Principles of materials characterization and metrology kannan m. krishnan - Own the ebook now with a

Page 1


https://ebookmass.com/product/principles-of-materialscharacterization-and-metrology-kannan-m-krishnan/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

60 Years of the Loeb-Sourirajan Membrane: Principles, New Materials, Modelling, Characterization, and Applications Hui-Hsin Tseng

https://ebookmass.com/product/60-years-of-the-loeb-sourirajanmembrane-principles-new-materials-modelling-characterization-andapplications-hui-hsin-tseng/ ebookmass.com

Modern Characterization of Electromagnetic Systems and its Associated Metrology (Wiley - IEEE) 1st Edition Tapan K. Sarkar

https://ebookmass.com/product/modern-characterization-ofelectromagnetic-systems-and-its-associated-metrology-wiley-ieee-1stedition-tapan-k-sarkar/

ebookmass.com

Actuators and Their Applications: Fundamentals, Principles, Materials, and Emerging Technologies Abdullah M. Asiri

https://ebookmass.com/product/actuators-and-their-applicationsfundamentals-principles-materials-and-emerging-technologies-abdullahm-asiri/ ebookmass.com

Honest Work. A Business Ethics Reader 2nd Edition Joanne

https://ebookmass.com/product/honest-work-a-business-ethicsreader-2nd-edition-joanne-b-ciulla/

ebookmass.com

Dark Desire: A Billionaire Celebrity Saga John

https://ebookmass.com/product/dark-desire-a-billionaire-celebritysaga-john/

ebookmass.com

Economics of Markets: Neoclassical Theory, Experiments, and Theory of Classical Price Discovery Sabiou M. Inoua

https://ebookmass.com/product/economics-of-markets-neoclassicaltheory-experiments-and-theory-of-classical-price-discovery-sabiou-minoua/

ebookmass.com

Duck à l’Orange for Breakfast Karina May

https://ebookmass.com/product/duck-a-lorange-for-breakfast-karinamay-3/

ebookmass.com

An African Ethics of Personhood and Bioethics: A Reflection on Abortion and Euthanasia 1st ed. Edition Motsamai Molefe

https://ebookmass.com/product/an-african-ethics-of-personhood-andbioethics-a-reflection-on-abortion-and-euthanasia-1st-ed-editionmotsamai-molefe/

ebookmass.com

Million Dollar Weekend: The Surprisingly Simple Way to Launch a 7-Figure Business in 48 Hours Noah Kagan

https://ebookmass.com/product/million-dollar-weekend-the-surprisinglysimple-way-to-launch-a-7-figure-business-in-48-hours-noah-kagan-2/

ebookmass.com

Up and Running with AutoCAD 2021: 2D and 3D Drawing, Design and Modeling Elliot J. Gindis & Robert C. Kaebisch

https://ebookmass.com/product/up-and-running-withautocad-2021-2d-and-3d-drawing-design-and-modeling-elliot-j-gindisrobert-c-kaebisch/ ebookmass.com

PrinciplesofMaterialsCharacterizationandMetrology

UniversityofWashington,Seattle

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©KannanM.Krishnan2021

Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2020952840

ISBN978–0–19–883025–2(hbk.) ISBN978–0–19–883026–9(pbk.) DOI:10.1093/oso/9780198830252.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

To Amma, Appa, MN, andmystudents—past,present,andfuture

Preface

Materialsscienceandengineering(MSE)isamultidisciplinaryfield,impacting everyaspectofourtechnologicalsocietytoday.AttheheartofMSEisunderstandingtherelationshipbetweenstructureandpropertiesofmaterials.Infact, itisnowwellestablishedthat,byoptimizingcompositionandstructureranging fromthemacroscopictoatomicdimensions,thepropertiesofmaterialscanbenot onlywellcontrolledbutalsotailoredforanyspecificapplication.Inthisendeavor, materialscharacterization and analysis involvingarangeof diffraction, imaging, and spectroscopy methods,atrelevantlengthscales,hasenabledthestructure–property–processing–performancetetrahedronthatepitomizesthefield.

Traditionally,an undergraduate curriculuminMSEemphasizesthepractical applicationofopticalmicroscopyandspectroscopy,impartsaworkingknowledge ofX-raydiffractionand,whereresourcesareavailable,scanningandtransmission electronmicroscopy,andatomicforcemicroscopy.However,recentadvancesin developingmaterialsforawiderangeofapplications,emphasizingatomic-scale tailoringofmicrostructureandexploitingsize-dependentproperties,requirean interdisciplinaryapproachtomaterialsdevelopmentwhereajudicioususeof availablecharacterizationmethodsbecomesimportant.Thisrequiresacoherent discussionoftheunderlying physicalprinciples ofmaterialscharacterizationand metrologyusingthewiderangeofelectrons,photons,ions,neutrons,andscanning probes.

Followingabroadintroduction(§1),thisbooklaysthefoundationsofcharacterization,analysis,andmetrologyandbuildsonconceptsthatshouldbefamiliar toanupper-divisionstudentinanybranchofscienceorengineering.Starting withatomicstructure,wedevelopspectroscopymethodsbasedonintra-atomic electronictransitions(§2),followedbybondingandtheelectronicstructure ofmoleculesandsolidsmotivatinganumberofspectroscopymethods(§3). Wethendiscusstheperiodicarrangementofatomsanddevelopprinciplesof crystallography(§4),whichleadstoanintroductiontodiffractioninbothrealand reciprocalspace.Next,weaddressdifferentprobesandpresentrelevantdetails ofthegenerationanduseofphotons,electrons,ions,neutrons,andscanning probes(§5),followedbyapresentationofion-basedscatteringmethods(§5). Aconciseintroductiontooptics,opticalmicroscopy,polarizationoflight,and ellipsometryfollows(§6).Thesecondpartofthebookincludesacomprehensive discussionofdiffractionandimagingmethodsthatemphasizetechniqueswidely usedinthecharacterizationandanalysisofmaterials.ThisincludesX-ray(§7), electron(§8),andneutron(§8)diffraction,aswellastransmissionandanalytical electron(§9),scanningelectron(§10),andscanningprobe(§11)microscopies. Throughoutthetext,thecharacterizationtechniquesarealsousedtointroduce

andillustratefundamentalpropertiesandmaterialsscienceconceptsencountered inawiderangeofmaterials.Thebookisgenerouslyillustratedthroughoutwith figures,datatables,comparisonbetweenrelatedmethods,workedexamples,and concludes(§12)withthreeuniqueandcomprehensivetablessummarizingthe salientpointsofallthespectroscopy,diffraction,andimagingmethodspresented.

Tokeeptheoverallextentofthebooktoamanageablelength,Ihavemainly emphasized probe-basedtechniques.Othermethods,suchasthermalcharacterizationandpropertymeasurements,includingmechanicaltesting,aredeliberately notincluded.However,Idoincludenumerousapplicationsofmaterialsand structuresinfieldsrangingfromscience,technology,art,andbiology.Each chapteralsoincludesanumberofworkedexamplestohelptietogetherthe conceptsintroducedtherein,anextensivesetoftest-your-knowledgequestions tohelpreadersconsolidateunderstandingofthesubjectmatterbasedonthetext, problemsetstofurtherdeepenlearning,asummaryhighlightingthekeyconcepts andideaspresentedineachchapter,andanextensivebibliographyforfurther reading.

Whilespecializedbooksdoexistformostofthetechniquesdiscussedhere, includingencyclopediasofmaterialscharacterization,acoherenttextbookon materialscharacterizationandmetrologyattheundergraduateorearlygraduate level,emphasizingfundamentalphysicalprinciples,suchasthisone,isboth lackingandhighlydesirable.Combiningdiscussionsoftheunderlyingprinciples withpracticalexamples,anddetailedsetsofexercises,thisbookwillideallyserve asatextfora year-longcourse attheundergraduateand/orearlygraduatelevel. CompletionofsuchacourseshouldgivestudentsanentryintotheinterdisciplinaryfieldofMaterialsScienceandEngineering,andasolidfoundationin characterizationandanalysismethods,withtheabilitytoselectandapplythe appropriatetechniqueforanycharacterizationproblemathand.Alternatively,the bookcanbeadaptedtoa semester-lengthcourse,takingamoretraditionalapproach bydevotingaboutfiveweekseachtospectroscopy(Chapters2,3,9,and10), diffraction(Chapters4,7,and8),andimaging(Chapters6,9–11).Ifoneis furtherconstrainedintimetoa 10-weekquarterorterm,asinmanyUSuniversities, andwhichisthecaseforthecourseIhavebeenteaching(syllabusavailableon request)formanyyearsatUW—whereUGstudentstakethiscourseafterprior exposuretoX-raydiffractionandtheelectronicstructureofsolids—thisbook maybeadoptedbyteaching,selectively,theessentialconceptsofChapters1–6at theapproximatepaceofonechapterperweek,andinthelastfourweeks,covering scanningelectron(Chapter10)andscanningprobe(Chapter11)microscopies. Assigningtermpapertopicsforself-study,involvingmorespecializedtechniques andtheirapplications,includingtransmissionelectronmicroscopy(Chapter9), wouldfurtherstrengthenstudentlearning.

ForthosestudentsfromdifferentdisciplinesotherthanMSE,thisbook provideswhattheywillessentiallyneedtoknowinmaterialscharacterization, includingadditionalbackground,atanearlystageoftheirstudy.Overall,this bookisexpectedtopotentiallyhaveawidereadershipandacademicrelevance

forteachingacourseoncharacterization,analysis,andmetrology,acrossmultiple disciplinesofengineering,physics,chemistry,geology,biology,artconservation, etc.Theexamplesinthebookareselectedtoreinforcethisbreadthofdisciplines. Finally,eventhoughthistextbookistailoredfortheteachingofupper-division undergraduateorearly-stagegraduatestudents,itisalsowrittenforself-studyby experiencedresearchers,includingthoseinindustry,whorealizethat,todelivera program/productsatisfactorily,theyneedtoknowmoreaboutthemicrostructure oftheirmaterialsthantheycurrentlydo!

Inwritingthisbook,Ibenefittedfromdiscussionswithnumerouscolleagues andteacherswhogenerouslysharedtheirknowledgeinmultipledisciplines withmeoverthelastfourdecades.Someofthemalsoreviewedsectionsof thismanuscriptatvariousstagesofdevelopment.Alphabeticallytheyinclude: S.D.Bader,P.Blomqvist,S.Brück,J.N.Chapman,D.E.Cox,U.Dahmen, C.J.Echer,R.Egerton,M.Farle,P.J.Fischer,E.E.Fullerton,C.Hetherington,F.Hofer,W.Grogger,R.Gronsky,R.Kilaas,C.A.Lucas,R.K.Mishra, Y.Murakami,C.Nelson,S.Paciornik,S.J.Pennycook,L.Rabenberg,P.Rez, D.Shindo,I.K.Schuller,S.G.E.teVelthuis,N.Thangaraj,S.Thevuthasan, G.Thomas,M.Varela,D.O.Welch,T.Wen,andT.Young.Ialsoofferaspecial noteofthankstomyformerstudents,EricTeemanandRyanHufshmid,who haveindependentlycreated,fortheexercisesinthebook,asolutionmanual (availablefromOUPtothosewhoadoptthisbookforteachingacourse),and theanonymousreviewerwhoprovidedachapter-by-chapterreviewoftheentire book.Also,Ibenefittedimmenselyfrominteractionswithmanygenerationsof graduatestudentsandpost-doctoralfellowsatbothUCBandUWwho,driven bytheirowncuriosityandinterests,providedmethemotivationtolearnand applyawiderangeofcharacterizationmethodsinourresearch.Thelististoo longtoacknowledgethemindividuallyhere,butmanyoftheircontributionsare reflectedinthisbook.Finally,overthepastmanyyears,studentsofmycourse onPrinciplesofMaterialsCharacterization(MSE333)atUWhaveuseddraft chaptersofthisbookasithasevolvedovertimewithsubsequentrevisions.Their constructivefeedbackandrelentlesscriticismshavesignificantlyimprovedthe book,makingitmoreaccessibleandtailoredtostudentteachingandlearning. Iamdeeplyindebtedtoallofthepeoplementionedhere;however,Iamentirely responsibleforanyremainingomissions,errors,ormistakes,andiftheyare broughttomyattention,Iwillbemorethanhappytoaddresstheminsubsequent revisions.Thisbookhasbeenmanyyearsinthemakingandpartsofitwerewritten duringmultipleresidenciesinanumberofplaces.Iamparticularlybeholden totheWhitelyCenter,anidyllicwritingretreatatFridayHarbor,theBrahm PrakashVisitingProfessorshipattheIndianInstituteofScience,Bangalore,the JSPSSeniorFellowshipattheUniversityofTohoku,andtheHumboldtCareer ResearchAwardattheUniversityofDuisburg-Essen,allofwhichprovidedthe rightatmospheretomakesubstantialprogressinwritingthisbook.

KannanM.Krishnan

Seattle,August2020

1.IntroductiontoMaterialsCharacterization,Analysis,andMetrology 1

1.1Microstructure,Characterization,andtheMaterialsEngineeringTetrahedron2 1.2ExamplesofCharacterizationandAnalysis7

1.2.1Ni-BasedSuperalloys:UltrahighTemperatureMaterialsforJetEngines8

1.2.2UnravelingtheStructureofDeoxyribonucleicAcid(DNA)10

1.2.3CharacterizingaPicassoPaintingRevealsHiddenSecrets12

1.2.4FailureAnalysis:Metallurgyofthe RMSTitanic 13

1.2.5BeneathOurFeet:MicrostructureofRocksandMinerals15

1.2.6CeramicMaterials:SinteringandGrainBoundaryPhases17

1.2.7MicrostructureandthePropertiesofMaterials:AnEngineeringExample20

1.3.1ProbesandSignals 22

1.3.2ProbesBasedontheElectromagneticSpectrumandTheirAttributes22

1.3.3Wave–ParticleDuality

1.3.4NatureandPropagationofElectromagneticWaves27

1.3.5InteractionsofProbeswithMatterandCriteriaforTechniqueSelection29 1.4MethodsofCharacterization:Spectroscopy,Diffraction,andImaging34

1.4.1Spectroscopy:Absorption,Emission,andTransitionProcesses34

1.4.2ScatteringandDiffraction

1.4.3ImagingandMicroscopy

1.4.4DigitalImaging

1.4.5 InSitu MethodsacrossSpatialandTemporalScales56

2.2.1Bohr–Rutherford–SommerfeldModel69 2.2.2QuantumMechanicalModel70

2.3AtomicSpectra:Transitions,Emissions,andSecondaryProcesses78

2.3.1DipoleSelectionRulesandAllowedTransitionsofElectronsinAtoms78

2.3.2CharacteristicX-RayEmissionsandtheirNomenclature85

2.3.3Non-RadiativeAugerElectronEmission91

2.3.4ElectronPhotoemission

2.4X-RaysasProbes:GenerationandTransmissionofX-Rays97

2.4.1LaboratorySourcesandMethodsofX-RayGeneration98

2.4.2X-RayAbsorptionandFiltering102

2.4.3SynchrotronSourcesofX-RayRadiation105

2.5X-RaysasSignals:Core-LevelSpectroscopywithX-Rays107

2.5.1InstrumentationforDetectingX-Rays107

2.5.2ChemicalX-RayMicroanalysis113

2.6SurfaceAnalysis:SpectroscopywithElectrons119

2.6.1InstrumentationforSurfaceAnalysiswithElectronSpectroscopy120

2.6.2AugerElectronSpectroscopy123 2.6.3X-RayPhotoelectronSpectroscopy128

2.6.4SurfaceCompositionalAnalysiswithAESandXPS134

2.6.5ComparisonofAESandXPS136

3.4MolecularSpectra 158

3.4.1VibrationalandRotationalModes158

3.4.2UltravioletandVisibleSpectroscopy(UV-Vis)162

3.4.3ClassicalModelofRayleighandRamanScattering166

3.4.4SelectionCriteriaforInfraredandRamanActivity169

3.5InfraredSpectroscopy 172

3.5.1InstrumentationforRamanandIRSpectroscopy173

3.5.2MichelsonInterferometerandtheFourierTransformInfrared(FTIR)Method174

3.5.3PracticeandApplicationofFTIR177

3.6RamanSpectroscopy 179

3.6.1Raman,ResonantRaman,andFluorescence179

3.6.2InstrumentationforRamanSpectroscopyandImaging181

3.6.3ApplicationofRamanSpectroscopyinChemicalandMaterialsAnalysis182

3.6.4Surface-EnhancedRamanSpectroscopy(SERS)183

3.7ProbingtheElectronicStructureofSolids185

3.8PhotoemissionandInversePhotoemissionfromSolids188

3.9AbsorptionSpectroscopies-ProbingUnoccupiedStates197

3.9.1X-RayAbsorptionSpectroscopy(XAS)197

3.9.2Near-EdgeandExtendedX-RayAbsorptionFineStructure(NEXAFSandEXAFS)200

3.10SelectApplications 206

3.10.1StructureofProteinsResolvedbyFTIR206

3.10.2AnalysisofCatalyticParticlesbyXASandXPS208 Summary

4.CrystallographyandDiffraction

4.1TheCrystallineState

4.1.1Lattices

4.1.2GeneralizedCrystalSystemsandBravaisLattices224

4.1.3LatticePoints,Lines,Directions,andPlanes227

4.1.4ZonalEquations 231

4.1.5AtomicSize,Coordination,andClosePacking233

4.1.6DescribingCrystalStructures—SomeExamples236

4.1.7SymmetryandtheInternationalTablesforCrystallography239

4.1.8TheStereographicProjection244

4.1.9ImperfectionsinCrystals247

4.2TheReciprocalLattice

4.3.1Bragg’sLaw:InterpretingDiffractioninRealSpace257

4.3.2TheEwaldConstruction:InterpretingDiffractioninReciprocalSpace259

4.3.3ComparisonofX-RayandElectronDiffraction262

4.4QuasicrystalsandtheDefinitionofaCrystallineMaterial266

5.2.1Photons:LampsandLasers278

5.2.2Electrons:ThermionicandField-EmissionSources282 5.2.3Neutrons

5.3InteractionsofProbeswithMatter,IncludingDamage292

5.3.1Photons

5.3.2Electrons

5.3.3Neutrons

5.3.4Protons

5.3.5Ions

5.4Ion-BasedCharacterizationMethods315

5.4.1RutherfordBack-ScatteringSpectroscopy(RBS)315

5.4.2Low-EnergyIonScatteringSpectroscopy(LEISS)325

5.4.3SecondaryIonMassSpectrometry(SIMS)328

5.4.4Induction-CoupledPlasmaMassSpectrometry(ICP-MS)331

5.4.5Particle-InducedX-RayEmission(PIXE)336

6.2.1ThePhaseAngle

6.2.2TheSuperpositionPrinciple348

6.2.3PhasorRepresentationandtheAdditionofWaves350

6.2.4ComplexRepresentationofaSimpleHarmonicWave350

6.2.5SuperpositionofTwoWavesoftheSameFrequency351

6.2.6AdditionofWavesonOrthogonalPlanesandPolarization353

6.3Huygens’Principle

6.4YoungDouble-SlitExperiment

6.6.1FraunhoferDiffractionfromaSingleSlit363

6.6.2FraunhoferDiffractionfromDoubleandMultipleSlits366

6.6.3ResolvingPowerofaDiffractionGrating369

6.6.4FresnelDiffraction

6.6.5FresnelHalf-PeriodZones371

6.6.6DiffractionbyaCircularApertureorDisc372

6.6.7ZonePlatesandTheirApplicationsinX-RayMicroscopy373

6.7VisuallyObservable:CharacteristicsoftheHumanEye375 6.8OpticalMicroscopy

6.8.1Resolution:RayleighandAbbeCriteria376

6.8.2GeometricOpticsandAberrations378

6.8.3TheOpticalMicroscope

6.8.4ConfocalScanningOpticalMicroscopy(CSOM)386

6.8.5Metallography

6.9.1p-ands-PolarizedLightWaves,andFresnelEquationsofReflection394

6.9.2OpticalElementsUsedinEllipsometry397

7.2InteractionofX-RayswithElectrons409

7.2.1ThomsonCoherentScattering410

7.2.2ComptonIncoherentScattering413

7.3ScatteringbyanAtom:AtomicScatteringFactor415

7.4ScatteringbyaCrystal:StructureFactor422

7.5ExamplesofStructureFactorCalculations425

7.5.1Face-CenteredCubic(FCC)Structure425

7.5.2Body-CenteredCubic(BCC)Structure427

7.5.3HexagonalClosePacked(HCP)Structure428

7.5.4CesiumChloride(CsCl)Structure429

7.6SymmetryandStructureFactor431

7.6.1CrystalswithInversionSymmetry431

7.6.2FriedelLaw 431

7.6.3SystematicAbsences 431

7.7TheInverseProblemofDeterminingStructurefromDiffractionIntensities432

7.8BroadeningofDiffractedBeamsandReciprocalLatticePoints433

7.9MethodsofX-RayDiffraction 437

7.9.1TheLaueMethodforSingleCrystals438

7.9.2DiffractometryofPowdersandSingleCrystals439

7.9.3Debye–ScherrerMethodforPowders443

7.9.4ThinFilmsandMultilayers:Diffractometry,Reflectivity,andPoleFigures445

7.9.5PracticalConsiderations:CollimatorsandMonochromators449

7.10FactorsInfluencingX-RayDiffractionIntensities451

7.10.1TemperatureFactor 451

7.10.2AbsorptionorTransmissionFactor453

7.10.3LorentzPolarizationFactor455

7.10.4Multiplicity 457

7.10.5CorrectedIntensitiesforDiffractometryandtheDebye–ScherrerCamera457

7.11ApplicationsofX-RayDiffraction459

7.11.1MeasurementofLatticeParameters460

7.11.2CrystalliteorGrainSizeandLatticeStrainMeasurements460

7.11.3PhaseIdentificationandStructureRefinement461

7.11.4ChemicalOrder–DisorderTransitions464

7.11.5Short-RangeOrder(SRO)andDiffuseScattering467

7.11.6 InSitu X-RayDiffractionatSynchrotrons468

7.11.7X-RayDiffractionMeasurementsonMars469 Summary 471

8.DiffractionofElectronsandNeutrons 481

8.1Introduction 482

8.2TheAtomicScatteringFactorforElectrons482

8.3BasicsofElectronDiffractionfromSurfaces485

8.3.1SurfaceReconstruction,SurfaceNets,andTheirNotation486

8.3.2ReciprocalLatticeNetsandEwaldSphereConstructioninTwoDimensions487

8.4SurfaceElectronDiffractionMethodsandApplications489

8.4.1Low-EnergyElectronDiffraction(LEED)490

8.4.2AdsorptionStudiesonSurfacesUsingLEED493

8.4.3ReflectionHigh-EnergyElectronDiffraction(RHEED)494

8.4.4RHEEDOscillations: InSitu MonitoringofThinFilmGrowth498

8.5TransmissionHigh-EnergyElectronDiffraction501

8.5.1Coherent,Incoherent,Elastic,andInelasticScattering504

8.5.2BasicsofElectronDiffractioninaTransmissionElectronMicroscope505

8.5.3KinematicalTheoryofElectronDiffraction506

8.5.4TheColumnApproximation,DynamicalDiffraction,andDiffractionfromImperfectCrystals509

8.6TransmissionElectronDiffractionMethods514

8.6.1SelectedAreaDiffraction:RingandSpotPatterns514

8.6.2KikuchiLines,Maps,andPatterns519

8.6.3ConvergentBeamElectronDiffraction(CBED)523

8.7ExamplesofTransmissionElectronDiffractionofMaterials527

8.7.1IndexingaSingleCrystalDiffractionPattern527

8.7.2PolycrystallineMaterialsandNanoparticleArrays527

8.7.3OrientationRelationshipsBetweenCrystalsorPhases529

8.7.4ChemicalOrderinMaterials529

8.7.5DiffractionfromLong-PeriodMultilayers531

8.7.6Twinning 532

8.8InteractionsofNeutronswithMatter535

8.8.1NuclearInteractions 535

8.8.2MagneticInteractions 537

8.8.3 InSitu KineticStudiesUsingNeutrons:HydrationofCement538 Summary 540 FurtherReading 542 References 543 Exercises 544

9.TransmissionandAnalyticalElectronMicroscopy 552

9.1Introduction 553

9.2ElementsandOperationsofaTransmissionElectronMicroscope558

9.2.1ElectronSources:Thermionic,Field,andSchottkyEmission558

9.2.2ElectromagneticLenses 560

9.2.3TheIlluminationSection565

9.2.4TheImagingSection:ObjectiveLensandAperture568

9.2.5SpecimenHandlingandManipulation570

9.2.6TheMagnificationSection571

9.2.7ImagingandDiffractionModes573

9.2.8ScanningTransmissionModeandthePrincipleofReciprocity584

9.2.9CorrectionofLensAberrations587

9.2.10ImageRecordingandDetectionofElectrons588

9.3Beam–SolidInteractions,ContrastMechanisms,andImagingMethods588

9.3.1ElasticInteractions 589

9.3.2Mass–ThicknessContrast592

9.3.3DiffractionContrast 595

9.3.4High-AngleIncoherentScattering: Z -ContrastImaging598

9.3.5High-ResolutionElectronMicroscopy(HREM):PhaseContrastImaginginPractice601

9.3.6MagneticContrast:LorentzMicroscopy609

9.3.7ElectronHolography

9.4AnalyticalElectronMicroscopy(AEM)andRelatedSpectroscopies617

9.4.1InelasticScatteringandSpectroscopy619

9.4.2ElectronEnergy-LossSpectroscopy(EELS)inaTEM623

9.4.3QuantitativeMicroanalysiswithEnergy-DispersiveX-RaySpectrometry641

9.4.4Microdiffraction 648

9.5SelectApplicationsofTEM 650

9.5.1ElectronTomography 650

9.5.2AnalysisofDefects:DislocationsandStackingFaults655

9.5.3ThinFilmsandMultilayers:AnExample658

9.5.4TEMinSemiconductorManufacturing:Metrology,ProcessDevelopment,andFailureAnalysis660

9.5.5DynamicMeasurementsinaTEM664

9.6PreparationofSpecimensforTEMObservations666

9.6.1ChemicalandElectrochemicalPolishing668

9.6.2Ion-BeamMilling 669

9.6.3UltramicrotomyandPreparationofBiologicalMaterials669

9.6.4PreparationofCross-SectionSpecimens669

9.6.5FocusedIon-Beam(FIB)Milling670

10.ScanningElectronMicroscopy

10.1Introduction 694

10.2TheScanningElectronMicroscope694

10.2.1TheInstrument 694

10.2.2TheEverhart–ThornleyElectronDetector698

10.2.3Beam–SolidInteractionsandSignals699

10.2.4TheIncidentProbeSizeandSpatialResolution701

10.2.5DepthofField 703

10.2.6NoiseandContrastinImaging706

10.2.7ElasticandInelasticScattering,andBeamBroadening707 10.3ImageContrastinaScanningElectronMicroscope709

10.3.1FactorsInfluencingSecondaryElectronEmission710

10.3.2TopographicalContrastinSecondaryElectronImaging713

10.3.3AngularDependenceofBack-ScatteredElectronsandTopographicInformation715

10.3.4ComparisonofSEMImageswithDifferentOperatingParameters718

10.4ChannelingandElectronBack-ScatteredDiffractionPatterns(EBSD)720

10.5ImagingMagneticDomains 722

10.5.1TypeIandTypeIIMagneticContrast722

10.5.2ScanningElectronMicroscopywithPolarizationAnalysis(SEMPA)723

10.6ProbingSampleCompositionandElectronicStructure726

10.6.1BasicsofX-RayMicroanalysisinanSEM726

10.6.2Cathodoluminescence731

10.7VariationsofScanningElectronMicroscopy732

10.7.1EnvironmentalScanningElectronMicroscopy(ESEM)732

10.7.2CombinedFocusedIon-Beam(FIB)andScanningElectronMicroscope734 10.8PreparingSpecimensforSEM736

11.ScanningProbeMicroscopy 745

11.1Introduction 746

11.2PhysicsofScanningTunnelingMicroscopy(STM)749

11.2.1ElasticTunnelingThroughaOne-DimensionalBarrier749

11.2.2QuantumMechanicalTunnelingModeloftheSTM750

11.3BasicOperationoftheScanningTunnelingMicroscope752

11.3.1Imaging 753

11.3.2TunnelingSpectroscopy755

11.3.3ManipulationofAdsorbedAtomsonCleanSurfaces757

11.4PhysicsofScanningForceMicroscopy759

11.4.1MechanicalCharacteristicsoftheCantilever760

11.4.2CantileverasaForceSensor763

11.4.3Tip–SpecimenForcesEncounteredinanSFM765

11.5OperationoftheScanningForceMicroscope767

11.5.1StaticContactModeforTopographicImaging769

11.5.2LateralForceMicroscopy772

11.5.3DynamicNoncontactModesofAtomicForceMicroscopy773

11.6ScanningForceMicroscopyInstrumentation776

11.7ArtifactsinScanningProbeMicroscopy777

11.7.1ProbeArtifacts 777

11.7.2InstrumentArtifacts 780 11.8SelectApplicationsofScanningForceMicroscopy780

11.8.1AtomicFingerprintinginFrequencyModulatedAtomicForceMicroscopy781

11.8.2MagneticForceMicroscopy(MFM)782

11.8.3ScanningThermalMicroscopy(SThM)785

11.8.4ApplicationsofAtomicForceMicroscopyintheLifeSciences786

11.8.5Dip-PenNanolithography(DPN)793

Table12.1SpectroscopyandChemicalMethods804 Table12.2DiffractionandScatteringMethods814 Table12.3ImagingMethods

IntroductiontoMaterials Characterization,Analysis, andMetrology

Thisillustration,bytheauthor,basedonacartoonbyJohnO’Brien(TheNew Yorker,February25,1991),succinctlydescribesthechallengesinmaterials characterization.Weareoftencalledupontodescribethematerialmicrostructure (rabbit)basedonthemeasuredsignals(hand)indiffraction,spectroscopy,or imagingmethods.Needlesstosay,apoorunderstandingofthefundamentalprinciplesunderlyingthecharacterizationmethodsgenerallyleadtobadexperimental design,hastyinterpretations,and/orerroneousconclusions.

1

1.1Microstructure, Characterization,and theMaterialsEngineering Tetrahedron2

1.2Examplesof Characterization andAnalysis7

1.3ProbesforCharacterization andAnalysis:AnOverview22

1.4Methodsof Characterization: Spectroscopy,Diffraction, andImaging34

1.5FeaturesofMaterialsUsed forCharacterization57 Summary59 FurtherReading59 References61 Exercises63

1.1Microstructure,Characterization,and theMaterialsEngineeringTetrahedron

Materialsscienceandengineering(MSE)isanenablingandmultidisciplinary field,impactingnearlyeveryaspectofsocietytoday.ThereachofMSE isenormous—advancedsemiconductorshavestretchedthelimitofhighperformancecomputers;opticalfibershavedramaticallyincreasedthebandwidth andspeedofintercontinentaldatatransmission;magneticmaterialsindatastorage haverevolutionizedinformationaccess,includingtheproliferationoftheInternet; light-weightmetals,polymers,andcompositeshavetransformedaircraftdesign andfuelefficiency;novelbatteriesandfuel-cellmaterialspowerthingsfromcell phonestopublicbuses;andincreasingly,innovationinmaterialsisattheheart ofbiomedicine.AsthelateWilliamBaker,pastpresidentofBellLaboratories, putitsoelegantly:“everythingismadeofsomethingandalwayswillbe!”In otherwords,MSEexemplifiestheuse-inspiredfundamentalstudiesof“Pasteur’s Quadrant”(Stokes,1997).Thedramaticsocietalimpactoftheworkofmaterials scientistsandengineerscanbeillustratedbynumerousexamples;afewofthem, includedinFigure1.1.1,areadaptedfromaspecialreportbyadistinguished panelofmembersoftheU.S.NationalAcademyofEngineering[1].

Whenweengineeranymaterial,wetailoritspropertiesforaspecificapplication.Thisrequiresthatitperforminapredictableandreliablemannerwhenit isfabricatedinthedesirableshapeor form.Thelattermaybeabulkmaterial,a composite,acoating,athinfilmorheterostructure,awireorrod,ananoparticle oritsdispersioninamatrix,asurface,ananoscalestructure,alithographically patternedelementorarray,etc.Inotherwords,wemakematerialswithsizes rangingfromtheatomictothemacroscopic,anddimensionalityrangingfrom zerotothree.Sometimes,thecriticalfeatureofinterestinthematerialmaybe deepinside;anexampleistheburiedinterfaceinmanymodernsemiconductor, magnetic,orphotonicdevicesthataredesignedandfabricatedintheformofthin filmheterostructures.

Characterizationandanalysisofmaterialsiscentraltothepracticeofmaterials sciencesandengineering.Thepropertiesofallmaterialsaredeterminedbytheir structure,bywhichwebroadlymeanthecomposition,electronicstructure,thermodynamicstate/phase,andthearrangementsoftheirinternalcomponents.The structureofmaterialscanbedescribedatvarious lengthscales orlevelsofdetail. Atthe atomic level,itdescribesthebondingandorganizationofatomsor moleculesrelativetooneanother.Atthe mesoscopic level,itreferstoan intermediate-lengthscale,betweentheatomicandmicroscopic,wherematerial propertiesaredifferentfromthebulk,oftendeterminedbyquantummechanics, anddominatedbysurfaceeffects.Thisisalsothelengthscaleofparticular interestinnanoscienceandnanotechnology(OwensandPoole,2008).At

Figure1.1.1 Thesocietalimpactofmaterialsscienceandengineeringisillustratedbyafewrepresentativeexamples. (a)Strength-to-densityratioofstructuralmaterialshasincreasedfiftyfold,comparedtocastironusedtwocenturiesago, withapplicationrangingfromlight-weighteyeglassestocompositeairplanes.(b)Thedesignofhigh-efficiencyengines withreducedenvironmentalimpactrequiresmaterialsthatarestrongathightemperature—superalloysandspecialty ceramicscanoperateattemperatureashighas1,100–1,400◦ C,withtheoreticalefficienciesof ∼80%.(c)Thestrengthof apermanentmagnet,givenbyitsenergyproduct,determinesthedesignofsmallerandmorepowerfulmotors—a100foldincreasefromthe1930sisevident.(d)Progressinthecriticaltemperatureofsuperconductingmaterials.(e)Optical fibersarenow100timesmoretransparentthantheywereinthe1960s.(f)Newhardabrasivematerialshaveincreased cuttingtoolspeedsbyafactorof100fromtheearlytwentiethcentury,makingmanufacturingprocessescheaperand moreefficient.

Adaptedfrom[1].

the microscopic—thatwhichcanbeobservedbysometypeofmicroscope— level,itreferstothearrangementsoflargergroupsofatoms,suchasgrains andthermodynamicphases,includingtheirmorphology,chemistry,and crystallographicrelationships.Asmaterialsscientists/engineers,whenweuse

Properties

Figure1.1.2 Thematerialsengineeringtetrahedron,wherecharacterizationplaysacentralrole.

theterm microstructure,wegenerallymean all relevantstructuraldetailsdescribed here,fromtheatomicuptothemicroscopic-lengthscale.Lastly,atthe macroscopic level,werefertostructurethatcanbeviewedwiththenakedeye.

Thecoreactivitiesofamaterialsscientist/engineercanberepresentedbya tetrahedron(Fig.1.1.2).Naturally,webeginwiththe synthesis ofanymaterialand then process ittoachievethedesired structure,whichinturn,determinesits properties anditsrequired performance inaneconomicalandsociallyacceptablemanner. Notethat characterization,or evaluatingthemicrostructureattheappropriatelength scale,playsacriticalroleintailoringthesynthesisandprocessingofmaterialsto achievethedesiredpropertiesandperformanceofanyengineeringcomponent. So,weconvenientlyplacecharacterizationinthecenterofthistetrahedron.Note thatcharacterization,asdiscussedinthisbook,doesnotincludemeasurementsof properties—mechanical,magnetic,electrical,thermal,etc.—thatcanbefoundin otherspecializedtextbooks.

Arangeofcharacterizationmethodsisrequiredtoelucidatethe processing–structure–property–performance tetrahedronexhibitedbythewidevarietyofmaterialsthataretailor-madeforspecificfunctionalitytoday.Thelistislongand includesmetals/alloys,ceramics,polymers,amorphousmaterialsandglassesthat donotexpressanylong-rangecrystallographicorder,semiconductors,biological orbiomimeticmaterials,composites,andnaturalmaterialslikewoodandpaper. Alternatively,wecanalsoclassifymaterialsintermsoftheirapplication,i.e. wherestructural,mechanical,functional(electrical,magnetic,optical),nuclear, biocompatibilityproperties,eitherindividuallyorinsomecombination,become important.Itmaywellbeasoftmaterialthatissusceptibletodamagewhen probed.Irrespectiveoftheclassofmaterialthatmaybeofinterest,understanding theroleofmicrostructureandtailoringittooptimizeitspropertiesiscentral toMSE.Themicrostructureofinterestmaybeacombinationofchemical, electronic,structural,crystallographic,ormagnetic(domains)features,andhas tobeelucidatedattheappropriatelengthscalethatdescribesthebehaviorofthe material.Thecharacterizationmethodsaremanyandtheonetobeappliedfor aspecificproblemhastobechosenjudiciouslyamongthosereadilyavailable. Table1.1.1providesalistof probe-based characterizationmethodsdiscussedin thisbook,especiallythosecommonlyidentifiedbyacronyms.

1 https://www.astm.org/studentmember/ metallurgybycommittee.html

Broadly,themethodsofcharacterizationusingdifferent probes areclassified as diffraction, spectroscopy,and imaging.Thephysicalprinciplesunderlying thesemethodsarethefoundationsofthisbook.Varioustechniquesfollow fromtheseprinciplesandarepresented,withvaryingdetail,asappropriatefor thiscomprehensivepresentation;naturally,detaileddiscussionsofindividual techniquesaboundinmoreadvancedtexts,includingencyclopediasof materialscharacterization(seeFurtherReading).Forworkingengineers,the AmericanSocietyofTestingandMaterials,nowknownasASTMInternational, providesdetailedstandards1 foravarietyofmaterialscharacterization

Microstructure,Characterization,andtheMaterialsEngineeringTetrahedron 5

Table1.1.1 Probe-basedcharacterizationmethods,includingacronymswhereappropriate,discussed inthisbook,withsectionsindicated.Manyofthesetechniquesarementionedinthischapter.

TechniqueAcronym/AbbreviationSection

Analyticalelectron microscopy

Augerelectron spectroscopy

AEM§9.4

AES§2.6.2

AtomicforcemicroscopyAFM§11.8

Atomprobefieldion microscopy

Back-scatteredelectron imaging

Biologicalforce spectroscopy

AP-FIM§1.4.3

§10.3.3

BFS§11.8.4.5

CathodoluminescenceCL§10.6.2

Confocalscanning opticalmicroscopy

Convergentbeam electrondiffraction

CSOM§6.8.4

CBED§8.6.3

Dip-pennanolithographyDPN§11.8.5

EnergydispersiveX-ray spectrometry

Electronback-scattered diffraction

Electronenergy-loss spectroscopy

EDXS§2.5.1.1

EBSD§10.4

EELS§9.4.2

Electronholography§9.3.7

Electronprobe microanalysis

EPMA§2.5.2.2

Electrontomography§9.5.1 Ellipsometry§6.9

Energyfilteredimaging inaTEM

Environmentalscanning electronmicroscopy

ExtendedX-ray absorptionfine structure

EFTEM§9.4.2.6

ESEM§10.7.1

EXAFS§3.9.2

FieldionmicroscopyFIM§1.4.3

FocusedionbeammillingFIB§9.6.5 Fouriertransform infraredspectroscopy

High-angleannulardark fieldimaging

FTIR§3.5.2

HAADF§9.3.4

Turn static files into dynamic content formats.

Create a flipbook