Principles of metal refining and recycling engh - The ebook is ready for download with just one simp

Page 1


https://ebookmass.com/product/principles-of-metal-refining-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Recycling and Reusing of Engineering Materials: Recycling for Sustainable Developments Waseem S. Khan

https://ebookmass.com/product/recycling-and-reusing-of-engineeringmaterials-recycling-for-sustainable-developments-waseem-s-khan/

ebookmass.com

Asymmetric Organo-Metal Catalysis: Concepts, Principles, and Applications Liu-Zhu Gong

https://ebookmass.com/product/asymmetric-organo-metal-catalysisconcepts-principles-and-applications-liu-zhu-gong/

ebookmass.com

Petroleum Refining Design and Applications Handbook, Volume 4 A. Kayode Coker

https://ebookmass.com/product/petroleum-refining-design-andapplications-handbook-volume-4-a-kayode-coker/

ebookmass.com

PeriAnesthesia Nursing Core Curriculum E-Book: Preprocedure, Phase I and Phase II PACU Nursing – Ebook PDF Version

https://ebookmass.com/product/perianesthesia-nursing-core-curriculume-book-preprocedure-phase-i-and-phase-ii-pacu-nursing-ebook-pdfversion/

ebookmass.com

eTextbook 978-0134292380 Fundamentals of Hydraulic Engineering Systems (5th Edition)

https://ebookmass.com/product/etextbook-978-0134292380-fundamentalsof-hydraulic-engineering-systems-5th-edition/

ebookmass.com

Affect Theory, Genre, and the Example of Tragedy: Dreams We Learn 1st ed. Edition Duncan A. Lucas

https://ebookmass.com/product/affect-theory-genre-and-the-example-oftragedy-dreams-we-learn-1st-ed-edition-duncan-a-lucas/

ebookmass.com

Orthopedic Physical Assessment E Book (Musculoskeletal Rehabilitation) 6th Edition, (Ebook PDF)

https://ebookmass.com/product/orthopedic-physical-assessment-e-bookmusculoskeletal-rehabilitation-6th-edition-ebook-pdf/

ebookmass.com

Machine Elements in Mechanical Design (6th Edition ) (What’s New Trades &

https://ebookmass.com/product/machine-elements-in-mechanicaldesign-6th-edition-whats-new-trades/

ebookmass.com

Pearson Edexcel International A Level Mathematics Further Pure Mathematics 1 Student Book 1st Edition Joe Skrakowski

https://ebookmass.com/product/pearson-edexcel-international-a-levelmathematics-further-pure-mathematics-1-student-book-1st-edition-joeskrakowski/ ebookmass.com

https://ebookmass.com/product/the-public-health-crisis-survivalguide-2nd-edition-joshua-m-sharfstein/

ebookmass.com

PRINCIPLESOFMETALREFININGANDRECYCLING

PrinciplesofMetalRefiningandRecycling

ThorvaldAbelEngh

GeoffreyK.Sigworth

AnneKvithyld

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©OxfordUniversityPress2021

Themoralrightsoftheauthorshavebeenasserted

FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2021939033

ISBN978–0–19–881192–3

DOI:10.1093/oso/9780198811923.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Preface

Animportantfieldofstudyofindustrialandcommercialactivityliesbetweenextractive metallurgyandphysicalmetallurgy.Thisbookisanattempttofillthegap.Thisfield,which wecallmetalrefiningandrecycling,hasbecomeespeciallyimportantduetotheuseoflower gradeores,increasedrecycling,andhigherqualityrequirements.Ouraimistounderstandthe principlesthatguidetoday’soperationandtodevelopnewsolutionstotomorrow’sproblems.

DuringtheIndustrialRevolution,agapdevelopedbetweenresearchwithaprofessor andassistantintheuniversityandpracticeinindustry.Thisbecameespeciallyseverein Scandinaviafortheironandsteelindustryduetoitsstronggrowth.Itwasproblematic fortheuniversitiestotrainasufficientnumberofscientistsandworkerswithaknowledge ofextractivemetallurgy,thermodynamics,physicalmetallurgy,economics,etc.Afterthe SecondWorldWaranattemptwasmadetocovertheshortageoftrainedworkersand scientistsbyestablishinginstitutessupportedbybothindustryandgovernmentandexpanding theeducationofPhDstudentstrainedintheneededdisciplines.Thisbookpresentsthe scientificunderstandingofmetalrefiningandrecyclingthatresultedfromthisresearchand developmentactivity.

Tosolvemanyindustrialproblems,itisnecessarytodrawonscientificprinciplesfrom ‘non-traditional’sources.Forexample,fluidmechanicsandthebehaviourofatomsatthe solid–liquidinterfaceareofparamountimportance.Thesefieldsprovidethelinkbetween physicalmetallurgyandprocessmetallurgy.Measuringandcontrollingimpuritiesinmolten metalsisnecessary.Forinstance,Siforsolarcellsmustberefineddowntoverylowlevelsof impurities.

Changesandimprovementsduringthepastfiftyyearshasmadeitpossibletoprovide metalswithlowamountsofimpurities.Whyisitimportanttohaveacleanandproperly alloyedmetal?AnswerstothisquestionarepresentedinChapter1,whichgivesmotivation fortherestofthebook.Theremainingchapterscanbedividedintothreeparts:

1.Fundamentals:Thermodynamics,physicalandtransportproperties,mixing,mass transfer,andnumericalmodelsaredescribedindetailinChapters2and3.

2.Problemsandmethods:Theremovalofdissolvedimpurityelements,particlesand inclusions,andrefiningduringsolidificationarecoveredinChapters4,5,and6, respectively.

3.Applications:Remeltingandtheadditionofalloys,refiningchallengesandspecific processesforeachmetal,withafocusonsteelmaking,andrecyclingareconsidered, respectively,inChapters7,8,9,and10.

Metalsareessentialforthetechnologicalsocietyinwhichmostofuslive.Toensurefuture availability,itisimportanttoconserveresourcesandtakecareofourenvironment.Previously, itwassufficientforaworkertomanageonefield.Today,abroaderunderstandingisrequired. Knowledgeindifferentscientificdisciplinesisoftenrequiredtosolveproblems.Social, economic,environmental,andpolitical(legal)factorsmustalsobeconsidered.Tocoverallof thisproperlyisaproblem.Theauthorshaveinsummorethan100yearsofexperience,butthis wasnotsufficienttocoverallimportantaspectsofmetalrefiningandrecycling.Fortunately, wehavebeenassistedandsupportedbyanumberofeminentcolleagues.

Wehopethisbookwillservetwopurposes.First,itshouldprovideadetailedsurveyofthe presentstateoftheart.Eachchapterhasanextensivebibliography,sothataresearchermay easilyusethechapterasastartingpoint,or‘launchingpad’,forfurtheractivity.Andsecond, wehavepaidspecialattentiontotheprinciplesunderlyingthescience,sothebookmayalso beusedbyadvancedstudents.Ourprimaryintentionhasbeentoprovideacomprehensive book.Itwasnotmainlydesignedtoserveasatextbookmanualofinstructions.Itmaybe moreappropriatetoselectportionssuitableforthedesiredcourseofstudy.Forexample,parts ofChapters2–6shouldprovideacourseofstudyfocusingonrefiningmethods.

Inpractice,thedifferencebetweenthetwogoalsissomewhatartificial.Aneffectiveworker mustalwaysbereadytolearnanddiscovernewthingsboththeoreticalandpractical.One shouldalwaysbeastudent.

Asyoureadthis,wewelcomeyouacolleagueandco-workerinthefieldofrefiningand recyclingofmetals.Wehopeyouwilldiscovertopicsofinterestandutility.Wealsohopethis bookwill‘standthetestoftime’,beusefulforourworld,andaddtosociety’sknowledgeof metalrefiningandrecycling.

Extractingandrecyclingmetalswithminimaldamagetotheenvironmentwillbecome increasinglyimportant.Therewillcertainlybemanyinterestingchallengestoaddressinthe future.Oneillustrationofthechallengebeforeusistheactivityinthedeep-seaminingof minerals.Itwouldbeaninterestingchallengetoutilizetheprinciplesinthisbooktoprocess andrefinemetalsobtainedinthisway.

Acknowledgements

Theauthorswishtoacknowledgetheencouragementandcooperationofanumberof graduates,PhDs,andcolleagues.Withgreatpleasureandprofoundgratitude,wenotethat anumberofourcolleagueshavegenerouslypreparedchapters,orpartsofchapters,forthis book:

•ChristianJuliusSimensenpresentsmostofChapter1.OttoLunderhelpedwiththe sectiononcorrosion,andOddvinReisowithedgecracking.

•GabriellaTranellandErlendBjørnstadproducedthesectioninChapter4onthe oxidativeladlerefiningofsilicon.

•RoderickGuthrieandMihaielaIsacexpandedChapter5,withacontributionbySarina Baoonaceramicfoammodel.

•MartinSyvertsenworkedonChapter7,aswellasthesectioninChapter4onthepick-up ofhydrogenfromwatervapourintheatmosphere.

•EivindJohannesØvrelidprovidedChapter6.

•ChristinaMeskerswroteChapter8.

•OlleWijkwroteChapter9.

•PerBakkeprovidedtheextensivetreatmentonmagnesiumrecycling,whichappearsin Chapter10.

StudentsatNTNU—SigvartEggen,IvarFuru,andMagnusSkramstad—aretobethanked forpresentingausefulandrelevantstudent’sperspective,formostofthechapters.Alejandro AbadíasLlamas,IvanBeloFernandes,HarmenOoterdoom,andMarkusReuterarethanked fortheirsupportinChapter8,andArnePetterRatvikforsupportassistancereviewingthe samechapter.KetilMotzfeldt,whoinitiatedthethermodynamicpresentationinChapter2, presentedinthefirstbookin1992,isalsogratefullyremembered.

ArjanCiftjawithmetallurgicalinsightandillustrativeskillhasproducedandimproved anumberoffiguresanddiagrams.ToneHeggenhougenhasalsocleverlyassistedwith redrawingsomeofthefiguresandgivendesigninput.

WewouldalsoliketothankourcolleaguesatNTNUandSINTEFingeneralwhohave sharedtheirknowledge,giventheirtime,andsupportedthework.

Andlast,butcertainlynotleast,weextendourheartfeltgratitudetoIngridGamstPagefor herdedicationinthepreparationofthemanuscript.Truly,thisbookwouldnotexistwithout hercapableassistanceandinsight.

viii Acknowledgements

Wealsothankourspousesandfamiliesthathaveputupwithour‘important’book, neglectingtheshortvaluabletimehereonEarthtogether.

ThisbookhasbeenpartlyfundedbytheSFIMetalProduction(CentreforResearchbasedInnovation,237738).Theauthorsgratefullyacknowledgethefinancialsupportfrom theResearchCouncilofNorwayandthepartnersoftheSFIMetalProduction.

NotationsandUnits

1TheEffectofDissolvedElementsandInclusionsontheProperties ofMetalProducts 1

1.1Introduction1 1.2Porosity4

1.3HydrogenEmbrittlementofMetals7

1.4ElectricalConductivity10

1.5MagneticHysteresisandParticlesinSteel12

1.6TheEffectofImpuritiesonHotDuctilityofSteels13

1.7TheEffectofIntermetallicPhasesonMacroproperties14

1.7.1FatigueinAl–Cu–Mg–MnAlloys15

1.8InclusionsandMechanicalProperties17

1.8.1DuctileFracture20

1.8.2Toughness21

1.8.3Fatigue26

1.8.4Machinability27

1.9Corrosion29

1.9.1CorrosionofAlandMgAlloys—ElectrochemicalAspects29

1.9.2EffectofIntermetallicParticles30

1.9.3ElementsinSolidSolution32

1.9.3.1TraceElements32

1.9.4PittingCorrosion34

1.10TheEffectofMoltenParticlesinAluminiumAlloys36

1.10.1ImpuritiesinAl–SiCastings37

1.10.1.1GeneralRemarksabouttheSIMSMethodUsed48

1.10.2EdgeCrackinginHot-RolledMaterialsofAl–MgAlloys49

1.10.3ExtrusionofAlMgSiAlloysandtheMeltingofSecondaryPhaseParticles57 1.10.3.1ResultsofTest261

1.10.3.2MeltingofSecondaryPhaseParticlesinAlMgSiAlloys63 1.11ConcludingRemarks67

References 67

RecommendedFurtherReading71

2ThermodynamicsandTransportProperties 72

2.1Thermodynamics72

2.1.1Introduction72

2.1.2Enthalpy,Entropy,andGibbsEnergy73

2.1.3TheEffectofHighTemperatureonMoltenMetals76

2.1.4ChemicalPotentialsandActivities78

2.1.5ThePureSubstanceasReferenceState,andRaoult’sLaw79

2.1.6TheDiluteSolutionandHenry’sLaw81

2.1.7Gibbs–Duhem’sLaw90

2.1.8GibbsEnergiesofSolution92

2.1.9InteractionCoefficients94

2.1.10EquilibriabetweenParticles(Inclusions)andMelts;Precipitation Deoxidation111

2.1.11ModificationofInclusions;CaAdditionstoSteel117

2.1.12ThePhaseRuleAppliedtotheProblemofCalciumAddition119

2.1.13TheRegularSolutionModelandMoltenSalts122

2.1.14Slags125

2.1.15TheEquilibriumbetweenSulfurinSteelandinaBasicSlag127

2.1.16TheEquilibriumbetweenPhosphorusinSteelandinaBasicSlag128

2.1.17ActivitiesofSlagComponents130

2.2PhysicalandTransportPropertiesofMoltenMetalsandGases130

2.2.1ViscosityofGases133

2.2.2Introduction,thePairDistributionFunction136

2.2.3TheViscosityofLiquids139

2.2.3.1EstimationofViscositiesatHigherTemperatures144

2.2.3.2EstimationofViscositiesofLiquidAlloys146

2.2.4SurfaceTensionofPureMoltenMetals146

2.2.5ThermodynamicsofInterfaces148

2.2.6SurfaceEnergyofCompounds150

2.2.7InterfacialTensionofLiquidswithSeveralComponents155

2.2.8Solid–LiquidFreeEnergyofClose-PackedMetals163

2.2.9DiffusioninMoltenMetals166

2.2.10ThermalandElectricalConductivity172 References173

3.1Introduction182

3.1.1MassTransferCoefficient182

3.2MixingandCirculationFlow;FlowModels184

3.3MassTransfertoWalls190

3.4MassTransferinLiquidstoaCleanFreeSurface192

3.4.1MassTransfertoaMoving,Clean,FreeSurface194

3.4.2ModelComparedtoMeasurementsofMassTransfer198

3.5MassTransferinLiquidstoBubbles,Droplets,andParticles199

3.6VelocitiesofBubbles,Droplets,orParticlesandtheCorresponding MassTransferCoefficients202

3.6.1RemovalofMgfromMoltenAluminiuminaContinuous Gas-PurgingReactor203

3.7Bubbles,orDropletsDispersedinMoltenMetal206

3.7.1Introduction206

3.7.2PenetrationofSolidParticlesintoaMelt206

3.7.3SizeofBubblesandDropletsinMelts208

3.7.4SmallBubblesfromImpeller210

3.8Gas-SideMassTransferResistance212

3.8.1Introduction;MonoatomicGases212

3.8.2Gas-SideandInterfacialResistanceforDiatomicGases215

3.9RemovalofImpuritiesbyReactiveGasesandCompounds218

3.10Pick-upofHydrogenfromWaterVapour219

3.10.1Model219

3.10.2MeasurementsofAbsorptionofHydrogentoanAluminiumMelt222

3.10.2.1Off-GasandHydrogenSolubilityMeasurements223

3.11FluidDynamics231

3.11.1Introduction231

3.11.2TurbulenceModellingAssumptions233

3.11.3MultiphaseFlows234

3.12NumericalSolution235 References237

4.3TheTotalMassTransferCoefficient, kt

4.4EquilibriumorMassTransferControlinGasPurging;ReactiveGas246

4.5BubbleContactArea251

4.6ContinuousBack-MixReactors253

4.7BatchReactors257

4.8TraditionalSlag–MetalRefininginaBatchReactor(Ladle)259

4.9RemovalofCaandAlImpuritiesinMG-Si261

4.9.1AnIndustrialExampleofReactiveGasandSlagRefining261 4.10Injection268

4.10.1DetailsofMathematicalTreatment274

4.10.2ConcludingComments275

4.11HydrogenRemoval;DiatomicGases275

4.12MetaltoGas(Vacuum)Transfer286

4.12.1Conclusions293

4.13VacuumRefiningofAluminium293

4.14Distillation295

4.15ComparisonofDifferentMethodsforRefiningAlAlloys297

4.15.1Iron299

4.15.2Manganese299

4.15.3Copper299

4.15.4Zinc299

4.15.5MagnesiumandLithium299

4.15.6HeavyMetals300 References300 FurtherReading302

5RemovalofInclusionsfromMelts 303

5.1Introduction303

5.2MeasurementofInclusions305

5.3RemovalofInclusionsUsing‘Furniture’withinaTundishSystem308

5.4RemovalofInclusionsbyNaturalFlotation/Settling311

5.5IntroductiontoFlotationbyBubbles313

5.5.1AttachmentMechanismtoBubbles318

5.5.2RemovalofInclusionsbyFlotation(Bubbles)323

5.5.3RemovalofInclusionsUsingMicrobubbles324

5.6IntroductiontoFiltration328

5.6.1CakeModeFiltration331

5.6.2DeepBedFiltration334

5.6.3CeramicFoamModel337

5.6.4Re-entrainmentofInclusions349

5.7RotationalForcesforRemovingInclusions349

5.8ElectromagneticForcesforRemovingInclusions350

5.9TheNumberSizeDistributionofInclusions351

5.10DissolvedElementsandInclusions357

5.11Conclusions360 References362

6SolidificationandRefining 365

6.1Introduction365

6.2SoluteDistributionattheSolid–LiquidInterface366

6.3TheMassTransferCoefficient kt fromSolidtoBulkLiquid368

6.4ConstitutionalSupercoolingandStirring370

6.4.1Macrosegregation373

6.4.2ModellingofMacrosegregation375

6.5SegregationofAlloysDisplacedfromtheEutecticComposition376

6.6RefiningAlloysbyPartialSolidification378

6.7RefiningAlloysbyContinuousDrainingofLiquid381

6.8ZoneRefining382

6.9RefiningProcessesinCrystallizationofSiforSolarCells/Crystal Pulling/DirectionalSolidification385

6.10TheCzochralskiCrystalPuller388

6.11NucleationandGrainRefinement393

6.11.1EffectivenessofNucleants397

6.11.1.1ThePeretecticTheory397

6.11.1.2TheRoleofBoronandAlloyComposition398 References402

7.1Introduction405

7.2ChangeinTemperaturefromAlloying408

7.3ModelsforHeatingandMeltingPureAluminiumMetalinanAluminiumBath410

7.3.1EnergyTransportModelwithoutShellFormation410

7.3.2ThinFlatPlateContinuouslyFedintoMelt412

7.3.3MassTransferCoefficientCalculations412

7.3.4CriterionforShellFormation415

7.3.5MeltingofSpheres(withHighThermalConductivity)416

7.3.6ContinuousFeedingandMeltingofaCylindricalRod418

7.3.7ValidityoftheEnergyTransportModelforContinuouslyFedMaterial420

7.4ModelIncludingShellGrowthandMelting421

7.4.1DimensionlessGroups421

7.4.2GeneralAssumptions423

7.4.3MainModelofthePlatewithShellFormation423

7.4.3.1RegionA424

7.4.3.2TheShell425

7.4.3.3RegionB426

7.4.3.4TheWedgeRegion427

7.4.3.5CombinedSolution427

7.4.4Heat-TransferCoefficientinThermalBoundaryLayer429

7.4.4.1Boundary-LayerTheoryforMoltenMetals429

7.4.5SimplifiedModelwithShellFormation433

7.5Alloying434

7.5.1Diffusion-LimitedDissolutionofAlloys434

7.5.2TheHeat-TransferCoefficientforMoltenMetals437

7.6DissolutionRateandIntermetallicPhases440

7.7PracticalAlloyAdditionstoaMelt443

7.8Safety445

7.9Summary447 References447

8MetalProcessesandApplications—AnOverview 450

8.1AlkaliMetals(Na,K,Li)453

8.1.1Sodium(Na)453

8.1.1.1Production453

8.1.1.2Applications454

8.1.1.3EHS455

8.1.2Potassium(K)455

8.1.2.1Production455

8.1.2.2Applications455

8.1.2.3EHS456

8.1.3Lithium(Li)456

8.1.3.1Production456

8.1.3.2Applications457

8.1.3.3Recycling457

8.1.3.4EHS458

8.2AlkalineEarthMetals458

8.2.1Beryllium(Be)458

8.2.1.1PhysicalProperties458

8.2.1.2Production458

8.2.1.3Applications459

8.2.1.4Recycling460

8.2.1.5EHSandSustainability460

8.2.2Magnesium(Mg)460

8.2.2.1PhysicalProperties460

8.2.2.2Production460

8.2.2.3Applications462

8.2.2.4Recycling462

8.2.2.5EHSandSustainability462

8.2.3Calcium(Ca)463

8.2.3.1PhysicalProperties463

8.2.3.2Production463

8.2.3.3Applications464

8.2.3.4Recycling464

8.2.4Strontium(Sr)464

8.2.4.1PhysicalProperties464

8.2.4.2Production465

8.2.4.3MajorApplications465

8.2.4.4Recycling466

8.2.4.5EHSandSustainability466

8.3RareEarths:Scandium,Yttrium,andLanthanides466

8.3.1Scandium(Sc)466

8.3.1.1PhysicalProperties466

8.3.1.2Production467

8.3.1.3MajorApplications467

8.3.1.4Recycling467

8.3.2Rare-EarthElements&Yttrium(Y)468

8.3.2.1PhysicalProperties468

8.3.2.2Production468

8.3.2.3Applications470

8.3.2.4Recycling470

8.3.2.5EHSandSustainability471

8.4Titanium,Zirconium,andHafnium471

8.4.1Titanium(Ti)471

8.4.1.1PhysicalProperties471

8.4.1.2Production472

8.4.1.3MajorApplications473

8.4.1.4Recycling474

8.4.1.5EHSandSustainability474

8.4.2Zirconium(Zr)474

8.4.2.1PhysicalProperties474

8.4.2.2Production475

8.4.2.3Applications476

8.4.2.4Recycling476

8.4.2.5EHSandSustainability476

8.4.3Hafnium(Hf)476

8.4.3.1Physicalproperties476

8.4.3.2Production477

8.4.3.3Applications477

8.4.3.4Recycling477

8.5Vanadium,Niobium,andTantalum477

8.5.1Vanadium(V)478

8.5.1.1Physicalproperties478

8.5.1.2Production478

8.5.1.3MajorApplications479

8.5.1.4Recycling479

8.5.2Niobium(Nb)479

8.5.2.1Physicalproperties480

8.5.2.2Production480

8.5.2.3MajorApplications480

8.5.2.4Recycling481

8.5.3Tantalum(Ta)481

8.5.3.1PhysicalProperties481

8.5.3.2Production481

8.5.3.3Applications482

8.5.3.4Recycling482

8.5.3.5EHSandsustainability483

8.6Chromium,Molybdenum,andTungsten483

8.6.1Chromium(Cr)483

8.6.1.1PhysicalProperties483

8.6.1.2Production484

8.6.1.3Applications484

8.6.1.4Recycling485

8.6.1.5EHSandSustainability485

8.6.2Molybdenum(Mo)485

8.6.2.1PhysicalProperties485

8.6.2.2Production486

8.6.2.3MajorApplications487

8.6.2.4Recycling487

8.6.3Tungsten(W)487

8.6.3.1PhysicalProperties488

8.6.3.2Production488

8.6.3.3Applications489

8.6.3.4Recycling489

8.6.3.5EHSandSustainability490

8.7ManganeseandRhenium490

8.7.1Manganese(Mn)490

8.7.1.1PhysicalProperties490

8.7.1.2Production491

8.7.1.3Applications492

8.7.1.4Recycling493

8.7.1.5EHSandSustainability493

8.7.2Rhenium(Re)493

8.7.2.1PhysicalProperties493

8.7.2.2Production493

8.7.2.3Applications494

8.7.2.4Recycling495

8.7.2.5EHSandSustainability495

8.8Iron495

8.8.1Iron(Fe)495

8.8.1.1PhysicalProperties495

8.8.1.2Production496

8.8.1.3Applications496

8.8.1.4Recycling497

8.9Cobalt497

8.9.1Cobalt(Co)497

8.9.1.1PhysicalProperties497

8.9.1.2Production498

8.9.1.3Applications498

8.9.1.4Recycling499

8.9.1.5EHSandSustainability499

8.10NickelandPlatinumGroupMetals499

8.10.1Nickel(Ni)499

8.10.1.1PhysicalProperties500

8.10.1.2Production500

8.10.1.3Applications502

8.10.1.4Recycling503

8.10.1.5EHSandSustainability503

8.10.2PlatinumGroupMetals(Pt,Pd,Rh,Ru)503

8.10.2.1PhysicalProperties504

8.10.2.2Production504

8.10.2.3Applications505

8.10.2.4Recycling506

8.10.2.5EHSandSustainability506

8.11CopperandPreciousMetals506

8.11.1Copper(Cu)506

8.11.1.1PhysicalProperties507

8.11.1.2Production507

8.11.1.3Applications509

8.11.1.4Recycling510

8.11.1.5EHSandSustainability510

8.11.2Silver(Ag)511

8.11.2.1PhysicalProperties511

8.11.2.2Production511

8.11.2.3Applications513

8.11.2.4Recycling513

8.11.2.5EHSandSustainability514

8.11.3Gold514

8.11.3.1PhysicalProperties514

8.11.3.2Production514

8.11.3.3Applications516

8.11.3.4Recycling516

8.11.3.5EHSandSustainability516

8.12ZincandCadmium516

8.12.1Zinc(Zn)517

8.12.1.1PhysicalProperties517

8.12.1.2Production517

8.12.1.3Applications519

8.12.1.4Recycling519

8.12.1.5EHSandSustainability520

8.12.2Cadmium(Cd)520

8.12.2.1PhysicalProperties520

8.12.2.2Production520

8.12.2.3Applications521

8.12.2.4Recycling521

8.12.2.5EHSandSustainability521

8.13Aluminium,Gallium,andIndium521

8.13.1Aluminium(Al)521

8.13.1.1PhysicalProperties522

8.13.1.2Production522

8.13.1.3Applications524

8.13.1.4Recycling524

8.13.1.5EHSandSustainability525

8.13.2Gallium(Ga)526

8.13.2.1PhysicalProperties526

8.13.2.2Production526

8.13.2.3Applications527

8.13.2.4Recycling527

8.13.2.5EHSandSustainability527

8.13.3Indium(In)527

8.13.3.1PhysicalProperties528

8.13.3.2Production528

8.13.3.3Applications529

8.13.3.4Recycling529

8.13.3.5EHSandSustainability529

8.14Germanium,Tin,andLead529

8.14.1Germanium(Ge)530

8.14.1.1PhysicalProperties530

8.14.1.2Production530

8.14.1.3Applications531

8.14.1.4Recycling531

8.14.1.5EHSandSustainability531

8.14.2Tin(Sn)531

8.14.2.1PhysicalProperties531

8.14.2.2Production532

8.14.2.3Applications533

8.14.2.4Recycling533

8.14.2.5EHSandSustainability534

8.14.3Lead(Pb)534

8.14.3.1PhysicalProperties534

8.14.3.2Production534

8.14.3.3Applications536

8.14.3.4Recycling536

8.14.3.5EHSandSustainability537

8.15AntimonyandBismuth537

8.15.1Antimony(Sb)537

8.15.1.1PhysicalProperties537

8.15.1.2Production538

8.15.1.3Applications538

8.15.1.4Recycling539

8.15.1.5EHSandSustainability539

8.15.2Bismuth(Bi)539

8.15.2.1PhysicalProperties539

8.15.2.2Production540

8.15.2.3Applications541

8.15.2.4Recycling541

8.15.2.5EHSandSustainability541 References541

9.1Introduction550

9.2ConverterProcessesforSteelmaking—RefiningofBlastFurnaceHotMetal551

9.2.1GeneralPrinciples551

9.2.2SomeThermodynamicAspects554

9.2.2.1Carbon–Oxygen556

9.2.2.2Iron558

9.2.2.3Silicon559

9.2.2.4Phosphorus560

9.2.3ReactionsduringtheBlow564

9.3ConverterProcessesforSteelmaking—RefiningofStainlessCrudeSteel567

9.3.1Introduction567

9.3.2Decarburization571

9.3.3ReductionoftheTopSlag573

9.3.4Desulfurization573

9.4ModellingtheRateofDecarburization575

9.4.1TuyereZone576

9.4.2Oxide/MetalZone577

9.4.3SimulationoftheBlow581

9.4.4SomeOperatingConditionsandTheirEffectontheProcess583

9.4.5ProcessOptimization585 References587

10Recycling 589

10.1Introduction589

10.1.1WhatIsRecycling?590

10.1.1.1DefinitionsfromanEverydayPointofView590

10.1.1.2DefinitionsfromaLegalPointofView591

10.1.1.3MathematicalDefinitionsofRecyclingRates591

10.1.1.4RecyclingofMetalversusRecyclingofProducts592

10.1.2WhyDoWeRecycle?592

10.1.2.1EconomicDevelopmentandMetalDemand593

10.1.2.2ClimateChange593

10.1.2.3TheEcologicalFootprint594

10.1.2.4DefinitionofSustainability594

10.1.2.5Scarcity594

10.1.3TheImportanceofCollection595

10.1.3.1CollectionfromConsumerGoods595

10.1.3.2CollectioninIndustry595

10.1.4Cost595

10.1.4.1EnvironmentalFootprintversusEconomicValue596

10.1.4.2DematerializationandUseofMetals597

10.1.4.3EstimatingtheCostontheEnvironment:LifeCycleAssessment andMassFlowAnalysis597

10.1.4.4Summary600

10.2PrinciplesofRecyclingStrategies600

10.2.1TheWasteHierarchy—ProductPerspective600

10.2.2CircularMaterialsManagement—ProcessPerspective601

10.2.2.1OtherStrategies601

10.3ClassificationofScrap603

10.3.1MethodsofClassification603

10.3.1.1Pre-andPost-consumerScrap603

10.3.1.2FormalClassificationSystems604

10.3.2ImportantCharacteristicsandConsiderations606

10.3.2.1WhereDoestheScrapComefrom?606

10.3.2.2WhatTypeofScrapIsIt?606

10.3.2.3WhenWastheScrapProduced?606

10.3.3SamplingandAnalysis607

10.3.3.1Analysis608

10.3.4Example:UsedBeverageCans609

10.3.4.1OtherProblems613

10.3.5Example:PackagingScrap614

10.3.6RecoveryofMetalsfromWasteIncineratorBottomAsh616

10.4MethodsandProcesses620

10.4.1Collection620

10.4.1.1CollectionfromtheConsumer620

10.4.1.2Collectioninindustry622

10.4.2Liberation622

10.4.2.1Dismantling623

10.4.2.2MechanicalLiberation623

10.4.3Sorting625

10.4.3.1ManualInspection625

10.4.3.2Sizing/Screening625

10.4.3.3MagneticSeparation626

10.4.3.4EddyCurrentSeparation627

10.4.3.5DensitySorting629

10.4.3.6SensorSorting629

10.4.4Pretreatment630

10.4.4.1CoalescenceandMetalRecovery633

10.4.4.2IssuesRelatedtoRecyclability635

10.4.4.3IndustrialUnits635

10.4.4.4OperatingWindow637

10.4.5Blending637

10.4.5.1Upgrading638

10.4.6ProcessingofFinalResiduesintheMetalIndustry639

10.4.6.1Aluminium639

10.4.6.2SiliconandFerrosilicon640

10.4.6.3FerromanganeseandSilicomanganese641

10.4.6.4IronandSteel641

10.4.7ConnectingMethods643

10.5ExamplesofRecycling646

10.5.1RecyclingofMagnesiumAlloys646

10.5.1.1Introduction646

10.5.1.2ScrapClassificationSystem647

10.5.1.3ProcessOverview647

10.5.1.4Class1648

10.5.1.5Flux-BasedSystems648

10.5.1.6Flux-FreeIn-houseRecycling650

10.5.1.7Class2652

10.5.1.8Class3652

10.5.1.9Class4652

10.5.1.10Class5652

10.5.1.11Class6653

10.5.1.12Class7653

10.5.1.13Class8654

10.5.1.14RecyclingUsingFlux654

10.5.1.15FluxlessRefining655

10.5.1.16ContaminationControl656

10.5.1.17AdditionalSourcesofTraceElementsandInclusions duringRecycling657

10.5.1.18EffectsandRemovalofSomeTraceElements657

10.5.2AluminiumDrossandSalt-CakeRecycling658

10.5.2.1DrossProcessing660

10.5.2.2SaltCake661

10.5.3BatteryRecycling662

10.5.3.1Lead–AcidBattery662

10.5.3.2Zinc–CarbonandAlkalineBatteries663

10.5.3.3SilverOxideBatteries663

10.5.3.4Ni–CdBatteries664

10.5.3.5Ni–MetalHydrideBatteries664

10.5.3.6Lithium-IonBatteries665

10.6LimitsandOpportunitiesinRecycling667

10.6.1TheLimitsofRecycling667

10.6.2TheOpportunitiesinRecycling669

A2.1Introduction704

A2.2PipeFlow705

A2.3NozzleBlockageandRemovalofInclusionsbyStirring708

A2.4StirringEnergy710

A2.4.1MechanicalStirring711

A2.4.2BubbleStirring712

A2.4.3ElectromagneticStirring714

A3.1HomogeneousNucleation716

A3.2HeterogeneousNucleation;Wetting719

NotationsandUnits

ΔA interfacialcontactareaincontrolvolumem2

A interfacialcontactarea,cross-sectionalareaorm2 integrationconstant,orconstant

A rateofproductionofgasbubblesurfaceaream3 /s

Aj areaincontactwithphasejm2

AM Madelungconstant

ASM Madelungconstantforasurfacelayer

Ap surfaceareaofparticleorofinjectedpowderm2

As topsurfaceareaofbathm2

AR surfaceareaofbubbleswithradiusRm2

Av verticalprojectionm2

A12 , A13 , A23 contactareasbetweenphases1,2,and3m2

Aσ j interfacialareaoccupiedbyonemoleofspeciesjm2 /mol

a constantorradiusofinclusion,lengthofcrack,distancebetween atoms m

a1 , a2 , a3 constants

ac referenceparticleradiusm

a activitycoefficient

ai activityofcomponenti as specificsurfaceaream–1

B constant Bi,Bi* Biotnumber(eq.7.19)

b, b* constant,ratioofprojectedareatototalsurfaceareaor thicknessorm slopeofliquiduslineK/wt%

bj constants

C constant ornumberofcomponents

c concentration,totalconcentrationkmol/m3 ,kg/m3 orvolumefractionorm–3

c*concentrationofnucleinumber/m3

c meanrelativeimpuritycontentorrefiningratio

c(a)numberofinclusionsofdiameter2a perunitvolumem–3

cb bulkconcentration(ofinclusions)number/m3 alsobulkconcentrationofsolutekmol/m3

cc volumefractioncake

cE eutecticcompositionkmol/m3

cin inletconcentration,orinitialconcentrationkmol/m3

cj , ci concentrationofcomponentjorikmol/m3

cl concentrationofsoluteinliquid(ineq.6.12)kmol/m3

ce concentrationinliquid,orofsolidineq.6.12kmol/m3

cn concentrationofnucleinumber/m3

co outletconcentrationnumber/m3

cp specificheatcapacityofasubstanceJ/(molK)

cr concentrationinreactorkmol/m3

cs concentrationinsolidorsurfaceconcentrationkmol/m3

cδ concentrationofinclusionsatdistance δ fromwallnumber/m–3

[%C ] concentrationofcarbon100kgC/kgmelt

[%C ]e hypotheticalconcentration100kgC/kgmelt ofcarboninmeltinequilibriumwithgasphase

D diffusioncoefficientm2 /s

Dj diffusioncoefficientofcomponentjm2 /s

DE eddydiffusivityformasstransferm2 /s

De diameterofsphericalbubblehavinganequivalentvolumem

d diameterm

dc collisiondiameterm

dc diameterofsurfacedeformationm

dp particlediameterm

dpc criticalparticlediameterm

NotationsandUnits

E filtrationorremovalefficiency

E Young’smodulus(modulusofelasticity)N/m2

E stirringpowerW,W/m3

E0 viscositygroupineq.3.80orEötvösnumber(p.203)

e electroniccharge1.6 × 10–19 C orprotrusionheight(roughness)m orfactor

ej i interactioncoefficientforeffectofcomponentjoni(wt%)–1

F HelmholtzfreeenergyJorJ/mol ordegreesoffreedom orforceN

Fd dragforceN

Fg gravityforceN

f function orfractionliquid orfrequencyl/s

f1 , f3 , f5 , f7 functionsusedinthestreamfunction(Appendix3)

fi activitycoefficientofcomponenti

f σ i interfacialactivitycoefficientofcomponenti

fN (a)number-sizedistributionofinclusionsm–4

fR number-sizedistributionofbubblesm–4

fs fractionsolid

fx activitycoefficientforcomponent x inmelt

G GibbsenergyJ/mol,J

Gv GibbsenergyperunitvolumeJ/m3

Gσ GibbsenergyofsurfaceJ/mol,J

ΔG changeofGibbsenergy(freeenergy)J/mol

ΔGmix changeofGibbsenergyformixtureJ/mol,J

ΔGidmix changeofGibbsenergyforidealmixtureJ/mol,J

ΔGxsmix excessGibbsenergyofmixingJ/mol,J

Turn static files into dynamic content formats.

Create a flipbook