Modern applications of graph theory 1st edition zverovich - The ebook in PDF and DOCX formats is rea

Page 1


https://ebookmass.com/product/modern-applications-of-graphtheory-1st-edition-zverovich/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Fuzzy Graph Theory: Applications to Global Problems John N. Mordeson

https://ebookmass.com/product/fuzzy-graph-theory-applications-toglobal-problems-john-n-mordeson/

ebookmass.com

Introduction to Graph Theory 2, 2002 reprint Edition Douglas B. West

https://ebookmass.com/product/introduction-to-graphtheory-2-2002-reprint-edition-douglas-b-west/

ebookmass.com

Graph Spectral Image Processing Gene Cheung

https://ebookmass.com/product/graph-spectral-image-processing-genecheung/

ebookmass.com

Progressivism's Aesthetic Education 1st ed. Edition Jesse Raber

https://ebookmass.com/product/progressivisms-aesthetic-education-1sted-edition-jesse-raber/

ebookmass.com

Forbidden Lands Player's Handbook Free League Publishing

https://ebookmass.com/product/forbidden-lands-players-handbook-freeleague-publishing/

ebookmass.com

Teaching Students With Special Needs in Inclusive Classrooms 1st Edition, (Ebook PDF)

https://ebookmass.com/product/teaching-students-with-special-needs-ininclusive-classrooms-1st-edition-ebook-pdf/

ebookmass.com

Gray’s Clinical Photographic Dissector of the Human Body 2nd Edition Edition Marios Loukas

https://ebookmass.com/product/grays-clinical-photographic-dissectorof-the-human-body-2nd-edition-edition-marios-loukas/

ebookmass.com

Art and Architecture: A Sublime Synthesis Neil Spiller

https://ebookmass.com/product/art-and-architecture-a-sublimesynthesis-neil-spiller/

ebookmass.com

Literary Legacies of the South African TRC: Fictional Journeys into Trauma, Truth, and Reconciliation 1st ed. Edition Francesca Mussi

https://ebookmass.com/product/literary-legacies-of-the-south-africantrc-fictional-journeys-into-trauma-truth-and-reconciliation-1st-ededition-francesca-mussi/

ebookmass.com

Inside Mahler's Second Symphony: A Listener's Guide 1st

https://ebookmass.com/product/inside-mahlers-second-symphony-alisteners-guide-1st-edition-lawrence-f-bernstein/

ebookmass.com

ModernApplicationsofGraphTheory

ModernApplications ofGraphTheory

VADIMZVEROVICH

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©VadimZverovich2021

Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2020952669

ISBN978–0–19–885674–0

DOI:10.1093/oso/9780198856740.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Tomywife,Svetlana,andourdaughters,AlexandraandKatherine. Hopefully,nottoomanygoodnightkisseshadbeenmissedduringthe completionofthisbook.

3.EmergencyResponse:NavigableNetworksandOptimal RoutinginHazardousIndoorEnvironments 109

3.1AutomatedSelectionofSafestandBalancedRoutes 110

3.1.1TheBuildingInformationModelling–GeographyInformation Science(BIM-GIS)Model 110

3.1.2TestBuildingandTessellationofCorridors 114

3.1.3AlgorithmsforSafestandBalancedRoutes 116

3.1.4TestingtheAlgorithms 127

3.2AnalyticPrioritizationofIndoorRoutesforSearch andRescueOperations 134

3.2.1AlgorithmforPrioritizationofIndoorRoutes(PIR-Algorithm)137

3.2.2TestingPIR-Algorithm 150

3.2.3Incorporating‘Time’intoPIR-Algorithm 155

3.3AutomatedConstructionofVariableDensityNavigableNetworks167

3.3.1MethodologyandtheAlgorithm

3.3.2ResultsandDiscussion

3.3.3ComparisonofVDNwithPrevailingIndoorNavigableNetworks181 3.4RelatedWork

4.GraphModelsforBackboneSetsandLimited PackingsinNetworks 213

4.1MultipleDominationModelsforBackboneSets

4.1.1BasicDefinitionsandKeyKnownResults

4.1.2 k-TupleDomination

4.1.3 k-Domination

4.1.4 α-Dominationand α-RateDomination

4.1.5ComplexityandImplementationoftheAlgorithms

4.2LimitedPackingsinGraphs

4.2.1TheProbabilisticConstructionandLowerBounds

4.2.2RandomizedAlgorithm

4.2.3SharpnessoftheLowerBounds

4.3GeneralizationsofMultipleDomination

4.3.1Frameworkfor ⟨r, s⟩-Domination

4.3.2FrameworkforParametricDomination

4.3.3ThresholdFunctionsforMultipleDomination

4.4Exercises

5.GraphModelsforOptimizationProblemsinRoadNetworks275

5.1PedestrianRoadSafetyinUrbanAreas

5.1.1AutomatedConstructionofPavementNetworks (PNC-Algorithm)

5.1.2SearchforandPrioritizationofPedestrianPaths(PPP-Algorithm)280

5.1.3RelatedWork

5.2PlacementofChargingStationsforElectricVehiclesinRoad Networks

5.2.1ReachabilityGraphandMultipleDominationModels

5.2.3ExperimentalEvaluation

5.2.4MixedIntegerLinearProgramming(MILP)Formulation

6.1ABriefOverviewofGraphModels

6.2GraphsandtheMolecularEvolutionofViruses

Preface

Thisbookdiscussesmanymodern,cutting-edgeapplicationsofgraphtheory, suchastrafficnetworks,navigablenetworksandoptimalroutingforemergencyresponse,placementofelectricvehiclechargingstationsandgraphtheoreticmethodsinmolecularepidemiology.Becauseoftherapidgrowthof researchinthisfield,thefocusofthebookisontheup-to-datedevelopment oftheaforementionedapplications.

Theproposedbookwillbeidealforresearchers,engineers,transportplannersandemergencyresponsespecialistswhoareinterestedintherecent developmentofgraphtheoryapplications.Moreover,thisbookcanbeusedas teachingmaterialforpostgraduatestudentsbecause,inadditiontoup-to-date descriptionsoftheapplications,itincludesexercisesandtheirsolutions.Some oftheexercisesmimicpractical,real-lifesituations.Advancedstudentsin graphtheory,computerscienceorbiologymayusetheproblemsandresearch methodspresentedinthisbooktodeveloptheirfinal-yearprojects,master’s thesesordoctoraldissertations;however,tousetheinformationeffectively, specialknowledgeofgraphtheorywouldberequired.

Thechaptersofthisbookareindependentandcanbereadinanyorder, givingthereaderfreedomandcontrolovertheirreadingexperience.Another featureistheinclusionofanintroductorychapter,whichprovidesanoverview ofmanyimportantapplicationsofgraphtheoryandbasicgraph-theoretic algorithms.Itistheauthor’shopethatthispublicationoftherecentdevelopmentofgraphtheoryapplicationswillinstigatefurtherresearchinthefield.

TheAuthor

DrVadimZverovich(MSc,1989;PhD,1993;Docent,2000)istheHeadofthe MathematicsandStatisticsResearchGroupattheUniversityoftheWestof England(UWE)inBristol.Anaccomplishedresearcher,heisalsoaFellow oftheUnitedKingdomOperationalResearchSociety,andwaspreviouslya FellowoftheprestigiousAlexandervonHumboldtFoundationinGermany.In 2016,DrZverovichwasawardedHigherEducationAcademyfellowshipstatus, andtheFacultyofEnvironmentandTechnologyoftheUWEnamedhimits researcheroftheyearin2017.DrZverovich’sresearchinterestsincludegraph theoryanditsapplications,networks,probabilisticmethods,combinatorial

optimizationandemergencyresponses.With30yearsofresearchexperience, hehaspublishedmanyresearcharticlesandtwobooksontheabovesubjects andestablishedaninternationallyrecognizedacademictrackrecordinthe mathematicalsciencescoveringboththeoreticalandappliedaspects.

Email:vadim.zverovich@uwe.ac.uk

Disclaimer

Anystatementsinthisbookmightbefictitiousandtheyrepresenttheauthor’s opinion.

Introduction

Inthischapter,wewillgiveabriefoverviewofselectedapplicationsofgraph theory,manyofwhichgaverisetothedevelopmentofgraphtheoryitself.A rangeofsuchapplicationsextendsfrompuzzlesandgamestoveryserious scientificandreal-lifeproblems,thusillustratingthediversityofapplications. Thefirstsectionisdevotedtothesixearliestapplicationsofgraphtheory. Thenextsectionintroducesso-calledscale-freenetworks,whichincludethe webgraph,socialandbiologicalnetworks.Thelastsectiondescribessomeof thebasicgraph-theoreticalgorithmswhichcanbeusedtotackleanumberof interestingapplicationsandproblemsofgraphtheory.

1.1EarlyApplicationsofGraphTheory

Inthissection,wewillbrieflydiscussearlyapplicationsofgraphtheory,which arewelldescribedintheexistingliterature.A graph G isanorderedpair (V,E),where V isanon-emptyandfinitesetof vertices,and E isasetof someunorderedpairsof V ,whicharecalled edges.Thevertexsetandtheedge setofagraph G mayalsobedenotedby V(G) and E(G) toavoidconfusion. Whendealingwithapplicationsofgraphtheory,theterms‘graphs’,‘vertices’ and‘edges’canbecalled‘networks’,‘nodes’and‘links’,respectively.Insome cases,directededgescanbeconsidered—thiswillalwaysbeobviousfromthe context.

1.1.1TheKönigsbergBridgeProblemandEulerianGraphs

In1736,EulersolvedthefamousKönigsbergBridgeProblem[17],whichwas theveryfirstproblemformulatedandsolvedintermsofgraphtheory.The problemwastofindaroundtourinKönigsbergwhereeachoftheseven bridgeswasvisitedexactlyonce(seeFigure1.1).Theinitialimportantstep, whichislefttothereaderasanexerciseattheendofthischapter,istorepresent thecitywithsevenbridgesasagraph.Intermsofgraphtheory,aroundtour

Fig.1.1 SevenbridgesofKönigsberg. (CopperengravingbyM.Merian,Photo: akg-images)

inagraphisacycle;thatis,aclosedwalkwhereverticesmayberepeated. Nowadays,ifagraphhasacyclethatvisitseachedgeexactlyonce,thensucha cycleiscalled eulerian andthegraphitselfiscalledan euleriangraph.Hereis theveryfirstresultingraphtheory,whichisattributabletoEuler:

Theorem1.1 [17] Aconnectedgraph G iseulerianifandonlyifeveryvertex of G hasevendegree.

Thewell-knownFleuryalgorithm[18]andHierholzeralgorithm[26]find aneuleriancycleinaneuleriangraph,butthelatterismoreefficient.Notethat euleriancyclescanbeusedinDNAfragmentassemblyandotherpractical applicationssuchasmailcarriersroutingandfloordesigns.

1.1.2Kirchhoff’sLawsforElectricalNetworks

Morethan100yearsafterEuler’sarticle,in1847,Kirchhoff[28]modelled electricalnetworksbytheirunderlyinggraphs.Interestingly,Kirchhoffwas borninKönigsberg,wherehegraduatedfromalocaluniversity.Kirchhoff developedthetheoryoftrees,whichareasubclassofallgraphs,todescribe

Fig.1.2 Kirchhoff’slaws.

thecurrentaroundeverycycleinanelectricalnetwork.Moreprecisely,his constructionwasbasedontheindependentcyclesofagraph,whichcan befoundbymeansofaspanningtree.Kirchhoff’sfirstlawisdevotedto conservationofcurrent:

Kirchhoff’sFirstLaw [28] Atanynode v inanelectricalnetwork,thesumof thecurrentsentering v isequaltothesumofthecurrentsleavingthenode v

Kirchhoff’ssecondlawdealswithconservationofenergy:

Kirchhoff’sSecondLaw [28] Thealgebraicsumofallvoltagesaroundany cycleinanelectricalnetworkisequaltozero.

Kirchhoff’sfirstandsecondlawsarealsocalledKirchhoff’sCurrentLawand VoltageLaw,respectively.TheselawsareillustratedinFigure1.2.

1.1.3TheFour-ColourProblem

TheFour-ColourProblemhasdefinitelybeenthemostfamousproblemin graphtheory:isittruethatanymaponaplanecanbecolouredwithatmost fourcoloursinsuchawaythatadjacentcountrieshavedifferentcolours? ThisproblemwasdiscussedbyGuthrieandDeMorganinca.1850,anditis possiblethatMöbiusknewtheproblemevenearlier.TheFour-ColourProblem caneasilybereformulatedintermsofgraphtheoryifcountriesarereplaced byvertices,andtwoverticesareadjacent(i.e.connectedbyanedge)ifthe correspondingcountriesshareaboundary.Thus,theproblemistocolourthe verticesofaplanargraphwithatmostfourcoloursinsuchawaythatadjacent verticeshavedifferentcolours.Thereisalonghistoryofattemptstoprovethat

Fig.1.3 ExtractfromDeMorgan’slettertoHamiltonabouttheFour-Colour Problem(1852,Dublin).

fourcoloursareenoughorfindacounterexample.Finally,in1977,Appeland Hakengavealong‘algorithmic’proofwiththeaidofacomputerprogram, butareasonablyshortandelegantproofoftheFour-ColourTheoremisyetto befound.

Four-ColourTheorem [3,4,5] Everyplanargraphisfour-colourable.

Therearemanyinterestingapplicationsofgraphcolouring:mobileradio frequencyassignment,scheduling/timetabling,registerallocationincompiler optimizationetc.

1.1.4Hamilton’sGamesandHamiltonianGraphs

SirWilliamRowanHamilton[22,23]inca.1857inventedtheIcosianGame, whichincluded15examplepuzzlesandwasbasedonatwo-dimensional(2D) representationofadodecahedronwith20vertices(seeFigure1.4a).

AnotherversionofthegamewithsimplifiedruleswascalledtheTraveller’s Dodecahedron.Inthisgame,thedodecahedronhastheformofasemi-sphere withahandle,whichlookslikeawoodenmushroom,andits20vertices representcities(seeFigure1.4c).Theideaofthepuzzlewastotravelaroundthe world(i.e.thesemi-sphere)andattempttofindaroundtourwhichwouldvisit eachcityexactlyonce.Intermsofgraphtheory,sucharoundtourinagraph isaspanningsimplecycle.Inotherwords,allverticesareincludedinthecycle andtheyarenotrepeated,apartfromthefirstandthelast.Suchacycleiscalled hamiltonian,andagraphiscalled hamiltonian ifithasahamiltoniancycle.

Fig.1.4 a)TheIcosianGame;b)ceramicpegs;c)theTraveller’sDodecahedron. (©2018ThePuzzleMuseum/JCD.http://puzzlemuseum.org)

Therearemanyresultsdevotedtohamiltoniangraphs,butacomplete characterizationofsuchgraphsisunknown.Thefollowingsufficientcondition foragraphtobehamiltonianisduetoDirac:

Theorem1.2 [14] Let G beagraphwith n vertices, n ≥ 3.Ifeveryvertexof G hasdegreeatleast n/2,then G ishamiltonian.

Hamiltoniancyclesarecloselyrelatedtothetravellingsalesmanproblem (TSP),whichhasnumerousimportantapplications.Infact,givenaweighted graph,theTSPseekstofindahamiltoniancycleofthesmallestpossibleweight. Theweightofanedgemightbedefinedasthedistancebetweenitsendvertices,thecostoftravelbetweenthemetc.ApplicationsoftheTSPinclude jobscheduling,vehicleroutingandcomputerwiring,tonameafew.

1.1.5ChemicalIsomersandEnumerationofTrees

In1857,Cayley[10]studiedanapplicationofgraphsinorganicchemistry, whichisbasedontrees.Theproblemwastocountthenumberofisomers ofthe saturatedhydrocarbons CnH2n+2,alsocalled paraffins,where n isthe numberofcarbonatoms.Forexample,C1H4 representsmethane,andC3H8 standsforpropane.ButaneandisobutanehavethesameformulaC4H10,see Figure1.5.Thus,theproblemwastoenumeratetreesinwhicheveryvertex hasdegree1or4.Thestartingpointwastosimplifytheproblemandcount labelledtrees:

Theorem1.3 [9] Thereare nn 2 labelledtreeswith n vertices.

Fig.1.5 Butaneandisobutane(C4H10).

Thisformulaalsogivesthenumberofspanningtreesinacompletelabelled graph.Thefollowingtheoremprovidesthenumberoflabelledtreeswitha givendegreesequence:

Theorem1.4 [33,34,40] Thenumberoflabelledtreeswithadegreesequence (d1,d2,...,dn) isequaltothemultinomialcoefficient

Itmaybepointedoutthatcountingunlabelledtrees(uptoisomorphism)is amorechallengingproblem—noexactformulaisknownyet.

1.1.6ChessboardPuzzles

Weconcludethissectionwiththefamouseightqueenspuzzle,whichwas publishedin1848bytheGermanchessplayerBezzel[7].Theproblemis toplaceeightqueensonastandard 8 × 8 chessboardinsuchawaythatno twoqueensattackeachother.Thismeansthatanytwoqueenscannotbein thesamecolumn,rowordiagonal.Itisnottoodifficulttofindaparticular solutiontothispuzzle,sotheproblemwaslaterextendedtofindingall possiblesolutions.Twoyearslater,in1850,Nauckindependentlyproposed theextendedversionofthepuzzle[35]andalsopublishedall92solutions[36]. Noticethatactuallythereare12basicsolutionsifsymmetry(reflectionand rotation)istakenintoaccount.Interestingly,Gausshadalsobeeninvolvedin solvingthepuzzle,see[38]forfurtherdetails.

Althoughtheeightqueenspuzzleisnotformulatedintermsofgraph theory,thechessboardcanberepresentedbythe queengraph,wherevertices aresquaresofthechessboardandtwodifferentverticesareadjacentifthe correspondingsquaresareinthesamecolumn,rowordiagonal.Thus,itis necessarytofindallindependentsetsofsize8inthequeengraph.In1972, Dijkstra[11]developedadepth-firstbacktrackingalgorithmtosolvethis problem.Similarquestionscanbeposedforotherchesspieces:king,rook, bishopandknight;andtheycanbeextendedtoan n × n chessboard.

In1862,deJaenisch[12]consideredtheproblemoffindingthesmallest dominatingsetinthequeengraph;thatis,thesmallestcollectionofqueens whichwouldthreatenallunoccupiedsquares.Similartotheeightqueens puzzle,thedominationproblemwasgeneralizedforan n × n chessboard.

Fig.1.6 Oneoftwelvesolutionsoftheeightqueenspuzzle.

1.2Scale-FreeNetworks

Inthissection,wewilldiscusssomenetworkswhosedegreedistributions followapowerlaw.Suchnetworksarecalled scale-freenetworks,andthey aretypicallyverylarge,sparsegraphswithasmallworldstructure.These propertiesareexplainedbelow.

Inagivengraph G with n vertices,let nk denotethe numberofverticesof degree k,andletthesequence

(nk, 0 ≤ k ≤ n 1)

bethe degreedistribution of G.Thedegreedistributionof G issaidtofollowa powerlaw if,foreverydegree k> 0, nk n ∼ 1 kγ , (1.1) where γ> 1 isafixedconstant.Thenumber P(k)= nk n

scale-freenetworks9 istheproportionofverticesofdegree k anditcanbeviewedasaprobability thatavertexisofdegree k.Theasymptoticrelationship(1.1)isapplicable forinfinitegraphs,andforfinitegraphsitmeans‘approximatelyequalto’: P(k) ≈ k γ .Inthecasewhen G isadirectedgraph,thepowerlawsfortheindegreedistributionandtheout-degreedistributionaredefinedanalogously.

Anunusualfeatureofthepowerlawdistributionisitsbroadtailrepresentingapolynomialdecaywhen k tendstoinfinity,asopposedtotypical distributionswithexponentialdecay.Thismeansthatinmassivepower-law graphsthereareverticesofhighdegree,whicharecalled hubs.Itmayalsobe mentionedthatinrealnetworksthepowerlawmayhavesomediscrepancies forverticesofverysmallandlargedegrees.

Althoughthepowerlawdistributionistypicallyapplicabletomassive graphs,letusconsiderasmallgraph G with17vertices.If G hasdegree sequence (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3

, thenitsdegreedistributionis (0, 10, 4,

0) Wecanseethat,apartfrom somediscrepancyforverticesofdegree1,thegraph G approximatelyfollows apowerlawwithexponent γ =2:

1.2.1TheWebGraphandSimilarTechnologicalNetworks

Thewebgraphisarelativelynewphenomenon,whichappearedafterthebirth oftheinternetintheearly1980s.Noticethattheinternetisamoregeneral term,whichincludese-mail,hardwareandothercomponents.Inthe web graph W,verticesrepresentwebpagesandedgesarethehyperlinksbetween webpages.Althoughthehyperlinksaredirectededges,insomecases W canbe viewedasanundirectedgraph.Thewebgraph W isareal-worldgraph,which iscontinuouslydevelopingovertime.Also,therearedynamicwebpages(e.g. anonlineclock)andthenumberofsuchpagescanbeviewedasinfinite.Hence, thewebgraph W maybeconsideredaseitherfiniteorinfinite.

Letusbrieflydiscusssomeimportantpropertiesof W.Firstly,itisan immensegraphwithbillionsofvertices.Secondly, W isarelativelysparse graphbecausethenumberofedgesin W ismuchlessthanthenumberof allpossibleedges.Moreprecisely,theaveragedegreeofafixedvertexin W doesnotexceedaconstant[6].Thirdly,thewebgraphhasmany‘communities’. A community isasetofwebpageshavingacommoninterest.Thereare

severalapproachesfordefiningcommunitiesmathematically.Onemaydefine acommunityasasubgraphhavingmoreinternaledgesthanexternal.Another definitionisbasedondensedirectedbipartitesubgraphs,whicharecalled bipartitecores.Anexampleofabipartitecoreisadirectedcompletebipartite graph K3,3,wherethedirectededgesgofromoneparttoanother,andsome directededgesmaybeaddedtotheparts.

Oneofthemostimportantpropertiesof W isthepowerlawdegree distribution.Itimpliesthatmostverticeshaveasmallnumberofincident edges,whereasafewvertices(hubnodes)havealargenumberofincident edges.Thereissomeevidenceintheexistingliterature[2,8]thattheindegreedistributionofthewebgraph W followsapowerlawwith γ =2.1, whereas γ =2.5 or2.7forthepowerlawout-degreedistribution.

Thewebgraph W possessestheso-calledsmall-worldpropertyintroduced in[41].Let d(u,v) denotethedistancebetweenvertices u and v inan undirectedgraph G,andlet X consistofallpairsofdifferentverticesforwhich d(u,v) isfinite.The averagedistance of G isdefinedasfollows: L(G)= ∑ u,v∈X d(u,v) | X | .

Foraconnectedgraph G withthevertexset V ,thisdefinitioncanberewritten inthefollowingway: L(G)= ( n 2 ) 1 ∑

(u,v).

∈V

Asimilarparameter, Ld(G),canbedefinedforadirectedgraph G,wherethe distancebetweentwoverticesisthenumberofedgesintheshortestdirected pathbetweenthosevertices.Thesmall-worldpropertysaysthat L(G) (or Ld(G))shouldbemuchsmallerthanthenumberofverticesin G:

L(G) ≤ c lnln n, where c issomesmallconstant.Forthewebgraph W,itwasreportedinthe literature[2,8]that L(W)=6.8,whereas Ld(W)=16 or19.

Anothercharacteristicofasmall-worldgraphreflectsitslocaldensity,which shouldberelativelylargecomparedwithstandardrandomgraphshavingthe samenumberofverticesandedges.If N (v)denotesthesetofverticesadjacent

toavertex v,then | E⟨N (v)⟩| isthenumberofedgesinthegraphinducedby N (v).Thisnumberisactuallythenumberoftriangles(i.e.cycles C3)passing through v.The clusteringcoefficientofavertex v isdefinedasfollows:

(v)= | E⟨N (v)⟩| ( deg(v) 2 )

If v hasdegree k andthereare q edgesintheneighbourhood N (v),then

(v)= 2q k(k 1)

Nowwecandefinethe clusteringcoefficientof G:

Basedonalargesampleofthewebgraph,itwasreportedin[1]that C(W)= 0.1078,whereas C(R)=0.0002forarandomgraph R withthesamenumber ofverticesandedges.Forthedirectedinterpretationofthewebgraphandthe clusteringcoefficient,itwasalsoreportedthat Cd(W)=0 081 and Cd(R)= 0 001.Thisconfirmstheclaimthattheclusteringcoefficientofthewebgraph ismuchlargercomparedwitharandomgraphhavingthesamenumberof verticesandedges.

Theinternethasdifferentstructurallevels,hencethe internetgraph I can bedefineddifferently.Forexample,verticesof I mayrepresentdomainsand edgesareconnectionsbetweendomains.Alternatively,verticesof I canbe routersandedgesareconnectionsbetweenrouters.Bothoftheseinternet graphsfollowapowerlawwithexponent γ =2.5.Thebloggraphisaninduced subgraphofthewebgraph,whereverticesrepresentwebblogsanddirected edgesarethelinksbetweenblogs.Thisgraphfollowsapowerlawwith exponent γ =2 1 forbothin-degreeandout-degreedistributions,andithas arichcommunitystructure.Inthe callgraph,verticesrepresenttelephone numbersandtwoverticesareconnectediftherewasatelephonecallfromone numbertotheotherover,say,oneday.Thedirectedcallgraphalsofollowsa powerlawwithexponent γ =2.1.

Furtherinterestingpropertiesoftheaforementionedgraphs,suchas betweennessandordersofconnectedcomponents,canbefoundintheexisting literature(e.g.see[15]).

1.2.2SocialNetworks

Oneofthefirstsocialnetworkswastheso-called acquaintancegraph,where peoplearerepresentedbyverticesandtwoverticesareconnectedbyanedge ifthecorrespondingindividualsareacquainted.Letusrecallthatthe diameter ofagraph G isdefinedasfollows:

Milgram[32]investigatedtheacquaintancegraphandconcludedthatits diameterisaboutsix,whichgaverisetothecommonplacetruisms‘sixdegrees ofseparation’and‘it’sasmallworld’.

Inthewell-knownacquaintancepuzzle,itisnecessarytoprovethatata partywithsixpeople,therearethreeindividualswhoareeithermutually acquaintedormutuallynotacquainted.Forexample,ifasix-vertexacquaintancegraph H isisomorphictoacycle C6,thennothreepeoplearemutually acquainted,howeverwecaneasilyfindthreeindividualswhoarenotmutually acquainted—thissetofpeopleisathree-vertexindependentset.

Theorem1.5 Let H beagraphwithsixvertices.Then, H containseithera triangle K3 orathree-vertexindependentset.

TheacquaintancepuzzleiscloselyrelatedtoRamseynumbers,whichplay animportantroleinextremalgraphtheory.The Ramseynumber Rl,m isequal tothesmallestnumbersuchthateachgraphwith Rl,m verticescontainsa completegraph Kl oran m-vertexindependentset.Thewell-knownRamsey’s theoremsaysthattheRamseynumbersexist.Also,thefollowingupperbound canbededuced.

Theorem1.6 TheRamseynumberssatisfy:

Rl,m ≤ ( l + m 2 l 1 )

Inthe collaborationgraph,verticesrepresentresearchersinsomesubject areaandedgesconnectresearcherswhocollaboratewitheachother.Newman[37]studiedcollaborationgraphsfordifferentgroupsofscientistsand concludedthatatypicalcollaborationgraph F hasthefollowingsmall-world properties:

diam(F ) ≈ 20,L(F ) ≈ 6 and C(F ) ≥ 0.3.

Somesocialnetworksaremodelledbydirectedgraphsiftherelationship betweengivenobjectsisordered;forinstance,ifonepersonisshorterthan another.Afurtherexampleisadirected graphofcitations forallpublications insomesubjectarea.Letusmodelkinshipinagivengroupofpeopleasfollows: theverticesof G areindividualsfromthegroupandtwoindividuals x and y areconnectedbyadirectededge xy if x isaparentof y.If A isanadjacency matrixof G,then

A2 = A × A

istheadjacencymatrixofadirectedgraph H.Itcanbeprovedmathematically that H representsthegrandparent–grandchildrelationshipintheoriginal groupofpeople.Noticethat H mightbeamulti-digraphifinbreedingisnot forbidden.Thisexamplecanbefurthergeneralizedfortheadjacencymatrix Ak ofagraphrepresentingtheancestralrelationshipthrough k generations. Thedegreedistributionsofsocialnetworkstypicallyfollowapowerlawor, insomecases,apowerlawwithexponentialcut-off.

1.2.3BiologicalNetworks

Ingeneral,abiomolecularnetworkconsistsofvertices,whichrepresent biomolecules,andedgesareinteractionsbetweenthem.Thebiomoleculescan belargemolecules(e.g.proteins,genes)orsmallmolecules(e.g.nucleicacids, sugars).Forinstance,inaproteininteractionnetwork,theedgesrepresentthe physicalcontactsbetweenproteinsinacell.

Graph-theoreticmethodshavebeenappliedforanalysingstructuralpropertiesofbiomolecularnetworks.Similartothewebgraph,manygenetic, metabolicandproteininteractionnetworkspossessthesmallworldproperty. Itwasreportedthatforsomesamples,theaveragedistanceisbetween3and5, thediameterissmallandtheclusteringcoefficientisrelativelyhigh.

Somenodesinanetworkaremoreimportantthanothers;forinstance,particularproteinsininteractionnetworkscanbestructurallymoresignificant. Theso-calledcentralitymeasuresplayanimportantroleinidentifyingthe nodeshavinga‘highrank’.Oneimportantaspectisdegreedistribution,which wasshowntofollowapowerlawformanybiologicalnetworks,forexamplemetabolicnetworksandproteininteractionnetworks.Transcriptional regulatorynetworks,whichareasubsetofgeneregulatorynetworks,have

Turn static files into dynamic content formats.

Create a flipbook