Modern optics simplified robert d. guenther - The ebook is available for instant download, no waitin

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Modern Information Optics with MATLAB Yaping Zhang

https://ebookmass.com/product/modern-information-optics-with-matlabyaping-zhang/

ebookmass.com

Encyclopedia of modern optics 2nd Edition Duncan G. Steel (Editor)

https://ebookmass.com/product/encyclopedia-of-modern-optics-2ndedition-duncan-g-steel-editor/

ebookmass.com

Progress in Optics Volume 62 1st Edition Edition Taco D. Visser (Eds.)

https://ebookmass.com/product/progress-in-optics-volume-62-1stedition-edition-taco-d-visser-eds/

ebookmass.com

New and Future Developments in Microbial Biotechnology and Bioengineering. Aspergillus System Properties and Applications 1st Edition Vijai G. Gupta

https://ebookmass.com/product/new-and-future-developments-inmicrobial-biotechnology-and-bioengineering-aspergillus-systemproperties-and-applications-1st-edition-vijai-g-gupta/ ebookmass.com

Nester's Microbiology: A Human Perspective 10th Edition

Anderson

https://ebookmass.com/product/nesters-microbiology-a-humanperspective-10th-edition-anderson/

ebookmass.com

The Illustrated Network: How TCP/IP Works in a Modern Network Walter Goralski

https://ebookmass.com/product/the-illustrated-network-how-tcp-ipworks-in-a-modern-network-walter-goralski/

ebookmass.com

Hill Towns of Central Italy (Rick Steves Snapshot) Rick Steves

https://ebookmass.com/product/hill-towns-of-central-italy-rick-stevessnapshot-rick-steves/

ebookmass.com

eTextbook 978-1133693697 Master Educator

https://ebookmass.com/product/etextbook-978-1133693697-mastereducator/

ebookmass.com

Scared Little Rabbits A.V. Geiger

https://ebookmass.com/product/scared-little-rabbits-a-v-geiger-2/

ebookmass.com

https://ebookmass.com/product/enlightenment-biopolitics-a-history-ofrace-eugenics-and-the-making-of-citizens-william-max-nelson/

ebookmass.com

ModernOpticsSimplified

ModernOptics Simplified

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©B.D.Guenther2020

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2020

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2019945064

ISBN978–0–19–884285–9(hbk.)

ISBN978–0–19–884286–6(pbk.)

DOI:10.1093/oso/9780198842859.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Introduction

Allthestudiesoflightfromtheantiquityuntilthemiddleofnineteenthcenturywerebased onincoherentlightsourcessuchastheSun,candlelight,sodiumlamp,orlightbulb.In1950s anewcoherentsourceoflightwasinvented,firstinthemicrowaveregionandtheninthe opticalregion.Thisnewkindoflightsource,thelaser,isoneofthegreatestinventionsofthe secondpartofthetwentiethcentury.Ithashelpedtorevolutionizemanybranchesofscience andtechnology,rangingfrombiotechnologyandprecisionmeasurementstocommunication andremotesensing.ANobelPrizewasawardedin1964fortheinventionofthelaserandsince thensome10additionalprizeshavebeenawardedinvolvingthistechnology.

Thephysicalprocessbehindconventionallightsourcesisspontaneousemissionandthe sourceoperatesinthermalequilibrium.Initially,themajorityofatomsandmoleculesarein theirgroundstate.Whenenergyissuppliedtotheatomsormolecules,someofthemgotothe excitedstatesandthenradiateviaspontaneousemission.Thespontaneousemissionprocess isduetotheubiquitousvacuumfluctuations1andeachatomradiatesindependentlyofeach other.Theresultinglightisawhitelightsentinalldirectionsandisincoherent.Ontheother hand,thedominantemissionprocessinalaserisstimulatedemission.Byacleverdesign,the radiatedphotonsbytheatomsormoleculesareabletostimulateotheratomstoradiatewiththe samefrequencyandsamedirection.Theresultingradiationiscoherent,i.e.,monochromatic, andhighlydirectional.

Inthistextwewanttolookatopticalscienceusingthefactthattheencounterofcoherent lightisprobableratherthanimprobable.Wewillviewlightasanelectromagneticwave describedcompletelybyMaxwell’sequations.Thisisasetofvectorequationsbutwewilldo ourbesttolimitourdiscussiontoscalar,one-dimensionalwaves.Weonlywillusevectors wherewemusttocharacterizethepropertiesofalightwavesuchasthefactthatsolutionsof Maxwell’sequationsaresolutionsofawaveequationconcealedwithinMaxwell’sequations. Theamplitudeoftheelectricandmagneticwavesthatmakeupalightwaveareorthogonalto thedirectionofpropagationandtoeachother.Wewillintroducethemethodusedtohandlethe vectornatureofthewave’sdisplacementvectorsusingthetheoryofpolarization.

Wemustalsousevectorstodiscussreflectionandrefractionsincethemagnitudeofthe wavethatundergoesreflectiondependsontheorientationoftheelectricfielddisplacement. Weareabletoprovethatinterferencerequiresthatthepolarizationofthewavesparticipating ininterferencemustbeparallel.Thisallowsustolimitdiscussionstoscalarwaves.

Interferenceandcoherencearetreatedtogether.Thesearethekeystoourmodernviewof opticsbasedonFouriertheory.BecauseFouriertheoryisthebasisforourmoderndescription ofdiffractionandimaging,wespendalittletimedescribingthetheorybutwelimitour discussiontoverysimplefunctionssuchasarectangle.

1 Thisisthetemporarychangeintheenergyatapointinspace.

Therearesometopicsdiscussedinthebookthatcanbeskippedbecauseoftheiradvanced nature.Theyhavebeenindicatedbytealboxessettingofftheparagraphscontainingthe advancedmaterial.Theinstructorcandecide,astheclassprogresses,whethertoincludethe material.

Interferenceisonlyobservediftheinterferingwavesarecoherentandifthepolarization ofthewavesisparallel.Thepresenceofcoherenceallowsanumberofusefulexperimental techniquestobeused,suchasthequalityofopticalcomponentsusingNewton’sringsora Michelsoninterferometer;useofaMichelsoninterferometerandFouriertransformsmakes itpossibletoevaluatethespectrumofasource.Byusingasourcewithaknownspectral distribution,itispossibletocreateanopticalcoherencetomographicthree-dimensionalimage ofbiologicalmaterial,suchastheretinaorthecorneaofthehumaneye.Aninterferometer basedonYoung’stwo-slitexperimentcanbeusedtomeasurethesizeofstellarobjects.Finally, interferencegeneratedbydielectriclayerscanbeusedtoreducethereflectionsfromthesurface ofopticalcomponentsforcomplexcameralensesorhighindexeyeglasses.

Anumberofdifferenttheoriesarebasedonwavetheorybutmostofthemassumeascalar wave;i.e.,theamplitudeofthewaveisascalarfunction.Light,however,isanelectromagnetic wavewiththewavedisplacementdescribedbyamagneticandanelectricvector.Wecan describethevectorwaveintermsofonlytheelectricfieldvector.Inthisbookweoutlinethe mathusedtodescribethevectornatureofthewaveintermsofitspolarizationanddiscuss opticaldevicesusedtoexperimentallymanipulatethepolarizationvector.Thepolarizationof lightisaffectedbychemicalcompoundspossessingopticalactivity;thechiralpropertyanda briefintroductiontothatpropertyisgiven.

Inmanyopticstextbooks,emphasisisplacedonthethinlensequation,andsimpleoptical systemsinvolveoftennomorethanoneelement.Thisisoflittleusetothestudentsincesingle opticalelementsaredominatedbyaberrationsandinthelabacombinationofatleasttwo lenseswouldbepreferredtoeliminatesphericalaberration.Wehaveintroducedthestudentto themathneededtohandlemultipleopticalcomponentsandselectedasignconventionbased onthatusedinaCartesiancoordinatesystemthatdoesnotresultinutterconfusionwhen multipleelementsaretreated.Actualopticaldesigniscomplicatedandhardtodowell.For thatreason,aberrationsandtheirexamplesareonlydescribedandexperimentallyobtained examplesshown.

Triggeredbythedevelopmentoflasers,anewmethodofcommunicationsbasedonthe useofopticalfiberswasdevelopedinthe1970s.Whenapropagatinglightwaveencountersa barrierbetweenahighindexofrefractionmaterialandamaterialwithlowindexofrefraction, wecanobservetotalreflection.Ifalightwaveisconfinedtothehighindexdielectricmedium bythetotalreflection,thelightcanpropagatelongdistanceswithoutattenuationandcanbe madetocarrylargequantitiesofinformation.Beginningabout2010theabilitytoconduct communicationswithoutconversionfromtheopticalregimemadeitpossibletostreammovies andsportingevents,causingarapidexpansionofopticalfibertechnology.Weexplorethe descriptionoffiberopticalsystemsbasedonageometricalmodelcalledthezig-zagtheory.

Becauseitiseasytoconstructcoherentlightsourcesitiseasytoseetheinterferenceof multiplewavesscatteredfromcomplicatedstructures.Thishasledtotheinventionofthe previouslymentionedopticalcoherencetomographymicroscopeofretinalimaging.Thisis anextensionoftheconceptofinterferenceintoamuchmorecomplicatedtheorywhichisonly

mentionedinpassinginthistext.Wehavefounditpossibletoderivesimplemathematical expressionsthatmakeitpossibletocalculatediffractionfromsimplegeometricconstructs.The theoryallowsustobuildatheorythatcanbeusedtopredictlimitstoourimagingcapability. Thetheorymakesitpossibletocomparethecapabilitiesofavarietyofimagingsystems,such ascellphonecameras.Italsoallowsustodevelopwayofprocessingimagerythatpermits,for example,theextractionoftheimageofaplanetorbitingadistantstar.

1 Waves

1.1 WaveParameters

Thebasiccharacteroflightisexplainedusingthetheoryofwavemotion.Mathematically,a waveisthesolutionofasecond-order,partialdifferentialequationcalledthewaveequation. Thesolutionisviewedasanoscillationthattransfersenergyfromonepointtoanotherwithout anymassflow.Inonedimension,theequationofascalarwavepropagatingwithoutchangein the x-directionhastheform

where c isthevelocityofthewave.Thisdifferentialequationcanbeusedtodescribeanumber ofphysicalsituations:avibratingguitarstring,soundwaves,avibratingdrumhead,elastic wavesinsolidssuchasseismicwavesintheearth,oceanwaves,electricsignalsinacable,and electromagneticwaves—viz.alightwavethatisofinteresttous.

Theideathatsoundwasawavecamefromobservingwaterwavesandwasintroduced around240bcbytheGreekphilosopherChrysippus.Pythagoras,theancientGreekphilosopherandmathematician,studiedthevibrationofstringsaround500bc.Theconnection betweentheproductionofsoundbyvibratingbellsorstringsandsoundwavesinairwasmade byGalileo.Gassendi,acontemporaryofGalileo,arguedforaparticleviewofthepropagation ofsound.

DanielBernoulli,aSwissmathematician,triedtodevelopanunderstandingofhowaviolin stringmadesound.Inthe1720s,hedevelopedawayofdescribingastringasitvibrated byimaginingthestringascomposedoftinymasses,connectedbysprings.ApplyingIsaac Newton’slawsofmotionfortheindividualmassesallowedBernoullitopredictthatthesimplest shapeofavibratingviolinstring,fixedateachend,wasasinglesinecurve.Somedecadeslater, mathematicianJeanLeRondd’Alembertgeneralizedthestringproblemintoamathematical expressionofthewaveequation.Hefoundthattheaccelerationofanysegmentofthestringwas proportionaltothetensionactingonit.Thewavescreatedbydifferenttensionsofthestring producedifferentnotes.Withthistheoreticaldevelopment,thedesignofstringinstruments becamepossible.

Thesuccessofthetreatmentofsoundwavessuggestedtoscientistsoftheearlyseventeenth centurythattheyshouldviewtheuniverseasalargemechanicaldeviceandtoapplya mechanicalmodeltoallobservables,evenlight.Everythingwasmadeofmatterandmotion. Matterwasmadeupofatomsthatwereindivisible.Corpuscleswerelargerparticleswith propertiesthatcontrolledtheirfunctionandtheyactedasvehicles,carryingstuffthrough

ModernOpticsSimplified.B.D.Guenther.©B.D.Guenther2020. Publishedin2020byOxfordUniversityPress.DOI:10.1093/oso/9780198842859.001.0001

Penetrates Earth Atmosphere?

THE ELECTROMAGNETIC SPECTRUM

Figure1.1 Frequencyregionsoftheelectromagneticspectrum.Thetheoriesdiscussedinthetextcoverthe frequenciesfrom1012 to1016 Hz.

ByNASA [Publicdomain],viaWikimediaCommons.

space.RenéDescartesdescribedlightasapressurewavetransmittingataninfinitespeed throughsometypeofelasticmedium.

ChristiaanHuygensin1672developedamathematicalwavetheoryoflight.Heretaineda mechanicalviewoflightbyrequiringthewavetotravelina luminiferousether.IsaacNewton latchedontotheparticle(corpuscle)theoryofGassenditobuildhisparticletheoryoflight.He rejectedtheconceptofwavepropagationbecauselightseemedtotravelinastraightline.The weaknessofhistheorywasthatitexplainedrefractionbyassumingthatlighttraveledfasterina densematerial,oppositetothepredictionsofHuygens’stheory.Newton’stheorywasdominant throughouttheeighteeenthcentury.

In1800,ThomasYoungdemonstratedthroughdiffractionexperimentsusingtwoslitsthat lightbehavedasawave.In1817Augustin-JeanFresnelworkedoutawavetheoryoflightthat helpedcastNewton’stheoryinpoorlight.Itwasnotuntilpropagationvelocitymeasurements madebyLéonFoucaultin1850demonstratedthatthepropagationvelocityinadensemedium waslessthaninavacuum.Withthisexperimentalevidence,Newton’sparticletheorywas abandoned.

Theneedtoexplainlightresultedinthedevelopmentofatheoryofelectromagneticwavesby JamesClerkMaxwellin1862.Electromagneticwaveshavefrequenciesthatextendovermany ordersofmagnitude(seeFigure1.1).

Wewilldeveloptheparametersusedtoidentifyawaveinthischapter.Wewilldiscuss Maxwell’sequationsthatexplainthebehavioroftheelectromagneticspectrumofFigure1.1in thenextchapter.

ThewavemustbeasolutionofEq.(1.1);i.e.,itisafunctionoftwovariables:aspatialvariable andatemporalvariable:

y ≡ f(x,t)

Tomaketheproblemassimpleaspossible,wewillassumethatawavepropagatesinour medium(currentlyundefined)withoutchange.Ifthewavepropagatesbetween x1 and x2,then thewavefunctionevaluatedat(x1, t1)musthavethesamevalueasat(x2, t2).Thevelocityof propagationalongthe x-directioninourmediumisequalto c andthevelocityallowsusto calculatethenewpositionofthewavefromtheoldpositionusingtheequation

x2 = x1 + c(t2 t1)

Onewaytosatisfytherequirementofpropagationwithoutchangeistoassumethewave functionhastheform1

y = f(ct x). (1.2)

Itiseasytoshowthisfunctionalformmeetsourrequirement

Toourrequirementofpropagationwithoutchange,weaddasecondrequirementthateach pointonthewaveoscillatetransversely,i.e.,perpendiculartothedirectionofpropagation,with simpleharmonicmotion.Agoodphysicalexampleofsuchawavewouldbeaguitarstring vibratingatitsfundamentalfrequency—forexample,thefifthguitarstring(A)vibratingat 110Hz.Theequationsofmotionofapointonthewavevibratingwithsimpleharmonicmotion isgivenby

m d2x dt2 + sx = 0. (1.3)

Thepointonlymovestransverselytothewavemotion.Whenthesignofthe x and t componentsofthewavephasediffer,thewavetravelsinthepositive x-direction.Thepointonthe wave,havingbeendisplaced,experiencesalinearrestoringforcethatdefines s andisgivenby

F =−sx = ma = m d2x dt2 .

Theconstantsiscalledthespringconstant.

Itwouldappearthatsuchasimple,second-order,differentialequationwouldhavelimited applicability,butsuchisnotthecase.Theforceactinguponamasscanbewritteninterms ofthepotentialenergyfunction, V,

F =− dV dx .

Thepotentialfunctionisusedbecauseitisascalarandthuseasiertomanipulatethana vector.Weseethatourforce F =−sx isduetoapotentialenergyfunction V(x)thatis

1 Theexpression y = f(ct x)isshorthandnotationtodenoteafunctionthatcontains x and t onlyinthe combination(ct x);i.e.,thefunctioncancontaincombinationsoftheform2(ct x),(t ± x/c),(x ct), (ct x)2,sin(ct x),etc.,butnotexpressionssuchas(2ct x)or(ct2 x2).

proportionalto x2.Ifwehaveamorecomplicatedpotentialfunction,wecanexpandthe potentialfunction,abouttheequilibriumpoint,inaTaylorseries V = V0 + 1 2 (d2V dx2 )x2 + 1 6 (d3V dx3 )x3 +....

Thereisnoterminvolving x,because V(x)isaminimumattheequilibriumpositionand thederivativeiszero.WeseeourmodelisapplicablewhentheTaylorexpansionbeyond thefirstnon-zerotermisnotneeded,i.e.,whenthedisplacements, x,oftheoscillations abouttheequilibriumpositionaresmall.

ThesolutionofEquationEq.(1.3)is

where �� issetbytheinitialconditions.Ifweassumethattheamplitudeofdisplacementis A at t = 0,then ��= 0.

Wecanusethisharmonicmotiontodefineseveralwaveparameters:

• The period, T,isthetimerequiredtocompleteoneoscillation.Thevalueof x attime t and (t + T)mustbeequal;thus,thetwophasesdifferby2��:

• Thefrequencyofoscillation,i.e.,thenumberoftimesxhasthesamevalueinaunitoftime, isthereciprocaloftheperiod

Weusetheangularfrequencytokeepfromcontinuallywriting2�� inourequations: ��= 2��v.

Usingourassumptionsofthepropertiesofthewave’samplitude,wecanwritethefunctionof (ct x),whichwillreducetoharmonicmotionat x = 0,as

y = f(ct x)= Ycos[�� c (ct x)]

Thisiscalleda harmonicwave. Wewillnowaddanotherparameterthatwewillusetocharacterizeawave;itiscalledthe propagationconstant orthe wavenumber:

Thisisthespatialfrequencyofthewaveandismeasuredinthenumberofwavesperunit distanceascompairedtothetemporalfrequency,��,whichisequaltothenumberofwavesper unittime.Thegeneralizedharmonicwavecanthenbewritten

Thevaluesof x,with t fixed,forwhichthephase(��t kx)changesby2�� isthe spatialperiod andiscalledthe wavelength, ��.Let x2 = x1 +��,sothat

Thus,

(1.9)

Thefinalparameterwewouldliketodefineforourwaveisitspropagationvelocity.To determinethespeedofthewaveinspace,apointonthewaveisselectedandthetimeittakes togosomedistanceismeasured.Thisisequivalenttoaskinghowfastagivenvalueofphase propagatesinspace.AssumethatinthetimeΔt =(t2 – t1)thedisturbance y1 travelsadistance Δx =(x2 – x1).Sincethedisturbanceatthetwopointsisthesame,i.e.,y1,thenthephasesmust beequal:

t kx =��(t +Δt) k(x +Δx), Δx Δt = �� k .

Inthelimitas Δt → 0,weobtainthe phasevelocity

c ≡ dx dt = �� k ; since k =��/c = 2����/c,wealsohavetherelationshipbetweenwavelength,frequency,and propagationvelocity, c =����.2

DimensionalRepresentation

Wenowhavedefinedparametersthatcanbeusedtocharacterizeanarbitrarywavebut onlyinonedimension.Weknowthatlighttravelsinathree-dimensionalspace.What changestotheparameterswillbenecessarytodescribethewaveinthreedimensions?

Thewaveequation,generalizedtothreedimensions,becomes

2 Anotherwaytodeterminethephasevelocityistousearesultfrompartialdifferentialcalculus

Thisrelationshipisusefulevenwithoutknowledgeofisorigin.

Orusingvectorcalculusnotation,wecanwriteEq.(1.10)intermsofthedel(nabla, ∇) operator: ∇2f(r,t)= 1 c2 ��2f(r,t) ��t2

InCartesiancoordinates

iscalledtheLaplaceoperatorandisthedivergenceofafunction’sgradient.Ageneralized harmonicwavesolutionofEq.(1.11)is

f(r,t)= E(r)cos[��t −��(r)]

wherewehavereplaced kx inEq.(1.8)byasurfacedescribedby��(r).Thisqualitydefines asurfaceoverwhich ��(r) = constantatafixedtime.Thatsurfaceiscallthe wavefront.If thesurfacedefinedby ��(r)isaplanewithaunitvector, n, normaltoitssurface(inthree dimensions,theunitvectornormaltoapointinaplaneisthedefinitionoftheplane), then r •̂ n = s definestheplanelocatedadistance r fromtheorigin.

Wewilllimitmostofourdiscussionsinthistexttowaveswithaplanewavefront (Figure1.2).If ��(r)describesaplanewavethenitmustbegivenby ��(r)= k(n • r)

Wedefinethewavevectoras

Figure1.2 (a)Aplanewave.Itsnormalistheunitvector n thatpointsinthedirectionofpropagation.Asurface ofconstantphaseistheshadedplanepassingthroughthepointdefinedbythevector r.(b)Theprojectionof r on theplane’snormaldefinesthedistance s fromtheorigin.

andtheplanewavesolutionsofthewaveequationin3Dbecome

Themanipulationofsinesandcosinesplacesademandonustorememberavariety oftrigonometricidentities.Wecanremovethatunreasonabledemandbyusingcomplex notation.Thegeneralizedsolutionofthewaveequationcanbeexpressedincomplex notation,usingEuler’stheorem

Theamplitude E (r)canbecomplexandcontainanarbitralphaseterm. Ifwesubstitute f(r,t)intothewaveequationEq.(1.11),weobtain

Usingtherelationship ��/c = k,thewaveequationbecomes

Ifweareinterestedinthespatialpropertiesofthewavebutnotthetemporal,weneed onlyseeksolutionsofthisequation,whichiscalledthe Helmholtzequation.

Useofthecomplexnotationwillsimplifyourcalculationsinvolvingwaves.Theonly requirementthatmustbemetthenistoremembertoretainonlytherealpartofthe solutionwhenwecompleteouranalysis.IfouranalysisyieldsEq.(1.13),thenthesolution wewillretainis

Re{f(r,t)}= E (r)cos(��t k • r)

Thisresultfollowsfrom

1.2 FourierTheory

Aquestionprobablyhasariseninthereader’smindastohowageneraltheoryofoptics canbedevelopedusingonlyasinglecosinerepresentationofaplanewave. JeanBaptiste JosephBarondeFourier(1768–1830) developedatechniquetomakeitpossibletosolveheat flowproblems.Thistheorymakesitpossibletoutilizeplaneharmonicwavestoconstructa

descriptionofanygeneralwaveform.Fourier’sfirstpaperonthesubjectwasrejectedbecause Lagrangedidnotbelievetheserieswouldconverge.Intheeighteenthcentury,mathematicians didnotconsideritpossiblethatafinitefunctioncouldcontainaninfiniteseriesofterms. ThelackofunderstandingaboutconvergenceofinfiniteseriesishighlightedbyoneofZeno’s paradoxes:

Achilleswastoraceatortoiseandthetortoisewasgivenalead.Theargumentwasmadethat Achillescouldnevercatchthetortoisebecausehefirsthadtoreachthepointwherethetortoise startedbutbythenthetortoisehadmovedahead.NomatterhowfastAchillesran,thetortoise addedafinitedistancetotheseparationthatallowedhimtoremainaheadofAchilles.

Theunstatedassumptionwasthatthesumofaninfiniteseriescouldn’tbefinite.Thesolution tothisparadoxwasfoundindevelopingawaytodeterminewhetheraseriesconverged.Inthis particularproblemifAchillescutsthedistancetothetortoiseinhalfineachintervaloftime, hecatchesthetortoise.ThedistanceAchillestraversesisgivenby

OurcurrentunderstandingofconvergencehaseliminatedZeno’sparadoxformathematicians andanyuncertaintyofthecorrectnessofFouriertheory.

1.2.1 Fouriertheoryforperiodicfunctions

Fouriertheorystatesthatanyperiodicfunctions, f(t)= f(t + T), where T istheperiod,can bedescribedasumofsinusoidalfunctionscalledtheFourierseries,

Thereisasetofcriteriathat f(t)mustmeetfortheexpansiontobecorrect.3Functionsthat donotmeetthesecriteriacanbeconstructed,butexperimentallytheconditionsarealmost alwaysmet.Tounderstandtheseequationsletusexplorethedescriptionofaperiodicsetof rectangularpulses:

where T = 2��/�� istheperiodofthewave.Theconstant q inEq.(1.17)allowsustovarythe widthofthepositive-goingpartoftherectangularwaverelativetotheperiod.Thisparameter canbevariedtoincreasethedurationoftheperiod.

ByproperlyselectingtheoriginwecansimplifyourcalculationsoftheFourierseries byforcingthefunctiontobeevenorodd.Aneven(odd)functioncanbedescribedbya singlecosine(sine)seriesmadeupofharmonicsofthefundamentalfrequencyoftheperiodic function.InFigure1.3wehavesettheoriginsothatoursquarewaveisanevenfunctionand sotheFourierserieswillinvolveonlycosineharmonics.

Figure1.3 Generalizedsquarewavewhere q isaconstant.Thedurationofthepositiveportionofthesquarewaveis inverselyrelatedtothesizeof q.Theuseof q allowsustovarytheperiodofthefunction.

3 DirichletconditionsformasufficientconditionforthedescriptionofaperiodicfunctionbyitsFourierseries. Therequirementsarethatfmust:

• besinglevalued,

• haveafinitenumberofmaximaandminimainanyfiniteinterval,

• haveafinitenumberoffinitediscontinuitiesbuttheycannotbeinfinite,and

• leadtoafinitefrequencyspectrum.

Toclarifythestatementaboutevenandoddfunctions,suppose f isanevenfunction

f(t)= f( t),

then f(t)willberepresentedbyaseriesofcosines.Thisoccursbecausetheintegralover oneperiod,aboutzero(from −��/�� to ��/��),ofanevenfunctionisnonzero.Theintegral ofanoddfunctionoverthesameintervaliszero.Usingthisfactwecandeterminethat Eq.(1.16)willbezerowheneverf(t)isanevenfunctionbecausethesineisanoddfunction andtheproductofanoddfunctionandanevenfunctionisanoddfunction.

If f(t)isanoddfunction

f(t)=−f( t),

thenitcanberepresentedbyaseriesofsinetermsbecausetheproductof f(t)andthe sineiseven.If f(t)isneitheroddnoreven(forexample, f(t)= et),thenboththesineand cosineseriesarerequired.

ThecalculationisalittlesimplerifweusecomplexnotationfortheFourierseries.Using theidentities

theFourierseriesisthen

ThecoefficientsoftheseriescanbeobtainedbyevaluatingtheintegralEq.(1.20).Forthe squarewave f(t)=1inEq.(1.17)overtheinterval ( T/2 =−��/��)≤t≤(��/��= T/2)

ThefunctioninEq.(1.21)isencounteredsooftenitisgivenitsownname: sinc x = sinx x .

Figure1.4 TheFourierseriesapproximationofasquarewavewiththeseriesterminatedafterthefundamental,third, fifth,andseventhharmonic.

Byincreasing q wecanletthesquarewaveperiodapproachinfinity.Tostart,let q = 4,giving usexactlyasquarewave.Theareaenclosedbythesquarewaveis

(1.22)

WecancombinethepositiveandnegativeexponentsofEq.(1.19)inordertoexpressthe expansionintermsofcosinefunctions.TheFourierseriesbecomes f(t)= 1 2 + 2[cos��t �� cos3��t 3�� + cos5��t 5�� ...].

Wehaveasumofoddharmonicsofthefundamentalfrequencyofthesquarewave.Asweadd termswegetacurveapproachingasquarewaveinFigure1.4.

Anotherwaytorepresentthefunctionisintermsofitspowerspectrum,i.e.aplotofthe coefficientsoftheseries,Eq.(1.21).

ThespectrumshowninFigure1.5ismadeupofasetofdiscretefrequencies.Thewidthof thebarsrepresentingeachfrequencyisexaggeratedtomakeiteasytosee.Asweincrease q,

Figure1.5 Frequencyspectrumofasquarewave,i.e.,thecoefficientsoftheFourierseriesofthesquarewavewhere q = 4.

= 16

Figure1.6 Frequencyspectrumofasquarewaveofwidth T/8.Thelinetracedoverthehistogramaidstheeyein seeingtheapproachofthediscretespectrumtoacontinuouscurveshowninFigure1.7.

theperiodgrowsandthespectrumbecomesafinerandfinersetofdiscretefrequencieswith anenvelopeindicatedbyasmoothcurveshowninFigure1.6.

1.2.2 Non-periodicfunction

Ifwelet q →∞,theperiod T goestoinfinity,creatinganon-periodicsquarepulse.Thisleads ustothedefinitionoftheFouriertransform,definedforanon-periodicfunction, g(t),as

orintermsofsinesandcosines

Letusturnourperiodicsquarewave(1.17)intoasinglepulsebyletting q becomeverylarge; thefunctionthenbecomes f(��)={1 ��≤��0/2

0allother �� .

Nowthespectrumgivenby G(��)isacontinuousdistributionoffrequencies,shownin Figure1.7,ratherthanthediscretedistributionoffrequenciesthatcharacterizeaperiodic function.

1.2.3 SpatialFourierTransforms

Wehavewrittenrelationshipsusingtimeandfrequencybutwecouldreplacetimewithaspace variable,say x.Thetransformorconjugatevariablemusthavereciprocalunits;thus,when aspacevariableisused,theconjugateunitsare“distance”anditsreciprocal,1/“distance”. Theconjugatevariabletothespacevariableiscalled spatialfrequency andinopticsisthe propagationconstant k (remember k = 1/��).Wecanusethespatialfrequenciesforasetof planewavespropagatingoveraspectrumofanglestoconstructapropagatingwavefrontof anyshape.Thismeansasimpletheoryconstructedaroundaharmonicplanewavecanform thebasisforthedescriptionofanypropagatinglightwave.Thismathematicalformulation servesasthefoundationofmodernoptics.Laterwewillestablishaconnectionbetween k and physicalparametersthatwecanmeasureinopticalexperiments.Fornowwewillusetimeand frequencyinourdiscussions.

UncertaintyRelationship

Thereisanimportantrelationship,calledtheGaborlimit,⁴betweentwoconjugate dimensions: ��⟺ t or x ⟺ kx.Theuncertaintyarisesbecausetheconjugatevariables arerelatedviatheFouriertransform.Let’slookatatemporalsignal.Mathematically,we wouldknowthevaluesof f(t)atsometime t0 accuratelyifitiscompact,i.e.if f(t0)iszero beyondsomelimit,asinEq.(1.23)where t0 = 0beyond t =±��0/2.Weknow f(t)withan uncertaintyof ��0.Statedsimply,thetemporalspreadissmall.Thesmallerthetemporal spreadis,themorefrequenciesarerequiredbyFouriertheorytodescribethetemporal signal.Thus,themoreaccuratethetemporalsignalis,smallerΔt ,thelowerthefrequency resolution,larger Δ�� ,wecansimultaneouslystate:

ΔtΔ��≥ 1/2

AnotherwaytostatethisfactisthroughtheuseofthescalingpropertyofaFourier transform:

ℱ{g(at)}= 1 a G( 1 ��).

Turn static files into dynamic content formats.

Create a flipbook