-a-level-politics-ukgovernment-and-politics-political-ideas-and-global-politics-davidtuck/

ebookmass.com

Cohen's Pathways of the Pulp 12th Edition Louis H. Berman Dds Facd

https://ebookmass.com/product/cohens-pathways-of-the-pulp-12thedition-louis-h-berman-dds-facd/

ebookmass.com

German Grammar Drills, Premium 4th Edition Ed Swick

https://ebookmass.com/product/german-grammar-drills-premium-4thedition-ed-swick/

ebookmass.com

Magnetism and Electromagnetic Induction for JEE (Advanced), 3rd edition B. M. Sharma

https://ebookmass.com/product/magnetism-and-electromagnetic-inductionfor-jee-advanced-3rd-edition-b-m-sharma/

ebookmass.com

Living as an Author in the Romantic Period (Palgrave Studies in the Enlightenment, Romanticism and Cultures of Print) 1st ed. 2021 Edition Matthew Sangster

https://ebookmass.com/product/living-as-an-author-in-the-romanticperiod-palgrave-studies-in-the-enlightenment-romanticism-and-culturesof-print-1st-ed-2021-edition-matthew-sangster/ ebookmass.com

SeriesEditors

R.FriendUniversityofCambridge M.ReesUniversityofCambridge D.SherringtonUniversityofOxford G.VenezianoCERN,Geneva

172.J.K¨ubler: Theoryofitinerantelectronmagnetism,Secondedition 171.J.Zinn-Justin: Quantumfieldtheoryandcriticalphenomena,Fifthedition

170.V.Z.Kresin,S.G.Ovchinnikov,S.A.Wolf: Superconductingstate-mechanismsand materials

169.P.T.Chru´sciel: Geometryofblackholes

168.R.Wigmans: Calorimetry–Energymeasurementinparticlephysics,Secondedition 167.B.Mashhoon: Nonlocalgravity

166.N.Horing: Quantumstatisticalfieldtheory

165.T.C.Choy: Effectivemediumtheory,Secondedition

164.L.Pitaevskii,S.Stringari: Bose-Einsteincondensationandsuperfluidity

163.B.J.Dalton,J.Jeffers,S.M.Barnett: Phasespacemethodsfordegeneratequantum gases

162.W.D.McComb: Homogeneous,isotropicturbulence-phenomenology, renormalizationandstatisticalclosures

160.C.Barrab`es,P.A.Hogan: Advancedgeneralrelativity-gravitywaves,spinning particles,andblackholes

159.W.Barford: Electronicandopticalpropertiesofconjugatedpolymers,Secondedition 158.F.Strocchi: Anintroductiontonon-perturbativefoundationsofquantumfieldtheory

157.K.H.Bennemann,J.B.Ketterson: Novelsuperfluids,Volume2 156.K.H.Bennemann,J.B.Ketterson: Novelsuperfluids,Volume1 155.C.Kiefer: Quantumgravity,Thirdedition 154.L.Mestel: Stellarmagnetism,Secondedition 153.R.A.Klemm: Layeredsuperconductors,Volume1

152.E.L.Wolf: Principlesofelectrontunnelingspectroscopy,Secondedition 151.R.Blinc: Advancedferroelectricity

150.L.Berthier,G.Biroli,J.-P.Bouchaud,W.vanSaarloos,L.Cipelletti: Dynamical heterogeneitiesinglasses,colloids,andgranularmedia 149.J.Wesson: Tokamaks,Fourthedition

148.H.Asada,T.Futamase,P.Hogan: Equationsofmotioningeneralrelativity

147.A.Yaouanc,P.DalmasdeR´eotier: Muonspinrotation,relaxation,andresonance 146.B.McCoy: Advancedstatisticalmechanics

145.M.Bordag,G.L.Klimchitskaya,U.Mohideen,V.M.Mostepanenko: Advancesinthe Casimireffect

144.T.R.Field: Electromagneticscatteringfromrandommedia 143.W.G¨otze: Complexdynamicsofglass-formingliquids-amode-couplingtheory 142.V.M.Agranovich: Excitationsinorganicsolids

141.W.T.Grandy: Entropyandthetimeevolutionofmacroscopicsystems 140.M.Alcubierre: Introductionto3+1numericalrelativity

139.A.L.Ivanov,S.G.Tikhodeev: Problemsofcondensedmatterphysics-quantum coherencephenomenainelectron-holeandcoupledmatter-lightsystems

138.I.M.Vardavas,F.W.Taylor: Radiationandclimate

137.A.F.Borghesani: Ionsandelectronsinliquidhelium

135.V.Fortov,I.Iakubov,A.Khrapak: Physicsofstronglycoupledplasma

134.G.Fredrickson: Theequilibriumtheoryofinhomogeneouspolymers

133.H.Suhl: Relaxationprocessesinmicromagnetics

132.J.Terning: Modernsupersymmetry

131.M.Mari˜no: Chern-Simonstheory,matrixmodels,andtopologicalstrings

130.V.Gantmakher: Electronsanddisorderinsolids

129.W.Barford: Electronicandopticalpropertiesofconjugatedpolymers

128.R.E.Raab,O.L.deLange: Multipoletheoryinelectromagnetism

127.A.Larkin,A.Varlamov: Theoryoffluctuationsinsuperconductors

126.P.Goldbart,N.Goldenfeld,D.Sherrington: Stealingthegold

125.S.Atzeni,J.Meyer-ter-Vehn: Thephysicsofinertialfusion

123.T.Fujimoto: Plasmaspectroscopy

122.K.Fujikawa,H.Suzuki: Pathintegralsandquantumanomalies

121.T.Giamarchi: Quantumphysicsinonedimension

120.M.Warner,E.Terentjev: Liquidcrystalelastomers

119.L.Jacak,P.Sitko,K.Wieczorek,A.Wojs: QuantumHallsystems

117.G.Volovik: TheUniverseinaheliumdroplet

116.L.Pitaevskii,S.Stringari: Bose-Einsteincondensation

115.G.Dissertori,I.G.Knowles,M.Schmelling: Quantumchromodynamics

114.B.DeWitt: Theglobalapproachtoquantumfieldtheory

112.R.M.Mazo: Brownianmotion-fluctuations,dynamics,andapplications 111.H.Nishimori: Statisticalphysicsofspinglassesandinformationprocessing-an introduction

110.N.B.Kopnin: Theoryofnonequilibriumsuperconductivity

109.A.Aharoni: Introductiontothetheoryofferromagnetism,Secondedition 108.R.Dobbs: Heliumthree

105.Y.Kuramoto,Y.Kitaoka: Dynamicsofheavyelectrons

104.D.Bardin,G.Passarino: TheStandardModelinthemaking

103.G.C.Branco,L.Lavoura,J.P.Silva: CPViolation

101.H.Araki: Mathematicaltheoryofquantumfields

100.L.M.Pismen: Vorticesinnonlinearfields

99.L.Mestel: Stellarmagnetism

98.K.H.Bennemann: Nonlinearopticsinmetals

94.S.Chikazumi: Physicsofferromagnetism

91.R.A.Bertlmann: Anomaliesinquantumfieldtheory

90.P.K.Gosh: Iontraps

87.P.S.Joshi: Globalaspectsingravitationandcosmology

86.E.R.Pike,S.Sarkar: Thequantumtheoryofradiation

83.P.G.deGennes,J.Prost: Thephysicsofliquidcrystals

73.M.Doi,S.F.Edwards: Thetheoryofpolymerdynamics

69.S.Chandrasekhar: Themathematicaltheoryofblackholes

51.C.Møller: Thetheoryofrelativity

46.H.E.Stanley: Introductiontophasetransitionsandcriticalphenomena

32.A.Abragam: Principlesofnuclearmagnetism

27.P.A.M.Dirac: Principlesofquantummechanics

23.R.E.Peierls: Quantumtheoryofsolids

QUANTUMFIELDTHEORYANDCRITICALPHENOMENA FIFTHEDITION

JEANZINN-JUSTIN

IRFU/CEA,Paris-SaclayUniversity and

FrenchAcademyofSciences

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

c JeanZinn-Justin2021

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin1989

SecondEditionpublishedin1993

ThirdEditionpublishedin1996

FourthEditionpublishedin2002

FifthEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2021931817

ISBN978–0–19–883462–5

DOI:10.1093/oso/9780198834625.001.0001 Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

ToNicole

Preface

IntroducedasaquantumextensionofMaxwell’sclassicaltheory,quantumelectrodynamics(QED)hasbeenthefirstexampleofalocalquantumfieldtheory(QFT).Eventually, QFThasbecometheframeworkforthediscussionofallfundamentalinteractionsat themicroscopicscaleexcept,possibly,gravity.Moresurprisingly,ithasalsoprovided aframeworkfortheunderstandingofsecondorderphasetransitionsinstatisticalmechanics.Infact,ashopefullythisworkwillillustrate,QFTisthenaturalframeworkfor thediscussionofmostsystemsinvolvinganinfinitenumberofdegreesoffreedomwith localcouplings.ThesesystemsrangefromcoldBosegasesat thecondensationtemperature(abouttennanokelvin)toconventionalphasetransitions(fromafewdegrees toseveralhundred)andhighenergyparticlephysicsuptoTeVs,altogethermorethan twentyordersofmagnitude intheenergyscale.

Therefore,althoughexcellenttextbooksaboutQFThadalreadybeenpublished,I thought,manyyearsago,thatitmightnotbecompletelyworthlesstopresentaworkin whichthestrongformalrelationsbetweenparticlephysics andthetheoryofcriticalphenomenaaresystematicallyemphasized.Thisoptionexplainssomeofthechoicesmade inthepresentation.Aformulationintermsoffieldintegralsisadoptedtostudythe propertiesofQFT.Lessimportant,perhaps,ingeneralthespace–timemetricischosen Euclidean,asisnaturalforstatisticalmechanics,andinparticlephysicsoftenconvenient forperturbativecalculations,andnecessaryfornumericalsimulations.Thelanguageof partitionandcorrelationfunctionsisusedthroughout,eveninapplicationsofQFTto particlephysics.Renormalizationandrenormalizationgroup(RG)propertiesaresystematicallydiscussed,whereaslimitedspaceisdevotedto scatteringtheory.Onlyformal aspectsofQEDareconsidered,sinceexcellenttextbookscoverthissubjectextensively.

Forwhatfollows,notethat,inadeepquantumrelativisticcontext,onecanset = c = 1,andenergiesarethenproportionaltomomentaandmasses, andinverseofdistances.

InQFT,thebasicanalytictooltocalculatephysicalquantitiesisanexpansioninpowersoftheinteractions.Theinitial(orbare)Lagrangianof QEDgeneratesanexpansion intermsofthe barefine-structureconstant α0 = e2 0/4π c.Inastraightforwardperturbativecalculation,onediscoversthatallphysicalquantitiesareinfinite,the locality ofQED generating short-distancesingularities (onespeaksaboutultraviolet(UV)divergences).

Thissituationhastobecontrastedwithwhathappensinclassicalornon-relativistic quantummechanics(QM);there,thereplacementofmacroscopicbypoint-likeobjects leads,ingeneral,tonomathematicalinconsistencies,and isoftenaverygoodapproximation:theabsenceofthispropertywouldindeedhavemadeprogressinphysicsquite difficult.Tosummarize:inthelattertheories, phenomenaatverydifferentscales,toa goodapproximation,decouple.Mostsurprisingly,thisisnolongerthecaseinQFT.

InQED,aremedytotheinfinityproblemwasfoundempirically:onefirst regularizes QED(i.e. onerenderstheperturbativeexpansionfinite)byartificiallymodifyingthe theoryatshortdistance,orequivalentlyatlargemomentum,atascalecharacterizedby

alargemomentumcut-offΛ(ingeneral,introducingnon-physicalshort-distanceproperties).Inspiredbymethodsofcondensedmatterphysics,one thenre-expressesallphysical quantitiesintermsofthemeasuredfinestructureconstantandthephysicalmassesof particles,inplaceoftheoriginal(bare)parametersofthe Lagrangian.Afterthischange ofparametrization,thecut-offisremoved,andsomewhatmiraculously,orderbyorder inperturbationtheory,allotherphysicalquantitieshave afinitelimit.Moreover,the limitisindependentofthepreciseformoftheregularization.Thisstrangemethod, called renormalization,didsoonfindanexperimentalconfirmation:itledtopredictions agreeingwithincreasinglyimpressiveprecisionwithexperiments.

Therefore,itbecamethennaturaltosearchforother renormalizable QFTs,todescribe allinteractions.Thisledtoanothermajorachievement:arenormalizableQFTforall three,strong,weak,andelectromagneticinteractions.Theso-calledStandardModel (SM),whoseformalstructurewasproposedmorethanfortyyearsago,completelydescribesphysicsatthemicroscopicscale,andhasbeencomfortedin2012,inaspectacular way,bythediscovery,attheLargeHadronCollideroftheEuropeanCenterforNuclear Research(CERN),ofthelastmissingparticleofthemodel,theHiggsscalarboson.

TheimpressivesuccessofastrategybasedonlookingforrenormalizableQFTs,that ledtotheSM,thenslowlypromoted renormalizability asakindofadditionallawof nature.Inparticular,oncetheSMofweak,electromagnetic andstronginteractionswas established,mucheffortwasdevotedtocastgravityinthesameframework.Despite ingeniousattempts,norenormalizableformofquantumgravityhasbeenfoundyet.

InamasslessrenormalizableQFT,itisnecessarytointroduceareferencephysical energyscaleatwhichthephysicalcouplingconstantsaredefined.Itwasrealizedearly on,firstasamathematicalcuriosity,thatanRGcouldbeassociatedwithachangeof thereferencescaleatconstantphysicalproperties.TheRG describeshowthephysical (oreffective)couplingconstantsvarywiththereferencescale.

Eventually,itwasrealizedthatthispropertycouldalsobe usedtodiscusstheshortdistancepropertiesofsomephysicalprocesses.In asymptoticallyfree QFTs(wherethe freeQFTisanultraviolet(UV)RGfixedpoint),theseeffectivecouplingsbecomesmall atlarge-Euclideanmomentaand,therefore,perturbationtheory,improvedbyRG,can beused.Inparticlephysics,thetheoryofstronginteractions,basedon SU (3)gauge symmetry,sharesthisproperty.Later,WeinbergarguedthattheexistenceofUVRG fixedpoints(likeinnon-Abeliangaugetheories,ornon-linear σ models),thatis,the existenceoflimitsfortheeffectiveshort-distancecouplings,wasanecessarycondition fortheconsistencyofaQFTonallscales.However,mostofthefieldtheoriesproposed todescribestrong,electromagneticandweakinteractions arenotasymptoticallyfree.

Ofcourse,theexistenceofothernon-trivialfixedpointscannotbeestablishedin theframeworkofperturbationtheory.However,manynumericalsimulationsoffield theoriesonthelattice,whichmakenon-perturbativeexplorationspossible,havefailedto discovernon-trivialfixedpoints.Therefore,presumably, thepresentSM,whichdescribes sopreciselyparticlephysicsatpresentscale,isnotconsistentonallscales,andhasto bemodifiedatshorterdistance.

Thisalsosuggeststhatthepropertyofrenormalizabilityhasadifferentorigin. Somewhatsurprisingly,instatisticalphysics,QFThasalsobecomeanessentialtool fortheunderstandingofthecriticalbehaviourofalargeclassofsecond-orderphase transitionswithshort-rangeinteractions.Nearthecriticaltemperature,cooperative phenomenageneratealargescale,associatedwiththeso-called correlationlength.Moreover,thelarge-scalepropertiesofthesystembecomeindependentofmostofthedetails ofthemicroscopicdynamics.Firstattemptstoexplainthesepropertieswerebasedon

usualideas:adescriptiononlyinvolvingmacroscopicdegreesoffreedomadaptedtothe scaleofthecorrelationlength.Suchadescriptionnaturallyemergesinsimpleapproximationslike mean-fieldtheory.Itisconsistentwiththegeneralprobabilisticideathat averagesoveralargenumberofindependentstochasticvariablesobeyaGaussiandistribution.Thecorrespondinggeneralideasweresummarizedin Landau’stheoryofcritical phenomena.However,itslowlybecameclearthatthepredictionsofsuchatheorywere toouniversal,conflictingwithnumericalcalculationsofcriticalexponents,experimentaldataandexactresultsintwodimensions.Theseresultssupportedtheconceptofa morerestricted universality:broadclassesofsystemshaveindeedthesamelargedistanceproperties,but,unlikeinmean-fieldtheory,thesepropertiesseemedtodependon asmallnumberofqualitativefeatures,likedimensionofspace,numberofcomponentsof theorderparameter,symmetries,andsoon.Actually,ananalysisoftheleadingcorrectionstomean-fieldorGaussianapproximationsindeedrevealsthat,atleastinlow-space dimensions,theshortdistancenevercompletelydecouple, amostunusualsituation.

Toexplainthisremarkablephenomenon,thatis,thatlargedistancepropertiesofsecondorderphasetransitionsare,toalargeextent,short-distanceinsensitive,although degreesoffreedomonallscalesremaincoupled,Wilson,partiallyinspiredbysomeprior attemptsofKadanoff,introducedtheRGidea:startingfroma microscopicHamiltonian, oneintegratesout,recursively,thedegreesoffreedomcorrespondingtoshort-distance fluctuations,andgeneratesascale-dependenteffectiveHamiltonian.Universalitythen reliesupontheexistenceofIRfixedpointsinHamiltonianspace.Oneofthespectacular implicationsisthattheuniversalpropertiesofalargeclassofcriticalphenomenacan beaccuratelypredictedbythesameQFTmethodsthathadbeen inventedforparticle physics.Atleadingorderinthecriticaldomain,thephysicsofthefixed-pointHamiltoniancanbereproducedbyrenormalizable(orsuper-renormalizable)QFTs.

PredictionsobtainedfromaRGanalysisofsimplefieldtheorieslikethe(φ2)2 QFT havebeensuccessfullycomparedtoexperimentsaswellasnumericaldatafromlattice models.ThesameQFTmethodshavebeenshowntodescribevastlydifferentphysicalsystemsatcriticality,likeferromagnets,liquid–vapour,binarymixtures,superfluid heliumand,evenmoresurprisingly,statisticalpropertiesofpolymers.

IfQFThasledtoanunderstandingoftheconceptofuniversalityandmadethe calculationofmanyuniversalphysicalquantitiespossible,conversely,criticalphenomena haveshedanewlightontheoriginofrenormalizableQFTsand oftherenormalization processinparticlephysics.

Letusdescribeagain,ingeneralterms,therenormalizationmethod.Startingfroman initialLagrangian,assumedtobe renormalizable,expressedintermsof bareparameters, onegeneratesanexpansioninpowersoftheinteractions.The perturbativeexpansion isthenplaguedbyUVdivergences.Torendertheperturbativeexpansionfinite,one introducesalarge-momentumcut-offΛ,whichgeneratesanartificial,andsomewhat arbitraryshort-distancestructure,withnon-physicalproperties.Onethencalculates quantitiesatthephysicalscaleand tunesthebareparameters asfunctionsofthecut-off, insuchwaythatobservablesatthephysicalscalehaveafiniteinfiniteΛlimit.Since thebareparametershavegenerallynofiniteinfiniteΛlimit, thisledsomephysiciststo theparadoxicalconclusionthattheLagrangianinrelativisticQFTisnon-physical.The insistencefortakingtheinfinitecut-offlimitwasmotivatedbythewishtoconstructa renormalizedQFTphysicallyconsistentonallscales.Formalismsweredeveloped(like theBogoliubov–Parasiuk–Hepp–Zimmermann(BPHZ)formalism)togeneratedirectly arenormalizedperturbationtheory,inwhichtheLagrangianwasreducedtoadevice forgeneratingFeynmanrules.However,anotherinterpretationofthebareQFTand

therenormalizationprocedure,directlyinspiredfromthe functionalRGasappliedto criticalphenomenabyWilson,hasgainedstrengthovertheyears.Atveryshortdistance (thePlanckscale?),thefamiliarnotionoflocalQFTlosesitsmeaning.However,the necessarynon-localeffects,whichrenderthemorefundamentaltheoryfinite,arelimited tothismicroscopicscale(theequivalentoftheconditionofshort-rangeforcesinstatistical systems).Dynamicaleffects,ofanaturewhichatpresentcan onlybeguessed,generate atdistanceslargecomparedtothemicroscopicscale(equivalently,atlowerenergies) physicsassociatedwiththeappearanceofverylowmassparticles(comparedtothe Planckmass,forexample,allknownparticlesarealmostmassless).Atlargedistance, physicscanbedescribedbyan effectivelocalQFT,whoseactionisalinearcombinationof alllocalmonomialsconsistentwithsymmetries,andotherpossiblerequirements.With increasingdistance,atleastinamean-fieldlikeapproximation,allinteractionsscale asdimensionalanalysis(orpowercounting)indicates.Eventually,non-renormalizable interactionsbecomeverysmall,dimensionlessrenormalizableinteractionssurvive,and unprotectedterms,withpositivedimension,likemassterms,diverge.

Actually,thispicturehastobecorrected,becausetheUVdivergencesandthenecessityofintroducingalarge-momentumcut-off(asubstitutefortheunknownmicroscopic physics)showthatmicroscopicscaleandthephysicalscale donotcompletelydecouple. TheflowofinteractionshastobedescribedbyaRGthatinterpolatesbetweenthemicroscopicscaleandthephysicalscale.Still,asweshallargue,theflowofrenormalizable interactionsisonlylogarithmic,whiletheothertermshaveapower-lawbehaviour.Thus, themean-fieldanalysisofthehierarchyofinteractionsremainsqualitativelycorrect.

Thisschemehasthefollowingconsequences:itexplainsthe emergenceofrenormalizableQFTs.Theroleofrenormalizationtheoryistoprove,orderbyorderinperturbation theory,thatphysicsatthephysicalscaleis,toalargeextent,butnotcompletely,shortdistanceinsensitive(andthusinsensitivetotheprecisecut-offimplementation),butina moresubtlewayasinclassicalphysics.However, theinitial(bare)parametershavetobe consideredasbeinggiven,andonehas,therefore,toprove,beyondperturbationtheory, thatthechangeofparametrization,assumedintherenormalizationtheory,frombareto physicaleffectiveparameters,ispossible.Inparticular, thisleadstothe trivialityissue forIR-freetheories(likeQED):thephysicalchargedecreaseslogarithmicallywiththe cut-offand,therefore,the cut-offcannotbesenttoinfinity.Thecorrespondingcoupling constantsareexpectedtobesmall(thisisconsistentwiththesmallvalueof α).Moreover,mostQFTscannotbemadeconsistentonallscales.Thepossibilityofverysmall non-renormalizableinteractions,sinceproportionaltotheinverseofthepowerofcut-off, hastobeconsidered.GeneralRelativitymaybeofthisnature.

TheoriginoftheHiggsboson,whichisinvolvedinmostofthe parametersofthe SM,andthenecessary finetuning ofitsmasstermintheLagrangian,becomeessential physicsissues.Incontrasttocriticalphenomenainwhicha controlparameter,likethe temperature,canbeadjustedtomakethecorrelationlength large,inparticlephysics theexistenceofsmallmassparticleshastobeexplainedbygeneralpropertiesoftheunknownfundamentaltheory.Thisisthefamous hierarchy problem.Spontaneousbreaking ofacontinuoussymmetry,gaugeprinciple,andchiralinvariance(butwhosenaturalimplementationseemstorequireadditionalspacedimensions)aretheknownmechanisms whichgeneratemasslessparticles.Supersymmetrycanbehelpfultodealwithscalar bosons.Atpresent,thesetofgeneralconditionstobeimposedonanyfundamental theory,thatis,inthelanguageofcriticalphenomenathecompletedescriptionofthe universalityclassofparticlephysicshasnotbeenformulated.Thisisalsoafundamental problemoftheSM.

Ontheotherhand,sincethelargedistancephysicsis,toalargeextent,short-distance insensitive,therealnatureofthefundamentaltheorymayremain,intheforeseeable future,elusive,inthesamewayasapreciseknowledgeofthe criticalexponentsofthe liquid–vapourphasetransitiongiveslimitedinformation aboutrealinteractionsinwater. Thiswork,whichdoesnotclaimtoshedanylightonthesedifficultproblems,simply triestodescribeparticlephysicsandcriticalphenomenainstatisticalmechanicsina unifiedframework.

Chapters1–7dealwithfunctionalintegrals,perturbation theory,functionalmethods anddiscussgeneralpropertiesofscalarbosonQFTs.Chapters8–13provideanintroductiontorenormalizationtheorywiththesimpleexampleofthe φ4 QFTinfourdimensions, andRGequationsarederived.Compositeoperatorsandtheshort-distanceexpansion arediscussed.Relativisticfermionsaredescribed.Renormalizationpropertiesoftheories withsymmetriesarestudied,andspecificapplicationstoparticlephysicsareemphasized.

Chapters14–19aredevotedtocriticalphenomenainmacroscopicphasetransitions: generalproperties,mean-fieldapproximation,andmainlyapplicationsofQFTmethods andRG,withthecalculationofuniversalquantities,inparticular,withWilson–Fisher ε expansion,large N techniquesandnon-linear σ-modelfor O(N )-symmetricmodels.

WithChapters20–26,wereturntoparticlephysics.Chapter 20dealswithspontaneous fermionmassgeneration.Wethendiscussgaugetheories,Abelianandnon-Abelian.In particular,Chapter22brieflydescribestheSMofparticlephysics.Chapter26introduces Becchi–Rouet–Stora–Tyutin(BRST)symmetry,theZinn-Justin(ZJ)equationandthe proofoftherenormalizablityofgaugetheories.Chapter27 containsashortintroduction tosupersymmetry.Chapter28gathersthefewelementsofclassicalandquantumgravity neededinthework.

InChapters29–31,wefocusontwo-dimensionalfieldtheories,ofrelevancebothfor particleandstatisticalphysics.Chapter29isdevotedtoQFTsdefinedonhomogeneous spaces,andChapters30and31describeexactly-solvabletwo-dimensionalQFTs.

Chapter32providesanintroductiontofinite-sizeeffects,andChapter33tofinite temperaturerelativisticQFT.Chapters34–36dealwithstochasticevolutionequations, andtheirapplicationtocriticaldynamicsinphasetransitions.Chapters37–42describe theroleofinstantonsinQMandQFT,theapplicationofinstantoncalculustothe analysisoflarge-orderbehaviourofperturbationtheory, andtheproblemofsummation oftheperturbativeexpansion.Inparticular,Chapter41appliesthisinformationtothe evaluationofcriticalexponentsandseveralotheruniversalquantities.

Iamfullyawarethatthisworkislargelyincomplete.Myignoranceorlackofunderstandingofmanyimportanttopicsisofcoursemostlyresponsibleforthisweakness.A lackofspacehasalsoforcedmetoremoveanintroductiontolargerandommatrices,and preventedmefromaddingsomeothertopics.Anyway,Ibelievethatacompletesurvey ofQFTanditsapplicationsisbeyondthescopeofasinglephysicist.

Thisworkincorporatesnotesforlecturesdeliveredinnumeroussummerschools,most notably,Carg`ese1973,Bonn1974,Karpacz1975,BaskoPolje1976,andLesHouches 1982,aswellasforgraduatelecturesinuniversitieslikePrinceton,Louvain-la-Neuve, Berlin,Lausanne,Cambridge(Harvard),EcoleNormaleSup´erieure,Paris7,andsoon.

Conversely,sincesomerelevantmaterialthatIhavegatheredovertheyearscanno longerfindaplaceinthiswork,someelementshavebeenpublishedinfourreviews (intheformofPhysicsReports)andinthreecompanionvolumes,Refs.[6,64]andJ. Zinn-Justin, Fromrandomwalkstorandommatrices (OxfordUniv.Press2019).

Finally,commentsorcorrectionsaremostwelcome,andcanbesenttotheemail address:jean.zinn-justin@cea.fr.

Acknowledgements

ItisimpossibletolistallthephysicistsfromwhomIhavebenefitedinmylongcareerand whoseinfluencecan,therefore,befeltinoneformoranother inthiswork.Mymasters, M.FroissartandD.Bessis,guidedmyfirststepsinphysics.E.Br´ezinandJ.C.LeGuillou havecollaboratedwithmeformorethanfifteenyears,andwithoutthem,obviously,this workwouldneverhavebeenproduced.IalsothinkwithadeepemotionofB.W.Lee: theyearIspentworkingwithhimatStony-Brookwasoneofthe mostexcitingofmy lifeasaphysicist.

Wilson’sRGideasareamajorsourceofinspirationforthiswork.S.Coleman,A.A. Slavnov,R.Stora,K.Symanzik,A.N.Vasilev,amongothers, playedanimportantrolein myunderstandingofseveralaspectsofphysicsthroughtheirarticlesandlecturenotes,as wellasthroughprivatediscussions.T.D.LeeandC.N.Yanghaveconsistentlyhonoured mewiththeirfriendshipandhospitalityintheirinstitutions.Theirdeepremarkshave beenprecioustome.

Ihavelearnedmuchfromlecturesinseveralsummerschools, mostnotably,C.G. Callan,L.D.Faddeev,andD.GrossinLesHouchesschool1975

Severalcolleaguesagreedtoreadpartofthevariouseditionsbeforepublication,andI havebenefitedfromtheircriticisms,remarksandwisdom,E. Br´ezin,R.Stora,C.Bervillier,R.Guida,M.Moshe,O.Napoly,A.N.Vasilev,P.Zinn-Justin,andJ.-B.Zuber.

Moregenerally,mycolleaguesoftheSaclaytheorygroup,withwhomIhavehadso manydiscussions,inparticularC.deDominicis,E.Iancu,andC.Itzykson,havedirectly influencedthiswork.Finally,IalsowishtothankallothercolleagueswithwhomIhave collaboratedovertheyearsand,morespecifically,P.Ginsparg,R.Guida,S.Hikami, U.D.Jentschura,M.Moshe,andG.Parisi.

ThemanylecturesIhaveattendedinLesHouchesduringninesummershaveprovided mewithadditionalinspiration,andastayattheMassachusettsInstituteofTechnology (MIT),wherelecturenotesconcerningfinitetemperaturefieldtheorywereprepared,is gratefullyacknowledged.

S.ZaffanellaandM.Porneufweremosthelpfulinthepreparationofthefirstedition. Alldeservemydeepestgratitude.

Fullyrevisedforthe5th edition,Paris-Saclay,6February2021

Somegeneralreferencesforthewholework

Inadditiontotheworksexplicitlyquotedinthetext,anumberoftextbooksorreviews havebeenadirectsourceofinspiration:

S.Weinberg, TheQuantumTheoryofFields,2volumes,(CambridgeUniv.Press1995, 1996);

A.N.Vasiliev, FunctionalMethodsinQuantumFieldTheoryandStatistical Physics, (StPetersburg1976),Englishtranslation(GordonandBreach,Amsterdam1998);

L.D.FaddeevandA.A.Slavnov, GaugeFields:IntroductiontoQuantumFieldTheory (Benjamin,Reading,MA1980);

T.D.Lee, ParticlePhysicsandIntroductiontoFieldTheory (HarwoodAcademic,New York1981);

A.M.Polyakov, GaugeFieldsandStrings (HarwoodAcademic,NewYork1988);

J.DrouffeandC.Itzykson, Th´eorieStatistiquedesChamps (InterEditions1989),Englishversion: StatisticalFieldTheory,(CambridgeUniv.Press1989); Constructionoffieldtheoriesfromamorerigorouspointofviewisdiscussedin

R.F.StreaterandA.S.Wightman, PCT,Spin&StatisticsandAllThat (Benjamin, NewYork1964);

G.GlimmandA.Jaffe, QuantumPhysics:AFunctionalIntegralPointofView (Springer-Verlag,Berlin1981).

CriticalPhenomena,RandomSystems,GaugeTheories,ProceedingsofLesHouches SummerSchool1984,K.OsterwalderandR.Storaeds.(Elsevier,Amsterdam1986).

1Gaussianintegrals.Algebraicpreliminaries ...............1

1.1Gaussianintegrals:Wick’stheorem................. .1

1.2Perturbativeexpansion.Connectedcontributions.... ........3

1.3Thesteepestdescentmethod.....................4

1.4ComplexstructuresandGaussianintegrals........... ...5

1.5Grassmannalgebras.Differentialforms..............

1.6DifferentiationandintegrationinGrassmannalgebras.

1.7GaussianintegralswithGrassmannvariables.........

1.8Legendretransformation......................16

2Euclideanpathintegralsandquantummechanics(QM) .........18

2.1Markovianevolutionandlocality...................

2.2Statisticaloperator:Pathintegralrepresentation.. ..........20

2.3Explicitevaluationofapathintegral:Theharmonicoscillator......24

2.4Partitionfunction:Classicalandquantumstatistical physics.......25

2.5Correlationfunctions.Generatingfunctional.......

2.6Harmonicoscillator.CorrelationfunctionsandWick’s theorem......30 2.7Perturbedharmonicoscillator....................33

2.8Semi-classicalexpansion.......................35

A2Additionalremarks

A2.1Ausefulrelationbetweendeterminantandtrace......

A2.2Thetwo-pointfunction:Anintegralrepresentation..

A2.3Time-orderedproductsofoperators................

3Quantummechanics(QM):Pathintegralsinphasespace

3.1GeneralHamiltonians:Phase-spacepathintegral.....

3.2Theharmonicoscillator.Perturbativeexpansion.....

3.3Hamiltoniansquadraticinmomentumvariables........

3.4Thespectrumofthe O(2)-symmetricrigidrotator...........51

3.5Thespectrumofthe O(N )-symmetricrigidrotator...........52

A3Quantization.Topologicalactions:Quantumspins,magneticmonopoles .56

A3.1Symplecticformandquantization:Generalremarks... .......56

A3.2Classicalequationsofmotionandquantization...... ......58

A3.3Topologicalactions........................60

4Quantumstatisticalphysics:Functionalintegrationformalism .......64

4.1One-dimensionalQM:Holomorphicrepresentation.....

4.2Holomorphicpathintegral......................67

4.3Severaldegreesoffreedom.Bosoninterpretation..... .......71

4.4TheBosegas.Fieldintegralrepresentation.......... ....72

4.5FermionrepresentationandcomplexGrassmannalgebras ........80

4.6Pathintegralswithfermions.....................83

4.7TheFermigas.Fieldintegralrepresentation......... .....87

5Quantumevolution:Fromparticlestonon-relativisticfields ........90

5.1Timeevolutionandscatteringmatrixinquantummechanics(QM)....90

5.2Pathintegraland S-matrix:Perturbationtheory............92

5.3Pathintegraland S-matrix:Semi-classicalexpansions..........95

5.4 S-matrixandholomorphicformalism.................99

5.5TheBosegas:Evolutionoperator.................102

5.6Fermigas:Evolutionoperator...................103

A5Perturbationtheoryintheoperatorformalism ............104

6Theneutralrelativisticscalarfield ..................105

6.1Therelativisticscalarfield.....................105

6.2Quantumevolutionandthe S-matrix................110

6.3 S-matrixandfieldasymptoticconditions..............112

6.4Thenon-relativisticlimit:The φ4 QFT...............116

6.5Quantumstatisticalphysics....................118

6.6K¨allen–Lehmannrepresentationandfieldrenormalization.......122

7Perturbativequantumfieldtheory(QFT):Algebraicmethods ......125

7.1Generatingfunctionalsofcorrelationfunctions..... .......126

7.2Perturbativeexpansion.Wick’stheoremandFeynmandiagrams....127

7.3Connectedcorrelationfunctions:Generatingfunctional........129

7.4Theexampleofthe φ4 QFT....................131

7.5Algebraicpropertiesoffieldintegrals.Quantumfieldequations.....133

7.6Connectedcorrelationfunctions.Clusterproperties. .........139

7.7Legendretransformation.Vertexfunctions.......... ....141

7.8Momentumrepresentation.....................144

7.9Looporsemi-classicalexpansion..................146

7.10Vertexfunctions:One-lineirreducibility......... .....151

7.11Statisticalandquantuminterpretationofthevertexfunctional....152 A7Additionalresultsandmethods ...................155

A7.1Generatingfunctionalattwoloops................155

A7.2Thebackgroundfieldmethod...................156

A7.3ConnectedFeynmandiagrams:Clusterproperties..... .....157

8Ultravioletdivergences:Effectivefieldtheory(EFT) ..........160

8.1Gaussianexpectationvaluesanddivergences:Thescalarfield.....161

8.2DivergencesofFeynmandiagrams:Powercounting...... ....162

8.3Classificationofinteractionsinscalarquamtumfieldtheories.....164

8.4Momentumregularization.....................166

8.5Example:The φ3 d=6 fieldtheoryatone-looporder..........169

8.6Operatorinsertions:Generatingfunctionals,powercounting......173

8.7Latticeregularization.Classicalstatisticalphysics..........175

8.8EffectiveQFT.Thefine-tuningproblem...............176

8.9Theemergenceofrenormalizablefieldtheories........ ....179 A8Technicaldetails ..........................181

A8.1Schwinger’sproper-timerepresentation........... ...181

A8.2Regularizationandone-loopdivergences........... ...181

A8.3Moregeneralmomentumregularizations............. .184

9Introductiontorenormalizationtheoryandrenormalizationgroup (RG) .185

9.1Powercounting.Dimensionalanalysis............... .186

9.2Regularization.BareandrenormalizedQFT........... ..187

9.3One-loopdivergences.......................191

9.4Divergencesbeyondone-loop:Skeletondiagrams...... .....194

9.5Callan–Symanzikequations....................196

9.6Inductiveproofofrenormalizability............... ..198

9.7The φ2φ2 vertexfunction....................203

9.8Therenormalizedaction:Generalconstruction....... .....204

9.9Themasslesstheory.......................204

9.10HomogeneousRGequations:MassiveQFT.............208

9.11EFTandRG..........................210

9.12SolutionofbareRGequations:Thetrivialityissue... ......212

A9FunctionalRGequations.Super-renormalizableQFTs.Normalorder ..214

A9.1Large-momentummodeintegrationandfunctionalRGequations...214

A9.2The φ4 QFTinthreedimensions:Divergences...........216

A9.3Super-renormalizablescalarQFTsintwodimensions:Normalorder..218 10Dimensionalcontinuation,regularization,minimalsubtraction(MS).

Renormalizationgroup(RG)functions ................220

10.1Dimensionalcontinuationanddimensionalregularization.......220 10.2RGfunctions..........................224

10.3Thestructureofrenormalizationconstants......... ....226

10.4MSscheme...........................227

10.5RGfunctionsattwo-looporder:The φ4 QFT............230

10.6Generalizationto N -componentfields...............235 A10Feynmanparametrization .....................239

11Renormalizationoflocalpolynomials.Short-distanceexpansion(SDE) .240

11.1Renormalizationofoperatorinsertions............ ...240

11.2Quantumfieldequations.....................245

11.3Short-distanceexpansionofoperatorproducts...... .....248

11.4Large-momentumexpansionoftheSDEcoefficients:CSequations...253

11.5SDEbeyondleadingorder.Generaloperatorproduct... .....255

11.6Light-coneexpansionofoperatorproducts.......... ...256

12Relativisticfermions:Introduction ..................258

12.1MassiveDiracfermions......................258

12.2Self-interactingmassivefermions:Non-relativisticlimit........263

12.3FreeEuclideanrelativisticfermions.............. ..265

12.4Partitionfunction.Correlations................. .269

12.5Generatingfunctionals......................270

12.6Connectionbetweenspinandstatistics............. ..272

12.7Divergencesandmomentumcut-off................274

12.8Dimensionalregularization....................276

12.9Latticefermionsandthedoublingproblem........... ..276 A12Euclideanfermions,spingroupand γ matrices ...........280

A12.1Spingroup.Dirac γ matrices..................280 A12.2Theexampleofdimension4...................288

A12.3TheFierztransformation....................289

A12.4Tracesofproductsof γ matrices.................290

13Symmetries,chiralsymmetrybreaking,andrenormalization ......292

13.1Liegroupsandalgebras:Preliminaries............. ..293

13.2LinearglobalsymmetriesandWTidentities.......... ..295

13.3Linearsymmetrybreaking....................298

13.4Spontaneoussymmetrybreaking.................301

13.5Chiralsymmetrybreakinginstronginteractions:Effectivetheory...304

13.6Thelinear σ-model.......................306

13.7WTidentities..........................310

13.8Quadraticsymmetrybreaking...................313

A13CurrentsandNoether’stheorem ..................317

A13.1Currentsinclassical-fieldtheory................ .317

A13.2Theenergy–momentumtensor..................318

A13.3Euclideantheory:Dilatationandconformalinvariance.......320 A13.4QFT:Currentsandcorrelationfunctions........... ..322

A13.5Energy-momentumtensorandQFT...............323

14Criticalphenomena:Generalconsiderations.Mean-fieldtheory(MFT) .324 14.1Thetransfermatrix.......................325

14.2Theinfinitetransversesizelimit:Ising-likesystems .........328

14.3Continuoussymmetries......................331 14.4Mean-fieldapproximation....................332 14.5Universalitywithinmean-fieldapproximation....... .....337 14.6Beyondthemean-fieldapproximation...............342 14.7Powercountingandtheroleofdimension4............ .345 14.8Tricriticalpoints........................346 A14Additionalconsiderations .....................347

A14.1High-temperatureexpansion...................347

A14.2Mean-fieldapproximation:Generalformalism....... ....348

A14.3Mean-fieldexpansion......................351

A14.4High-,low-temperature,andmean-fieldexpansions.. .......352

A14.5Quenchedaverages.......................354

15Therenormalizationgroup(RG)approach:Thecriticaltheorynear fourdimensions ...........................357 15.1RG:Thegeneralidea......................358 15.2TheGaussianfixedpoint.....................363 15.3Criticalbehaviour:Theeffective φ4 fieldtheory...........366 15.4RGequationsnearfourdimensions................368 15.5SolutionoftheRGequations:The ε-expansion...........370 15.6Criticalcorrelationfunctionswith φ2(x)insertions..........372 15.7The O(N )-symmetric(φ2)2 fieldtheory..............376 15.8Statisticalpropertiesoflongself-repellingchains ..........377 15.9Liquid–vapourphasetransitionand φ4 fieldtheory.........382 15.10Superfluidtransition......................387

16Criticaldomain:Universality, ε-expansion ..............391

16.1Strongscalingabove Tc:Therenormalizedtheory..........392 16.2Criticaldomain:HomogeneousRGequations.......... ..396

16.3Scalingpropertiesabove Tc ....................396

16.4Correlationfunctionswith φ2 insertions..............399 16.5Scalingpropertiesinamagneticfieldandbelow Tc .........400 16.6The N -vectormodel.......................403

16.7Thegeneral N -vectormodel...................405

16.8Asymptoticexpansionofthetwo-pointfunction...... .....410 16.9Someuniversalquantitiesas ε expansions.............412 16.10Conformalbootstrap......................420

17Criticalphenomena:Correctionstoscalingbehaviour .........421

17.1Correctionstoscaling:Genericdimensions......... ....421 17.2Logarithmiccorrectionsattheupper-criticaldimension.......423

17.3Irrelevantoperatorsandthequestionofuniversality .........426 17.4Correctionscomingfromirrelevantoperators.Improvedaction....428

17.5Application:Uniaxialsystemswithstrongdipolarforces.......431

18 O(N) -symmetricvectormodelsfor N large .............436

18.1Thelarge N action.......................436

18.2Large N limit:Saddlepointequations,criticaldomain........438

18.3Renormalizationgroup(RG)functionsandleadingcorrectionstoscaling445 18.4Small-couplingconstant,large-momentumexpansions for d< 4....447

18.5Dimension4:Trivialityissuefor N large..............448

18.6The(φ2)2 fieldtheoryandthenon-linear σ-modelfor N large....449 18.7The1/N -expansion:Analternativefieldtheory...........453

18.8Explicitcalculations.......................455

19Thenon-linear σ-modelneartwodimensions:Phasestructure .....458

19.1Thenon-linear σ-model:Definition................459

19.2Perturbationtheory.Powercounting............... .461

19.3IRdivergences.........................463

19.4UVregularization........................464

19.5WTidentitiesandmasterequation................466 19.6Renormalization.........................469

19.7Therenormalizedaction:Solutiontothemasterequation......471 19.8Renormalizationoflocalfunctionals.............. ..474

19.9Alinearrepresentation......................475

19.10(φ2)2 fieldtheoryintheorderedphaseandnon-linear σ-model....476 19.11Renormalization,RGequations.................479

19.12RGequations:Solutions(magneticterminology).... ......480 19.13Resultsbeyondone-looporder..................486

19.14Thedimension2:Asymptoticfreedom..............488 20Gross–Neveu–YukawaandGross–Neveumodels ............489

20.1TheGNYmodel:Spontaneousmassgeneration.......... .489 20.2RGequationsnearfourdimensions................494

20.3TheGNYmodelinthelarge N limit...............498

20.4Thelarge N expansion......................501

20.5TheGNmodel.........................504

21Abeliangaugetheories:Theframeworkofquantumelectrodynamics(QED) 507

21.1Thefreemassivevectorfield:Quantization.......... ...507 21.2TheEuclideanfreeaction.Thetwo-pointfunction.... ......509 21.3Couplingtomatter.......................512 21.4Themasslesslimit:Gaugeinvariance............... 514 21.5Masslessvectorfield,gaugeinvariance,andquantization.......516 21.6Equivalencewithcovariantquantization........... ...519 21.7Gaugesymmetryandparalleltransport.............. 521 21.8Perturbationtheory:Regularization.............. ..522 21.9WTidentitiesandrenormalization................. 526 21.10Gaugedependence:Thefermiontwo-pointfunction... ......528 21.11RenormalizationandRGequations................531 21.12One-loop β functionandthetrivialityissue............532 21.13TheAbelianLandau–Ginzburg–Higgsmodel.......... ..535 21.14TheLandau–Ginzburg–Higgsmodel:WTidentities.... .....537 21.15Spontaneoussymmetrybreaking:Decouplinggauge... ......538 21.16Physicalobservables.Unitarityofthe S-matrix..........539 21.17Stochasticquantization:Theexampleofgaugetheories.......540 A21Additionalremarks ........................542 A21.1VacuumenergyandCasimireffect................542 A21.2Gaugedependence.......................545 A21.3DivergencesatoneloopfromSchwinger’srepresentation......546

22Non-Abeliangaugetheories:Introduction ..............548

22.1Geometricconstruction:Paralleltransport........ .....548 22.2Gauge-invariantactions.....................551

22.3Hamiltonianformalism.Quantizationinthetemporalgauge.....551 22.4Covariantgauges........................554

22.5Perturbationtheory,regularization.............. ..557 22.6Thenon-AbelianHiggsmechanism................559 A22MassiveYang–Millsfields .....................565

23TheStandardModel(SM)offundamentalinteractions ........567

23.1Weakandelectromagneticinteractions:Gaugeandscalarfields....568

23.2Leptons:MinimalSMextensionwithDiracneutrinos... .....570

23.3Quarksandweak–electromagneticinteractions...... .....573 23.4QCD.RGequationsand β function................576

23.5GeneralRG β-functionatone-looporder:Asymptoticfreedom....578

23.6Axialcurrent,chiralgaugetheories,andanomalies.. .......582

23.7Anomalies:Applicationsinparticlephysics........ .....591

24Large-momentumbehaviourinquantumfieldtheory(QFT) ......593

24.1The(φ2)2 Euclideanfieldtheory:Large-momentumbehaviour....593

24.2General φ4-likefieldtheories:d=4.................598

24.3TheorieswithscalarbosonsandDiracfermions....... ....600

24.4Gaugetheories.........................602

24.5Applications:Thetheoryofstronginteractions..... ......604

25Latticegaugetheories:Introduction .................607

25.1Gaugeinvarianceonthelattice:Paralleltransport.. ........607

25.2Thematterlessgaugetheory...................609

25.3Wilson’sloopandconfinement..................611

25.4Mean-fieldapproximation....................617

A25Gaugetheoryandconfinementintwodimensions ..........621

26Becchi–Rouet–Stora–Tyutin(BRST)symmetry.Gaugetheories: Zinn-Justinequation(ZJ)andrenormalization .............623

26.1STidentities:Theorigin.....................624

26.2FromSTsymmetrytoBRSTsymmetry..............626

26.3BRSTsymmetry:Moregeneralcoordinates.Groupstructure.....628

26.4Stochasticequations.......................630

26.5BRSTsymmetry,Grassmanncoordinates,andgradientequations...632

26.6Gaugetheories:Notationandalgebraicstructure.... ......635

26.7Gaugetheories:Quantization...................636

26.8WTidentitiesandZJequation..................639

26.9Renormalization:Generalconsiderations.......... ....641

26.10Therenormalizedgaugeaction..................642

26.11Gaugeindependence:Physicalobservables......... ....647

A26BRSTsymmetryandZJequation:Additionalremarks ........649 A26.1BRSTsymmetryandZJequation................649 A26.2CanonicalinvarianceoftheZJequation............ ..650

A26.3ElementsofBRSTcohomology.................651 A26.4FromBRSTsymmetrytosupersymmetry.............654

27Supersymmetricquantumfieldtheory(QFT):Introduction ......656

27.1Scalarsuperfieldsinthreedimensions.............. .656

27.2The O(N )supersymmetricnon-linear σ model...........661

27.3Supersymmetryinfourdimensions................662

27.4Vectorsuperfieldsandgaugeinvariance............. .666

28Elementsofclassicalandquantumgravity ..............670

28.1Manifolds.Changeofcoordinates.Tensors.......... ...671

28.2Paralleltransport:Connection,covariantderivative.........673

28.3Riemannianmanifold.Themetrictensor............. .677

28.4Thecurvature(Riemann)tensor.................678

28.5Fermions,vielbein,spinconnection............... .682

28.6ClassicalGR.Equationsofmotion.................684

28.7Quantizationinthetemporalgauge:Puregravity..... .....687

28.8Observationalcosmology:Afewcomments............ .690

29Generalizednon-linear σ-modelsintwodimensions ..........692

29.1HomogeneousspacesandGoldstonemodes............. 692

29.2WTidentitiesandrenormalizationinlinearcoordinates.......695

29.3Renormalizationingeneralcoordinates:BRSTsymmetry......699

29.4Symmetricspaces:Definition...................703

29.5Classicalfieldequations.Conservationlaws........ .....704

29.6QFT:PerturbativeexpansionandRG...............706

29.7Generalizations.........................711

A29Homogeneousspaces:Afewalgebraicproperties ..........713

A29.1Puregauge.Maurer–Cartanequations.............. 713

A29.2Metricandcurvatureinhomogeneousspaces......... ..714

A29.3Explicitexpressionsforthemetric............... .715

A29.4Symmetricspaces:Classification................. 717

30Afewsolvabletwo-dimensionalquantumfieldtheories(QFT) .....721

30.1Thefreemasslessscalarfield...................721

30.2ThefreemasslessDiracfermion..................725

30.3Thegauge-invariantfermiondeterminantandtheanomaly......728

30.4ThesGmodel..........................731

30.5TheSchwingermodel......................732

30.6ThemassiveThirringmodel...................736

30.7AgeneralizedThirringmodelwithtwofermions....... ....739

30.8The SU (N )Thirringmodel....................742

A30Two-dimensionalmodels:Afewadditionalresults ..........745

A30.1Four-fermioncurrentinteractions:RG β-function.........745

A30.2TheSchwingermodel:Theanomaly...............745 A30.3SolitonsinthesGmodel....................746

31O(2)spinmodelandtheKosterlitz–Thouless’s(KT)phasetransition ..747

31.1Thespincorrelationfunctionsatlowtemperature.... ......748

31.2Correlationfunctionsinafield..................749

31.3TheCoulombgasintwodimensions................750

31.4 O(2)spinmodelandCoulombgas.................755

31.5Thecriticaltwo-pointfunctionintheO(2)model..... .....756

31.6ThegeneralizedThirringmodel..................758

32Finite-sizeeffectsinfieldtheory.Scalingbehaviour ..........760

32.1RGinfinitegeometries......................760

32.2Momentumquantization.....................764

32.3The φ4 fieldtheoryinaperiodichypercube.............766

32.4The φ4 fieldtheory:Cylindricalgeometry.............772

32.5Finitesizeeffectsinthenon-linear σ-model.............776 A32Additionalremarks ........................782

A32.1Perturbationtheoryinafinitevolume.............. 782

A32.2Discretesymmetriesandfinite-sizeeffects......... ....783

33Quantumfieldtheory(QFT)atfinitetemperature:Equilibriumproperties 786

33.1Finite-(andhigh-)temperaturefieldtheory......... ....786

33.2Theexampleofthe φ4 1,d 1 fieldtheory...............790

33.3Hightemperatureandcriticallimits............... .796

33.4Thenon-linear σ-modelinthelarge N limit............799

33.5Theperturbativenon-linear σ-modelatfinitetemperature......804

33.6TheGNmodelinthelarge N expansion..............810

33.7Abeliangaugetheories:TheQEDframework........... .817

33.8Non-Abeliangaugetheories....................824

A33Feynmandiagramsatfinitetemperature ..............828

A33.1One-loopcalculations......................828

A33.2Groupmeasure........................830

34Stochasticdifferentialequations:Langevin,Fokker–Planck(FP)equations 831

34.1TheLangevinequation......................831

34.2Time-dependentprobabilitydistributionandFPequation......833

34.3Equilibriumdistribution.Correlationfunctions... ........835

34.4Aspecialclass:DissipativeLangevinequations..... ......838

34.5ThelinearLangevinequation...................839

34.6Pathintegralrepresentation...................842

34.7BRSTandsupersymmetry....................843

34.8Gradienttime-dependentforceandJarzynski’srelation........846

34.9MoregeneralLangevinequations.MotioninRiemannian manifolds..848 A34Markov’sstochasticprocesses:Afewremarks ............852

A34.1Discretespaces:Markov’sprocesses,phasetransitions.......852

A34.2Stochasticprocesswithprescribedequilibriumdistribution.....855 A34.3Stochasticprocessesandphasetransitions........ .....856

35Langevinfieldequations:Propertiesandrenormalization .......857

35.1LangevinandFokker–Planck(FP)equations.......... ..857

35.2Time-dependentcorrelationfunctionsandequilibrium........858

35.3RenormalizationandBRSTsymmetry...............861

35.4DissipativeLangevinequationandsupersymmetry.... ......864

35.5Supersymmetryandequilibriumcorrelationfunctions ........867

35.6Stochasticquantizationoftwo-dimensionalchiralmodels.......868

35.7LangevinequationandRiemannianmanifolds......... ...871

A35TherandomfieldIsingmodel:Supersymmetry ...........874

36Criticaldynamicsandrenormalizationgroup(RG) ...........875

36.1Dissipativeequation:RGequationsindimension d =4 ε ......876

36.2Dissipativedynamics:RGequationsindimension d =2+ ε ......880

36.3Conservedorderparameter....................882

36.4Relaxationalmodelwithenergyconservation........ ....883

36.5Anon-relaxationalmodel.....................886

36.6Finitesizeeffectsanddynamics..................888 A36RGfunctionsattwoloops .....................894

A36.1Supersymmetricperturbativecalculationsattwoloops.......894

37Instantonsinquantummechanics(QM) ...............899

37.1Thequarticanharmonicoscillatorfornegativecoupling.......899

37.2Atoymodel:Asimpleintegral..................901

37.3QM:Instantons.........................902

37.4Instantoncontributionsatleadingorder........... ...904

37.5Generalanalyticpotentials:Instantoncontributions.........908

37.6Evaluationofthedeterminant:Theshiftingmethod... ......909

37.7Zerotemperaturelimit:Thegroundstate............ .915 A37ExactJacobian.WKBmethod. .................916 A37.1TheexactJacobian......................916 A37.2TheWKBmethod.......................917

38Metastablevacuainquantumfieldtheory(QFT) ...........919

38.1The φ4 QFTfornegativecoupling.................920

38.2Generalpotentials:Instantoncontributions....... ......924

38.3The φ4 QFTindimension4...................926

38.4Instantoncontributionsatleadingorder........... ...927

38.5Couplingconstantrenormalization................ .931

38.6Theimaginarypartofthe n-pointfunction.............932

38.7Themassivetheory.......................933

38.8Cosmology:Thedecayofthefalsevacuum............. 934 A38Instantons:Additionalremarks ..................936

A38.1Virialtheorem.........................936

A38.2Sobolevinequalities......................937

A38.3InstantonsandRGequations..................939 A38.4Conformalinvariance......................940

39Degenerateclassicalminimaandinstantons .............942

39.1Thequarticdouble-wellpotential................. 942

39.2Theperiodiccosinepotential...................945

39.3Instantonsandstochasticdynamics................ 948

39.4Instantonsinstablebosonfieldtheories:Generalremarks......951

39.5Instantonsin CP (N 1)models.................953

39.6Instantonsinthe SU (2)gaugetheory...............956 A39Traceformulaforperiodicpotentials ................959

40Largeorderbehaviourofperturbationtheory

40.2Scalarfieldtheories:Theexampleofthe φ4 fieldtheory.......963

40.3The(φ2)2 fieldtheoryindimension4and4 ε ...........964

40.4Fieldtheorieswithfermions...................968

A40large-orderbehaviour:Additionalremarks ..............974

41Criticalexponentsandequationofstatefromseriessummation ....975

41.1Divergentseries:Borelsummability,Borelsummation ........975 41.2Boreltransformation:Seriessummation............ ..978

41.3Summingtheperturbativeexpansionofthe(φ2)2 fieldtheory.....980

41.4Summationmethod:Practicalimplementation........ ...983

41.5Fieldtheoryestimatesofcriticalexponentsforthe O(N )model....985

41.6Otherthree-dimensionaltheoreticalestimates..... .......986

41.7Criticalexponentsfromexperiments............... .987

41.8Amplituderatios........................989

A41Someothersummationmethods ..................990

A41.1Order-dependentmappingmethod(ODM)............990

A41.2Lineardifferentialapproximants................. 991

42Multi-instantonsinquantummechanics(QM) ............992

42.1Thequarticdouble-wellpotential................. 993

42.2Theperiodiccosinepotential...................1000

42.3Generalpotentialswithdegenerateminima.......... ...1004

42.4The O(ν)-symmetricanharmonicoscillator.............1007

42.5GeneralizedBohr–Sommerfeldquantizationformula.. .......1009

A42Additionalremarks ........................1011

A42.1Multi-instantons:Thedeterminant............... .1011

A42.2Theinstantoninteraction....................1012

A42.3Asimpleexampleofnon-Borelsummability.......... ..1014

A42.4Multi-instantonsandWKBapproximation........... .1016 Bibliography .............................1019 Index .................................1041

1Gaussianintegrals.Algebraicpreliminaries

Sinceourstudyofperturbativeaspectsofquantummechanicsandquantumfieldtheory (QFT)islargelybasedonfunctional(pathorfield)integralsandfunctionaltechniques, topicsthatmaynotbenecessarilyfamiliartoallreaders,webeginthisphysicstextbook withadiscussionofthealgebraicpropertiesofGaussianmeasuresandGaussianexpectationvaluesforafinitenumberofvariables.Theimportant roleofGaussianmeasures isnotunrelatedtothecentrallimittheoremofprobabilities,althoughtheinteresting physicsisgenerallyhiddeninessentialdeviationsfromGaussiandistributions.

WefirstrecallafewalgebraicidentitiesaboutGaussianexpectationvalues,inparticular,Wick’stheorem.Weemphasizetheroleofcumulants.Wediscussthesteepest descentmethod,whichreducescertaintypeofintegralstoserieswhosetermsaregiven byGaussianexpectationvalues.

Thediscussionofbosonsystems(seeChapter4)alsorequiresdefiningintegralsover sometypeofformallycomplexconjugatevariables.

Bycontrast,todiscussfermionsystems,onefirstneedsGrassmannorexterioralgebras, andthecorrespondinggeneralizationofthenotionsofdifferentiationandintegration.

BothforcomplexandGrassmannintegrals,wecalculateGaussianintegralsandGaussianexpectationvalues,andprovegeneralizedWick’stheorems.

Finally,asapreparationforthecomingchapters,werecall thenotionsofgenerating functionsandLegendretransformations.

Allalgebraicidentitiesarederivedforafinitenumberofvariables,butthecoming chapterswillshowthattheextensiontoinfinitesystemsissimple.

Notation. Inmostofthiswork, forvectorsandmatrices,boldfacewilldenoteamatrix oravectorinitsentirety,andthecorrespondingitalicswithindiceswilldenoteelements

1.1Gaussianintegrals:Wick’stheorem

Inthissection,webrieflyreviewafewbasicalgebraicpropertiesofGaussianintegrals.

Wefirstconsideran n-dimensionalGaussianintegraloverrealvariables xi, i =1,...,n, oftheform,

where S2 istherealpositivequadraticform,

Sincethematrix S isstrictlypositive,itcanbediagonalizedbyanorthogonaltransformationmatrix O,andhaspositiveeigenvalues si.Changingvariables, xi → x′ i with j Oij xj = x ′ i , | det O| =1 ,

atransformationofJacobianunity,weobtainaproductofindependent x′ i integrals.

QuantumFieldTheoryandCriticalPhenomena5E.Fifthedition.JeanZinn-Justin,OxfordUniversity Press(2021). c JeanZinn-Justin.DOI:10.1093/oso/9780198834625.003.0001

Turn static files into dynamic content formats.

Create a flipbook