Physics on your feet: berkeley graduate exam questions: or ninety minutes of shame but a phd for the

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Think on your feet: tips and tricks to improve your impromptu communication skills on the job Brown

https://ebookmass.com/product/think-on-your-feet-tips-and-tricks-toimprove-your-impromptu-communication-skills-on-the-job-brown/

ebookmass.com

Your Money or Your Life: Debt Collection in American Medicine Luke Messac

https://ebookmass.com/product/your-money-or-your-life-debt-collectionin-american-medicine-luke-messac/

ebookmass.com

The Time of Your Life Sandra Kitt

https://ebookmass.com/product/the-time-of-your-life-sandra-kitt/ ebookmass.com

The Urban Political: Ambivalent Spaces of Late Neoliberalism 1st Edition Theresa Enright

https://ebookmass.com/product/the-urban-political-ambivalent-spacesof-late-neoliberalism-1st-edition-theresa-enright/

ebookmass.com

The Rebel Wears Plaid Eliza Knight

https://ebookmass.com/product/the-rebel-wears-plaid-eliza-knight-3/

ebookmass.com

Debating the Sacraments: Print and Authority in the Early Reformation Amy Nelson Burnett

https://ebookmass.com/product/debating-the-sacraments-print-andauthority-in-the-early-reformation-amy-nelson-burnett/

ebookmass.com

Cybercrime Investigations: A Comprehensive Resource for Everyone 1st Edition John Bandler

https://ebookmass.com/product/cybercrime-investigations-acomprehensive-resource-for-everyone-1st-edition-john-bandler/

ebookmass.com

Education for Sustaining Peace through Historical Memory Markus Schultze-Kraft

https://ebookmass.com/product/education-for-sustaining-peace-throughhistorical-memory-markus-schultze-kraft/

ebookmass.com

Exam Success in Mathematics for Cambridge IGCSE (Core & Extended) Ian Bettison

https://ebookmass.com/product/exam-success-in-mathematics-forcambridge-igcse-core-extended-ian-bettison/

ebookmass.com

John Silence: casos psíquicos do doutor extraordinário 1st Edition Algernon Blackwood

https://ebookmass.com/product/john-silence-casos-psiquicos-do-doutorextraordinario-1st-edition-algernon-blackwood/

ebookmass.com

PhysicsonYourFeet: BerkeleyGraduateExamQuestions

SecondEdition

DmitryBudker UniversityofCalifornia,Berkeley,USAandJohannesGutenbergUniversity,Mainz, Germany

AlexanderO.Sushkov

BostonUniversity,Boston,MA,USA

IllustratedbyVasilikiDemas

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

c DmitryBudker,AlexanderO.Sushkov,VasilikiDemas2015,2021 Themoralrightsoftheauthorshavebeenasserted

FirstEditionpublishedin2015

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2021934833

ISBN978–0–19–884236–1(hbk.) ISBN978–0–19–884237–8(pbk.) DOI:10.1093/oso/9780198842361.001.0001 Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Tothememoryofourteacheranddearfriend,MaxZolotorev(1941-2020)

PrefacetotheSecondEdition

InthefewyearsthatpassedfromthepublicationoftheFirstEditionofthebook,we receivedalotofpositivefeedbackandencouragementfromourreadersandcolleagues, whichhasmotivatedustocontinuekeepinganeyeoutforgoodquestionssuitable fororalPhDexams,nowalsoattheJohannesGutenbergUniversityatMainzand BostonUniversity,therespectiveschoolswherethetwoofuscurrentlyteach(andgive examinations).Somecolleagueshaveofferedussuchquestions,and,asbefore,wehave comeupwithanumberof“exam-style”questionsourselves.

TheSecondEditionextendsthebookrathersignificantly,withnewproblemsfound towardstheendsofthesectionsandnewcartoonsskillfullydrawnbyDr.Vasiliki Demasaddedthroughoutthebook.Wehavealsotakentheopportunitytocorrectthe (surprisinglyfew)misprintsandminorerrorsnoticedintheFirstEdition.

WehopethereaderscontinuetofindPhysicsonYourFeetusefulandperhaps entertaining!

MainzandBoston July2020

PrefacetotheFirstEdition

Howthisbookcameabout

InMay2010,thePhysicsDepartmentoftheUniversityofCaliforniaatBerkeley wherethetwoofus,atdifferenttimes,hadbeenPh.D.students,abandonedthe PreliminaryOralExaminations,a.k.aoralprelims,forthefirst-yeargraduatestudents, thusbreakinga60-year-longtradition.

Infact,oralexaminationswereofferedattheBerkeleyPhysicsDepartmentmuch earlier,however,theirmostrecentformatandscopemoreorlesssettledby1950,as describedbyA.C.Helmholzinhis HistoryofthePhysicsDepartment.1950–1968 (Helmholz,2004).

TheBerkeleyprelimwasascaryexperienceforthoseofusonthe“receivingend (A.S.),”andahalf-daysemi-annualchoreforthoseadministeringthetest(D.B.did thisfromFallof1995throughSpringof2010;he“missed”takingtheoralprelimsas heenteredtheBerkeleyPhysicsgraduateprogramin1989asacontinuingstudent,but hashadhisshareoforalexaminationselsewhere).Nevertheless,thetwoofusstrongly feelthatthishasbeenextremelyusefulforthestudents,providingthem,perhaps,the first“real-life”scientific-communicationexperience,andgivinganopportunitytolook atthebeautifulworldofphysicsinsomeapproximationofcompleteness.

Ithasalsobeenatrulyrewardingexperienceforthefacultymember(D.B.).One learnedalotfromthebrilliantstudents,andfromthewisecolleaguesaskingtruly interestingandprofoundquestions.Someofthematerialofthisbookisdrawnfromthe notestakenbyD.B.attheexamsovertheyears,aswellasfromthequestionscollected bythestudentsandpassedasanexam-preparationaid“generationtogeneration.”

Theoriginofthecontentofthebook,therefore,hascollectivenature,andweare extremelygratefultothemembersoftheBerkeleyphysicsfacultywhohavegenerously allowedustousetheirideas.Unfortunately,manyofoursourcesarenolongeralive toaskforpermission.WeremainindeepgratitudetoProfsDavidJudd,GilShapiro, RonaldRoss,and,indirectly,manyothers.

Sowhat’sthepointofthebooknowthattheBerkeleyoralsarenomore?We hopethiscollectionwillbeusefultostudents(ofallagesandeverywhere)whowishto refreshand/ortesttheirknowledgeofphysics,andalsotostudentsattheuniversities thatstilladministerorals.Andtherearealwayswrittenprelims,qualifyingexams, evenatBerkeley(atleast,fornow)...Thelevelofthereadersweprimarilyaimat isupper-divisionundergraduatesandfirst-yeargraduatestudents,althoughsomeof theseproblemswillcertainlybeenjoyedbypostdocsanddistinguishedphysicsfaculty, lookingforafunbreakfromoranunexpectedcontributiontotheirresearch.

Wehavehadalotoffunwritinguptheproblemsforthisbook,andwewouldlike ourreaderstosharethisjoy(ratherthanstressoutabouttheupcomingexam,which isunproductive).Wearegreatlyassistedinthisbytheeye-pleasingdrawingsprepared byourskillfulillustrator,Dr.Vasiliki(Vicky)Demas.

Otherbooks

Thereareseveralothercollectionsofproblemswiththescopeandgoalspartially overlappingwithours.Amongthesearethefollowing.

• ScatteringandStructures by(PovhandRosina,2005),whichisalovelycollection ofproblemsfortheGermanoralDiplomaandPh.D.examswithemphasison quantumphenomena.

• AGuidetoPhysicsProblems byCahn,Mahan,andNadgorny(Cahn,Mahan,and Nadgorny,1994),whichisawonderfulcollectionofwrittenexaminationproblem, alsosuppliedwithmanydelightfulcartoons(nottomentionthemostinsightful physics).

• Animpressivemulti-volume ProblemsandSolutions setbyagroupofChinese authors(Zhang,Zhou,Zhang,andLim,1995;Lim,1998;Bai,Guo,Lim,1991; Lim,2000)compiledbythePhysicsCoachingclassattheUniversityofScience andTechnologyinChinaasaguideforpreparationtoPh.D.examsatmajor Americanuniversities.Whilethiscollectionappearstobeveryuseful,wefindthe choiceofquestionsandstyleofsolutionstobesubstantiallydifferentfromour own.

Howtousethisbook

• UniversityofChicagoGraduateProblemsinPhysics,withSolutions by(Cronin, Greenberg,andTelegdi,1967)isanothergreatcollection,althoughitgenerally appearstobemoremathematicalthanthisbook(andhasnocartoons!).

• UniversityofCalifornia,Berkeley,PhysicsProblems,withSolutions by(Chen, 1974)isafortyyear-oldcollectionofproblemsbasedontheBerkeleywritten Ph.D.exams.

Howtousethisbook

Wedecidedtopresentthesolutionsrightaftertheproblems,insteadofseparating themintoadifferentpartofthebook.Nevertheless,aswithallrespectableproblem books,itisrecommendedthatthereaderbeginsbysuppressingthetemptationtoread orpeepintothesolutionrightaway,andgivestheproblemanhonest“collegetry” beforeconsultingwiththesolution(whichmaybewrongand/orinelegant,anyway).

Someofthematerialinthesolutionsclearlygoesbeyondofwhatmaybeexpectedatan oralexamination.Weprovidethesediscussionsforthosereaderswhomaybeinterestedin morein-depthdetailsaboutthesubjectandmarkthecorrespondingpassagesthatcanbe omittedwithoutsacrificingthequalityofexampreparationbyplacingtheminthe“aside” environmentasthisparagraph.

Havefunandgoodluck!

BerkeleyandHarvard March2014

Acknowledgements

Theoriginaltitleofthisbookwithwhichwe“lived”foralongtimewas NinetyMinutes ofShame(butaPhDinPhysicsfortherestofyourlife),however,ourOUPEditor, SonkeAdlungwarnedusthatthistitleputsbookinseriousdangeroflandingina wrongsectionofabookstore...WearedeeplygratefultoSonkeforhispatienthelp andguidanceovertheyearsittooktocompletethisproject.

Thisbookwouldnothavebeenpossiblewithoutourmentors,colleagues,and studentswhoseideasinspiredmanyoftheproblemsandsolutionsfoundinthisbook. Theirsuggestions,guidance,andreadingsofcountlessdraftswereinvaluable,andwe sincerelyappreciatetheircontributions.

Inthesemesterprecedingthecompletionofthebook(Fall2013),D.B.taughtan undergraduateseniorelectivecourseatBerkeleycalled“PhysicsforFuturePhysicist” largelybasedontheproblemsinthebook.Thefeedbackfromthestudents(severalof whomactuallynon-physicists)wasenormouslyhelpful.

SomepeoplewewouldliketoacknowledgespecificallyareDerekJacksonKimball, MarcisAuzinsh,Byung-KyuPark,SeanCarroll,EugeneD.Commins,MikhailKozlov, OlegSushkov,VictorAcosta,AngomDilipKumarSingh,VladimirG.Zelevinsky, DmitriD.Ryutov,RichardA.Muller,NathanLeefer,RonWalsworth,MaxZolotorev,SteveLamoreaux,GregoryFalkovich,PauliKehayias,KonstantinTsigutkin, BrianPatton,MichaelSolarz,RonFolman,SzymonPustelny,OriGanor,MichaelHohensee,MikhailLukin,RanFischer,D.ChrisHovde,YehudaB.Band,JoelFajans, PeterMilonni,SifanWang,SeanLourette,MariaSimanovskaia,SimonRochester,and TamaraSushkova.DamonEnglishhelpedtosetthisprojectinmotionandprovided invaluableinputatitsearlystages.

InconjunctionwiththeSecondEdition,wewouldliketoacknowledge,inadditiontotheindividualslistedpreviousley,ArneWickenbrock,ValeriiZapasskii,Masha Baryakhtar,LykourgosBougas,andDianaSaville.

Theauthorsacknowledgethesupportoftheirresearch,thatmotivatedmanyof theproblemsinthisbook.

1.4SpinningEarth9

1.5Mechanicaloscillatorasaforcesensor11

1.6Hot-dogphysics15

1.7Ostrichegg19

1.8Joker’spendulum21

1.9Slinkymagic23

1.10Lightbulbandcoal25

1.11Comfortablewalkingspeed27

1.12Rotatingdumbbell29

2.3Holeybucket39

2.4Surprisesinmeltingandsolidification43

2.5Shallow-wateranddeep-watergravitywaves47

2.6Tides51

2.7Boatspeedlimit(hullspeed)53

2.8Floatingincircles55

2.9Boatdisplacement57

2.10Temperaturelapseintheatmosphere59

2.11Angler’sdilemma63

3.1Olber’sparadox:whyistheskydark?67

3.2Gravitationalshiftofclockrates69

3.3Photonfallout73

3.4Planckmassandlengthscale75

3.5Rotationofstarsaroundthecenterofagalaxy77

3.6Ultralightdarkmatter79

3.7Detectinggravitationalwaves83

3.8DarkmattertrappedintheEarth87

4.1Currentsandmagneticfields91 4.2Electromagnetdesign95

xii Contents

4.3Fieldinashield(withacoil)97

4.4Multipoleexpansion101

4.5Energyinawire105

4.6Earth’smagneticfieldangle109

4.7Refrigerator-magnetscience111

4.8Spherical-cellmagnetometer115

4.9Magneticforceonasuperconductingmagnet117

4.10Circuitviewofatomsandspace121

4.11Magneticmonopole125

5Optics

128

5.1Rotatingliquidmirror129

5.2Stackinglenses131

5.3Nanoparticleoptics137

5.4Diffractionangle139

5.5Diffractiononanedge141

5.6Black-bodyradiation143

5.7Laservs.thermallightsource145

5.8CorrelationfunctionsforlightandBosecondensates149

5.9Pulsedlaserrepetitionrate153

5.10Beamsplitter157

5.11Rotatinglinearpolarization159

6Quantum,Atomic,andMolecularPhysics

162

6.1Magneticdecouplingofspins163

6.2Levelanticrossing167

6.3Boundstatesinapotentialwell169

6.4Hypotheticalanomaloushydrogen177

6.5Time-reversalinquantummechanics181

6.6Superconductivityvs.atomicdiamagnetism183

6.7Atomicdesorption187

6.8Lambshift189

6.9VanderWaalsinteraction193

6.10Vacuumbirefringence197

6.11Nonmagneticmolecule199

6.12Quantummechanicsofangularmomentum201

6.13Lightshifts203

6.14Opticalpumping205

7NuclearandElementary-ParticlePhysics 208

7.1Thenumberofelementsintheperiodictable209

7.2Neutronanatomy211

7.3Nonexistenceofthedineutron213

7.4Deuteriumfusion215

7.5Lifetimeoftheground-statepara-positronium217

7.6Schwingerfields221

7.7Cherenkovradiation223

1 Mechanics,Heat,andGeneral Physics

1.1Bouncingbrick

Abrickfallsflatontoatennisballrestingontheground(Fig.1.1)andbouncesback totheheightof h =1m.Whatheightwilltheballbounceto?Makereasonable assumptions,forexample,neglectthesizeoftheballcomparedtothebounceheight.1

Fig.1.1 Abrickfallsontoandbouncesoffofatennisball.Asaresult,theballalsobounces vertically.

1 ThisproblemwassuggestedbyProf.G.L.Kotkin.

Solution

Whenthebrickhitstheball,itcompresses(squashes)it,andtherestoringforce,which ismostlyduetotheairpressureintheball,iswhatpushesonthebrickfirstmaking ittostop,andthenturnaroundandbounceback.

Letusconsiderthemomentintimewhenthebrickisonthewayup,andthe ballisbacktoitsnon-deformedstate.Assumingthattheballisatalltimesina quasi-equilibriumstate,atthismoment,theballisnolongerpushingonthebrick.

Atthismoment,thebrickbeginsitsfree-fallverticalmotionwithinitialvelocity v0 thatcanbefoundfrom

Letusnowconsiderthemotionofthedifferentpartsoftheball.Thebottomof theballisontheground,andisnotmoving.Ontheotherhand,thetopoftheballis movingatthevelocityofthebrick v0 (Fig.1.1).Itisclear,then,thatthecenterofmass oftheballismovingwith v0/2.Correspondingly,theballwillbounceto h/4=25cm.

Notethattennisplayersusearelatedeffecttoliftatennisballatrestonthe court–thetechniqueinvolveshittingtheballverticallytowardsthegroundwitha racket,uponwhichtheballbouncesup.

1.2Slipperycone

Aclimberistryingtoclimbaslipperymountainwitharoundconicalshape.Hehas withhimapieceofropewiththeendstiedtogetherinaknottoformaloop.He throwstheloopoverthetopoftheconeandpullsonittopullhimselfup,asshown inFig.1.2.Thereisnofrictionbetweentheropeandtheconesurface.Iftheopening angleoftheconeissmall(sharpcone),theloopshouldcatch,butiftheopeningangle oftheconeislarge(flatcone),theloopshouldslipoffoverthetopofthecone,asthe climberpullsonit.

Whatisthecriticalopeningangleoftheconesothattheropeloopjustcatches?2

2 ThisproblemwassuggestedtousbyEvgenyKashmensky.

Fig.1.2 Aclimberpullinghimselfupwitharope.

Solution

Supposetheclimberhasthrowntheropeoverthetopofthecone,buthasnotpulledit tightyet.Letuscuttheconefromitsvertextoitsbasealongthestraightlinepassing throughtheknotintheropeloop.Wethenunrolltheconeintoasectorofacircleon aplane(drawingapictureisveryhelpfulatthispoint,seeFig.1.3).Theknotappears astwopointsontheradiiboundingthesector,thesepointsareequidistantfromthe vertex,whichisthecenterofthecircle.Theropejoinsthesetwopoints,tracingout somecurvedlinecontainedwithinthesector.

Now,astheclimberpullsontherope,heputstensiononit.Whentheropeis tight,ittracesoutthecurveoflocallyminimallengthonthesurfaceofthecone,or a geodesic.Onthesurfaceofthe“unrolled”sector,thisisjustastraightlinebetween thetwopointscorrespondingtothelocationoftheknot.Ifthesectorislessthanhalf ofacircle,thisstraightlineisentirelywithinthesector,andthereforetheropecatches somewhereonthesurfaceofthecone[Fig.1.3(a)].Ifthesectorismorethanhalfthe circle,thestraightlineisoutsidethesector,meaningthat,astheropeistightened,it atsomepointmustcrossthecenterofthecircle,thusslippingoffthetopofthecone [Fig.1.3(b)].

Thecriticalconeanglecorrespondstothecasewhenthe“unrolled”coneformsa half-circle[Fig.1.3(c)].Toworkoutwhattheopeningangleofsuchaconeis,letus denotetheradiusoftheconebaseby r andthelengthoftheconeslantby L.The “unrolled”sectorhasradius L andarclengthof2πr.Whenthesectorisasemi-circle, πL =2πr,and r = L/2.Thismeansthatthecriticalhalf-coneangleis θ =30◦ . (a)(b)(c)

Fig.1.3 Anunrolledconewiththeropeonitssurface.

Roachrace 7

1.3Roachrace

Fourcockroachesareinitiallylocatedatthecornersofasquarewithside a asshown inFig.1.4.Theystartmovingatthesametimewiththesamespeed(notnecessarily constant),insuchawaythateachroachisalwaysmovingintheinstantaneousdirectionofitscounter-clockwiseneighbor.Assumethatthesizeofaroachisnegligibly smallcomparedto a Whatisthedistancetraveledbyaroachuntilitcollideswithanother?3

Fig.1.4 Fourroachesstarttheirjourneyatthecornersofasquareandeachroachmoves intheinstantaneousdirectionofitsnearestcounter-clockwiseneighbor.

3 ThisproblemwassuggestedtousbyElenaZhivun.

Solution

Bysymmetry,theroachesremaininthecornersofa(shrinkingandrotating)square atalltimestilltheycollide.

Relative-motionproblemsareoftensolvedmosteasilybyaconvenientchoiceof thereferenceframe.Inthiscase,suchaframehastheoriginononeoftheroaches,and hasanaxispointinginthedirectionofitsneighbor.Inthisframe,ourchosenroach isstationary,whileitsneighborsapproachitalongstraightlines,coveringadistance a tilltheencounter.Sincethemotionoftheneighborsisalwaysinstantaneouslyperpendicular,onecanseethat,indeed,thedistancecoveredbyaroachtilltheencounter is a,bothinthe“convenient”andthestationaryframes.

Wefoundthatmanyofourcolleagues,somewhatsurprisingly,havetroublesolving thisproblem“onthefly.”

1.4SpinningEarth

Thisproblemillustratessometypicalandratherinstructiveestimatesthatworking physicistscovertheirlunch-timenapkinswith.

(a) EstimatethenumberofatomscontainedintheEarth.

(b) Theangularmomentumofanatomoramolecule,ifitisnonzero,isontheorder of .EstimatetheangularmomentumoftheEarth’srotationperatomintheunits of

Solution

(a) TheradiusoftheEarthis R ≈ 6400km=6 4 × 108 cm,sothevolumeoftheEarth is

TheaveragedensityoftheEarthisroughly ρ =5.5g/cm3,andthemostabundant (andtypical)elementintheEarthisoxygenwithanatomicweightof16.Fromthis, wecanroughlyestimatethenumberofatomsintheEarthas

where NA ≈ 6 × 1023 particlespermoleisthe Avogadronumber

(b) Theangularmomentumisgivenby

where I =2MR2/5isthe momentofinertia ofasphererotatingaboutitsdiameter, wehaveapproximatedtheEarthasauniformsphere,and τ ≈ 24hoursistheperiodof theEarth’srotation.WecannowjustsubstitutethemassoftheEarthasessentially calculatedpreviously,however,itisbettertofirstdividebytheexpressionofthe numberoftheatomsintheEarthbecausethemasscancelsintheratio.Wehavefor theangularmomentumperatom(inunitsof ):

(1.5)

Wefindthattheintrinsicangularmomentumofatomsgivesnegligiblecontributionto theangularmomentumoftheEarth,evenifallatomswithnonzerointernalangular momentumwerepolarizedinthesamedirection.

Mechanicaloscillatorasaforcesensor 11

1.5Mechanicaloscillatorasaforcesensor

(a) Considera dampedmechanicaloscillator ofmass m, naturalfrequency ω0,and qualityfactor Q,drivenbyaforce F (t)= F0eiωt (theforceiscomplexforcomputationalconvenience,wetaketherealpartwheneverweconsideraphysicalquantity). Calculatetheresponseamplitude x0 andthephaselag φ betweentheforceandthe oscillatormotion.

(b) Theoscillatorisinequilibriumwithathermalbathattemperature T .Calculate the root-mean-squared (r.m.s.)thermalexcitation xT .

(c) Supposetheoscillatoriscooledtoabsolutezero.Calculatether.m.s.excitation xq oftheoscillatordueto quantumzero-pointenergy

(d) Theoscillatorcanbeusedtodetectsmalloscillatingforcesbytuningitsresonance frequency ω0 closetotheforcefrequency ω andmeasuringtheresponse.Giventhe thermalnoisecalculatedinpart(b),estimatetheforcesensitivity Fe oftheoscillator aftermeasurementtime t.Assume t Q/ω0.

Turn static files into dynamic content formats.

Create a flipbook