Models of quantum matter : a first course on integrability and the bethe ansatz first edition. editi

Page 1


https://ebookmass.com/product/models-of-quantum-matter-a-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

An Introduction to quantum optics and quantum fluctuations First Edition. Edition Milonni

https://ebookmass.com/product/an-introduction-to-quantum-optics-andquantum-fluctuations-first-edition-edition-milonni/

ebookmass.com

Integrability: From Statistical Systems to Gauge Theory First Edition. Edition Patrick Dorey

https://ebookmass.com/product/integrability-from-statistical-systemsto-gauge-theory-first-edition-edition-patrick-dorey/

ebookmass.com

A First Course in Probability 9th Edition, (Ebook PDF)

https://ebookmass.com/product/a-first-course-in-probability-9thedition-ebook-pdf/

ebookmass.com

Public Humanities and the Spanish Civil War: Connected and Contested Histories 1st ed. Edition Alison Ribeiro De Menezes

https://ebookmass.com/product/public-humanities-and-the-spanish-civilwar-connected-and-contested-histories-1st-ed-edition-alison-ribeirode-menezes/ ebookmass.com

Wicked Beauty (Wicked Trilogy Book 2) M. James

https://ebookmass.com/product/wicked-beauty-wicked-trilogybook-2-m-james/

ebookmass.com

Mental Health Effects of COVID-19 Ahmed A. Moustafa (Editor)

https://ebookmass.com/product/mental-health-effects-of-covid-19-ahmeda-moustafa-editor/

ebookmass.com

The Rational software Engineer: Strategies for a Fulfilling Career in Tech 1st Edition Mykyta Chernenko

https://ebookmass.com/product/the-rational-software-engineerstrategies-for-a-fulfilling-career-in-tech-1st-edition-mykytachernenko-2/ ebookmass.com

The Magic Paintbrush and Other Enchanted Tales Henry Lien

https://ebookmass.com/product/the-magic-paintbrush-and-otherenchanted-tales-henry-lien/

ebookmass.com

Eternal Bandwagon: The Politics of Presidential Selection 1st ed. Edition Byron E. Shafer

https://ebookmass.com/product/eternal-bandwagon-the-politics-ofpresidential-selection-1st-ed-edition-byron-e-shafer/

ebookmass.com

Studio Thinking from the Start: The Ku20138 Art Educatoru2019s Handbook (Ebook PDF)

https://ebookmass.com/product/studio-thinking-from-the-startthe-k-8-art-educators-handbook-ebook-pdf/

ebookmass.com

MODELSOFQUANTUMMATTER

ModelsofQuantumMatter

AFirstCourseonIntegrabilityandtheBetheAnsatz

HumboldtStudyCentre UlmUniversity

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©Hans-PeterEckle2019

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2019

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2019930263

ISBN978–0–19–967883–9

DOI:10.1093/oso/9780199678839.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

FürIrene

Preface

WhystudyBetheansatz?TheBetheansatzprovidesoneoftheveryfewmethodologiesto calculatethephysicalpropertiesofmodelsforstronglyinteractingquantummatter non–perturbatively.Arguablyitistheonlysuchmethodwehavewhichisexact.Thismeans, oncewehavesetupthemodel,therearenoapproximationsorfurtherassumptions necessary:wecanexactlycomputephysicallyrelevantpropertiesofthemodel.Thereis, furthermore,aninfinitesetofconservedquantities:thequantummechanicalmodelis integrable.

Thismakesthesearchforquantummodelswhichareamenabletoanexactsolutionby theBetheansatzmethodologysoimportantandrewarding.Evenif—asissometimes,but certainly notalways,thecase—themodelwithanexactsolutionisnotthemostphysically relevantone,theexactsolutionwillprovideimportantbenchmarksforothermodelsthat mayoccasionallybeclosertophysicalreality,butdonotadmitanexactsolution.Hence, foraplethoraofcases,theBetheansatzsolutionprovidesvaluableinsightintothephysics ofstronglyinteractingquantummatter.

SinceHansBetheprovidedtheeponymousmethodtosolvetheHeisenbergquantum spinchain,manymoremodelsoflow-dimensionalquantumsystemshavebeenfoundto beintegrablebytheBetheansatz.

Moreover,thesemodelsandtheirintegrabilityhavebeenandcontinuetoplayaninfluentialroleinmanysubfieldsofphysics,whichincludeclassicalandquantumstatistical mechanics,quantumfieldtheory,andquantummany-particleandcondensedmatter physics,thelatterinrecenttimesespeciallyinconnectionwithmoderndevelopmentsin physicsonthenanometrescaleandinlowdimensions.Quantumopticshasalsobenefited fromstudyingintegrablemodels,especiallyininvestigationsofultracoldBosonicand FermionicquantumgasesandBose–Einsteincondensatesinartificialcrystalsoflight, theso-calledopticallattices.Recentlyinstringtheoryandcosmologythereisahype ofactivityinvolvingconjecturesofBetheansatzintegrabilityintheframeworkofthe celebratedanti-de-Sitterspace/conformalfieldtheory(AdS/CFT)correspondence.

Ofcourse,BetheansatzandintegrabilityarediscussedinMathematicalPhysics,but thereisalsoanongoingcross-fertilizationwithvarioussubfieldsofpureMathematics.

Someprominentexamplesofintegrablemodelsinclude:variousvariantsofthe Heisenbergquantumspinchainwhosephysicalrealizationsareprobedbyneutron scattering;theHubbardmodelanditsvariantswhichinteraliahavebeendiscussed inconnectionwithhigh-temperaturesuperconductivity;theKondomodelwhichhas recentlyseenarenaissancebecauseofthedevelopmentoftunablequantumdots; interactingBoseandFermigaseswhichcannowbeproducedinverypureandtunable forminopticallattices.

But,whatistheBetheansatz?Initsoriginalform,devisedbyBethe,itisaningeniously guessedformforthewavefunctionofaone-dimensionalquantumsystem.However, whythiswavefunctioniscorrectandevenexactremainedanopenquestionwhichhas onlybeenansweredmuchlaterthroughthealgebraicformoftheBetheansatz.This methodenablesustoconstructanintegrablequantummodelinonedimensionfrom atwo-dimensionalstatisticalmechanicalmodel.Theconstructionrevealsthereason forquantumintegrabilityanddeliverstheinfinitesetofconservedquantitiestogether withthewavefunctionwhichBetheguessed.InourexpositionoftheBetheansatz methodology,weshallthereforestart,somewhatunhistorically,butmoresystematically, withthealgebraicBetheansatz.

Whoisthisbookfor?Interestingly,alookatRichardFeynman’slastblackboards(Paz, 1989)revealsthathemaywellhavebeeninterested.Inoneofhislastpublications(1988), Feynmaninfactwrote:

‘Igotreallyfascinatedbythese(1 + 1)-dimensionalmodelsthataresolvedbytheBethe ansatzandhowmysteriouslytheyjumpoutatyouandworkandyoudon’tknowwhy.I amtryingtounderstandallthisbetter.’CitedafterBatchelor(2007).

InviewoftheexcitingdevelopmentsinBetheansatzofthelasttwodecades,Richard Feynman’sfascinationwouldcertainlyhavecontinued.

Themosthelpfulprerequisitesforpresentreadersareagoodgroundinginquantum mechanics,statisticalmechanics,andthebasicsofquantummany-particletheory, especiallysecondquantization.However,weshallcomprehensivelydiscussthenecessary toolsandbackgroundinpartIofthebook.Throughthisapproach,thebookshould besmoothlyaccessibleforMaster’sstudentswholookforanareaofspecializationas wellasforbeginninggraduatestudents.Moreover,toparaphrasePaulHalmos(inthe prefaceofhisbookonMeasureTheory(Halmos,1978)),thenovicetotheBetheansatz methodologyshould not bediscouragedifsheorhefindsthatsheorhedoesnothavethe prerequisitestoreadthepreliminaries.Afterall,asMaxBornremindsus,wherewould quantumphysicsbeifWernerHeisenberghadbeendiscouragedthathedidnotknow whatamatrixwaswhenhedevelopedthematrixformofquantummechanics?

Thebookgrewoutoflecturenotestheauthorpreparedforaninvitedgraduatelecture seriesattheIndianInstituteofScienceinBangalorein1995,summerschoolcourses attheUniversityofJyväskyläinCentralFinlandin1997(on BetheAnsatzMethodsin Many–BodyPhysics)and1999(on ConformalInvarianceinStatisticalPhysics),agraduate courseatthesameUniversitywhich,togetherwithanamiablegroupofstudents, madetheextremelycoldFinnishwinterof1999actuallyanenjoyableexperience,and postgraduatecoursesattheUniversityofNewSouthWalesinSydneyin2000,and withintheMathematics–Physics MP 2 PlatformatGöteborgUniversityin2009,aswell assummerschoollecturesinTurkey:2013inTurunç,2014inIzmirand2013inIreland inDungarvenundertheauspicesoftheSchoolofTheoreticalPhysicsoftheDublin InstituteforAdvancedStudies.

Acknowledgements

Theauthor’s workingknowledge ofthetopicsandmethodsonwhichthisbookfocuses wasshapedthroughcollaborationswithseveralpeoplewhoaregratefullyacknowledged inchronologicalorder:FerencWoynarovich,TuongTruong,ChrisHamer,Rudolf Römer,BillSutherland,AlexanderPunnoose,HenrikJohannesson,CharlesStafford, TimByrnes,RobertBursill,AndersSandvik,andJohanNilsson.Gratefullyacknowledgingdiscussionswithmanyothers,especiallymythesisadvisorDieterSchotteand withIngoPeschelandKarolPenson,Ishallnotattempttomentionallofthemforfear thatsomeone’snamemightescapemyattention.

IlearnedcoordinateBetheansatzfromandduringafruitfulcollaborationwithFerenc Woynarovich.WebothwereinitiatedtothealgebraicBetheansatzbyTuongTruong.

IalsooftenenjoyedstimulatingdiscussionswithHolgerFrahmaswellasmutualvisits withFabianEssler,AndreasKl ¨ umper,andAndreasSchadschneider.

MydeeplyfeltthanksgotoHenrikJohannessonforhiskindinvitationstoprepareand deliverlecturesinGöteborgand,veryespecially,forourlong-standingcollaborationand friendship.

GreatthanksarealsoduetoHenrikagainandAlexanderStolinfororganizing andco–lecturingthecourseon‘IntegrableModelsandQuantumGroups’withinthe Mathematics–Physics MP 2 PlatformatGöteborgUniversity.

JussiTimonen’sinitiativeishighlyappreciatedforsuggestingandencouragingmy lecturesinJyväskylä.

ValuablediscussionswithBalazsHetényi,especiallyinconnectionwiththecoorganizationofthesummerschoolsinTurkey,andwithDanielBraak,aregratefully acknowledged.ManythanksalsogotoKarstenSeifertwhovolunteeredtoundertake thealtruistictaskofproof-readingpartsofthisbookatvariousstagesofitsformation.

ManythanksareduetoNatanAndrei,NikolayBogoliubov,andthelateAnatoli IzerginfortheirhospitalityatRutgersandinSanktPetersburg,respectively,andthe sharingoftheirknowledgeinstimulatingpersonaldiscussionsandinthewrittenform oflecturenotes,andalsotoVladimirKorepinforencouragementonmanyoccasions.

ManythanksarealsoduetoPeterHorsch,JoachimStolze,andJohannesVoit,and thelateHeinzBarentzenandHellmutKeiterfordiscussionsandhospitalityinStuttgart, Bayreuth,andDortmund,respectively,andthesharingofpertinentsetsoflecturenotes.

TheteamatOxfordUniversityPresscannotbepraisedhighlyenough,especiallytheir friendlypatienceandcheerfulspirit,whichappeartobeinexhaustible.Theincentiveof AprilWarmangotthisprojectunderwayandhelpeditalonginitsearlyinfantsteps. SönkeAdlungsuppliedfreshguidancetohelptheprojectalongwheneverthereseemed tobeanimpasse.AniaWronksinevertiredofprovidingmotivationandmomentumfor thebookprojectand,ofcourse,allthenecessaryinformation.

1Introduction 1

Part1MethodsandModelsintheTheoryofQuantumMatter

2QuantumMany-ParticleSystemsandSecondQuantization 5

2.1Many-particleHilbertspaces8

2.2Occupationnumberrepresentation:BosonsandFermions19

2.3CreationandannihilationoperatorsforBosons21

2.4Basistransformation26

2.5Quantumfieldoperators27

2.6One-particleoperators29

2.7Two-particleoperators33

2.8SecondquantizationoftheSchrödingerequation:Bosoniccase35

2.9CreationandannihilationoperatorsforFermions36

2.10SecondquantizationoftheSchrödingerequation:Fermioniccase40

2.11Secondquantizationformalismandthemany-particlewavefunction41

2.12Normalordering43

3AngularMomentum 45

3.1Angularmomentumofasinglequantumparticle45

3.2Angularmomentumofseveralquantumparticles56

4EquilibriumStatisticalMechanics 63

4.1Fundamentalpostulateofequilibriumstatisticalmechanics64

4.2Microcanonicalensemble66

4.3Entropy67

4.4Secondlawofthermodynamics68

4.5Temperature69

4.6Pressureandchemicalpotential69

4.7Firstlawofthermodynamics70

4.8Canonicalensemble70

4.9Partitionfunction72

4.10Grandcanonicalensemble75

4.11Gibbsentropy77

4.12Densitymatrix78

4.13Non-interactingquantumgases82

4.14Classicallatticemodelsinstatisticalmechanics93

4.15Interactingmagneticmoments:mean-fieldtheory97

4.16Transfermatrix106

4.17Exactsolutionoftheone-dimensionalIsingmodel108

5PhaseTransitions,CriticalPhenomena,andFinite-SizeScaling 111

5.1Phases,phasediagrams,andphasetransition113

5.2Criticalbehaviour116

5.3Landau–Ginzburgtheory120

5.4Scaling126

5.5Renormalizationgroup131

5.6Finite-sizescaling147

5.7Quantumphasetransitions154

6StatisticalMechanicsandQuantumFieldTheory 177

6.1Connectionbetweenstatisticalmechanicsandquantumfieldtheory177

6.2Thermalfluctuationsandquantumfluctuations181

7ConformalSymmetryinStatisticalMechanics 188

7.1Fromscaletoconformalinvariance189

7.2Conformalsymmetry194

7.3Conformaltransformationsindimensionslargerthantwo195

7.4Conformaltransformationsintwodimensions202

7.5Orderparameterfieldsandcorrelationfunctions205

7.6Energy-momentumtensor209

7.7Energy-momentumtensorintwodimensions212

7.8ConformalWardidentities213

7.9Energy-momentumtensorandtheVirasoroalgebra218

7.10Finite-sizecorrectionsrevisited234

8ModelsofStronglyInteractingQuantumMatter 241

8.1Bosefluid242

8.2Electroniccorrelations255

8.3Coulombgas269

8.4LandauFermiliquidtheory278

8.5Luttingerliquidtheory289

8.6Magnetism313

8.7Hubbardmodel356

8.8Heisenbergmodel366

8.9Magneticquantumimpuritymodels372

8.10QuantumRabimodel395

Part2AlgebraicBetheAnsatz

9IceModel 425

9.1Physicalmotivationforthesquarelatticeicemodel425 9.2Definitionoftheicemodel428

10GeneralSquareLatticeVertexModels

430

10.1Vertexmodelsintwodimensions432 10.2Sixteen-andeight-vertexmodels432 10.3VertexBoltzmannweightsandthepartitionfunction432 10.4R-matrix:matrixofBoltzmannweightsofavertex434 10.5Integrabilityandthetransfermatrix438 10.6Commutingtransfermatrices438

10.7Monodromymatrix440 10.8FurthertotheL-operator446 10.9Yang–Baxterrelations447 10.10MoreonYang–Baxterrelations449 10.11ExploitingYang–Baxterintegrability451

11Six-VertexModel 454

11.1Yang–Baxterrelationforthesix-vertexmodel455 11.2Parameterizationofthesix-vertexmodel456 11.3AlgebraicBetheansatzsolutionofthesix-vertexmodel459 11.4QuantumHamiltoniansfromthetransfermatrix467 11.5InhomogeneousYang–Baxterquantumintegrablemodels470

12QuantumTavis–CummingsModel

12.1AlgebraicBetheansatzrevisited474 12.2ModifiedquantumTavis–Cummingsmodel475

12.3TransfermatrixofthemodifiedquantumTavis–Cummingsmodel476 12.4Commutativityofthetransfermatrix479 12.5SimplequantumTavis–Cummingsmodel481 12.6BetheansatzsolutionofthequantumTavis–Cummingsmodel484

Part3CoordinateBetheAnsatz

13TheAnisotropicHeisenbergQuantumSpinChain 491

13.1DescriptionoftheXXZHeisenbergquantumspinchain492 13.2SpecialcasesoftheXXZHeisenbergquantumspinchain495 13.3BasicpropertiesoftheXXZHeisenbergquantumspinchain498

14BetheAnsatzfortheAnisotropicHeisenbergQuantumSpinChain 502 14.1VerificationoftheBetheansatz503 14.2Periodicboundaryconditions508 14.3Parameterizationofthequasi-momenta511

14.4GroundstateoftheXXZHeisenbergquantumspinchain517 14.5ExcitationsoftheXXZHeisenbergquantumspinchain522 14.6Excitationsoftheisotropicantiferromagneticspinchain537

15BoseGasinOneDimension:Lieb–LinigerModel 545

15.1Classicalnon-linearSchrödingerequation546 15.2Quantumnon-linearSchrödingermodel547

15.3Lieb–Linigermodelinthehardcorelimit:gas549

15.4 δ -potentialasboundarycondition552

15.5FormoftheBetheeigenfunctions553 15.6ConstructionoftheBetheansatzwavefunction558 15.7Unrestrictedconfigurationspace562

15.8Periodicboundaryconditions:Betheansatzequations565

15.9Groundstateofthe δ -Bosegasinthethermodynamiclimit568 15.10Excitedstates573

Part4ElectronicSystems:NestedBetheAnsatz

16ElectronicSystems 585

16.1Fermigasinonedimension586 16.2One-dimensionalHubbardmodel598 16.3Kondomodel600

16.4AlgebraicBetheansatzforthespineigenvalueproblem612 16.5Magneticimpuritiesinnanostructures:Betheansatzresults625

Part5ThermodynamicBetheAnsatz

17ThermodynamicsoftheRepulsiveLieb–LinigerModel 633

17.1Thermodynamiclimit,particles,andholes633 17.2Betheansatzequationsforparticlesandholes634 17.3EntropyandthermodynamicBetheansatz636

18ThermodynamicsoftheIsotropicHeisenbergQuantumSpinChain 641

18.1SummaryofBetheansatzfortheisotropicspinchain641 18.2PreparationofthethermodynamicBetheansatz:particlesandholes644

18.3ThermodynamicBetheansatzequations649

18.4Thermodynamics652

18.5Thermodynamicsforsmall T and h 653

Part6BetheAnsatzforFiniteSystems

19MathematicalTools 657

19.1Euler–Maclaurinformula657

19.2Wiener–Hopftechnique661

20.1BetheansatzforthefiniteHeisenbergquantumspinchain668

20.2Finite-sizecorrections669

20.3ApplicationoftheEuler–Maclaurinformula673

20.4ApplicationoftheWiener–Hopftechnique675

20.5Higherorderfinite-sizecorrections685 References

Ajourneyofathousandmilesbeginswithasinglestep.

–LaoTzu

Thisbriefintroductorychapter’spurposeistodirectyou,thereader,quicklytothose placesinthebookwhereyoucanfindgeneralintroductoryinformationthatmaybe helpfulforanoverviewofandtheorientationwithinthebook.Itisdeliberatelykept shorttoavoidredundancies.

Thegeneralmotivationforthewritingofthebookandthemaintargetedreaderships aswellasthelevelsofsophisticationassumedanddetailaimedatinthepresentation ofthevariouspartsofthebookareoutlinedinthepreface.There,wealsoattempta delineationofanassessmentoftherelevanceofthebook’stopicsforcurrentandpotential futureresearch.

Thelistofcontents,byitsnatureintheformofkeywordsandkeyphrases,provides amorecomprehensiveorientationofallthetopicstreatedandtheirmutualdependence.

Thebookisdividedintosixmajorpartsand,includingthisshortintroductorychapter, intotwentychapters.Eachpartandeachchapterbeginswithadescriptiondetailing theirrespectivesubjectmatter.Thepartdescriptionssupplythebiggerpicture,whilethe outlinesatthebeginningsofeachchapterpointmorespecificallytothetopicstreated. Whereverthisseemedtobehelpful,wehaveattemptedtosupplyfurthersignpostsabout whatwehaveachievedandwhereweplantogofromthere.

Atvariousplaces,wealsoremarkonthedepthwithwhichthetopicsaretreated,what mayhavebeenleftoutorwillonlybementionedinpassing,therelationtootherparts andchaptersandthebook’sintentionsasawhole,andwheretofindalternativeand furtherspecializedtreatmentsofthesetopics.

Inordertosupplyaroughoverview,letusbrieflysummarizethemajorpartsofthe bookandtheirinterrelationship.

PartIrangesfromthefundamentalconceptsandtoolsrequiredforanunderstanding ofstronglyinteractingquantummattertothefundamentalmodelsthatrepresentthe physicalsystemsofstronglyinteractingquantummatter.Inthisbook,wewantto investigateselectedaspectsofthesemodelswithaparticularemphasisontheusesof theexactmethodologyoftheBetheansatzandofquantumintegrability.

PartIIisdevotedtothequantuminversescatteringmethodandthealgebraicBethe ansatzthatdemonstratethequantumintegrabilityofcertainone-dimensionalstrongly interactingquantummodelsandprovidetheirexactsolution.Ourapproachmakes decisiveuseoftheintimateconnectionbetweenthesemodelsandtwo-dimensional

modelsofclassicalstatisticalmechanics.Theconcretemodelsweshallbeenlistingin thispartaretheHeisenbergquantumspinchainasone-dimensionalquantummodel andthesix-vertexmodelastwo-dimensionalclassicalstatisticalmodel.

InpartIII,weintroducethecoordinateBetheansatz,theoriginalapproachBethe usedtosolvetheHeisenbergquantumspinchain.Sincethisapproachdoesnotallow ustounderstandwhythemodelsarequantumintegrable,weshalladdressitonlyafter wediscussthealgebraicBetheansatzandthequantuminversescatteringmethod.The coordinateBetheansatzapproachis,however,stillextremelyuseful.Wedemonstratethis againfortheHeisenbergquantumspinchainandalsoforagasofBosonsinteractingvia δ -functionpotentialsinonedimension.

PartIVisconcernedwithstronglyinteractingquantummodelswherethefundamentalconstituentshaveinternaldegreesoffreedom.Ourexamples,theone-dimensionalgas ofFermionsinteractingvia δ -functionpotentials,theone-dimensionalHubbardmodel, andtheKondomodelofamagneticimpurityinteractingwithconductionelectrons,are allelectronicmodelswherethereisonlyoneinternaldegreeoffreedominadditiontothe particledegreeoffreedom,whichiselectronicspin.Weshallfindthatthesemodelscan besolvedbytwointerconnectedBetheansätze.Themethodisthuscalled nested Bethe ansatz.

Thusfar,theBetheansatzmethodsdiscussedweremainlyinvestigatingthelow-lying andthereforezerotemperaturepropertiesofthequantummodels.InpartVweexamine howtoextendtheBetheansatztofinitetemperatures.Again,ourquantummodelsof choicewillbetheHeisenbergquantumspinchainandalsotheBosegasinteractingvia δ -functionpotentialsinonedimension.

InpartVI,thefinalpartofthebook,werelinquishanotherassumptionwemade orhadtomakeinordertofindsolutionsoftheBetheansatzequations,equationswhich generallyholdforafinitesystem.Sofar,weusuallyconsideredthethermodynamiclimit, thelimitofaninfinitesystemsize.ThislimitallowedustorewritetheBetheansatz equationsaslinearintegralequationsforcertaindensitieswhosesolutionscharacterized solutionsoftheBetheansatzequations,butonly,ofcourse,forthethermodynamiclimit. TheBetheansatzforfinitesystemsattemptstofindcorrectionstotheBetheansatz solutionsandphysicalquantities,e.g.thegroundstateenergyofthethermodynamiclimit thattakesintoaccountthefinitenessofasystem.Again,weinquireintohowthiscanbe achievedusingtheHeisenbergquantumspinchainasourexemplarymodelsystem.

Thefocusofthisbookisonselectedconcepts,methods,andmathematicaltechniques intheareaofstronglyinteractingquantummattersystems,especiallythevarious Betheansatztechniquesdiscussed.Wehopethatthesetechniqueswillproveuseful infutureresearchintheareaofstronglyinteractingquantummatter.Wealsohope thatsomephysicalinsightwillbegainedfromthemodelsofquantummatterusedas examplestodemonstratetheconceptsandtechniquesandwillprovideguidanceforthe understandingofothersystemsnottreatedhere.

Forthemostpart,weshallusenaturalunitswherethespeedoflight,Boltzmann’s, andPlanck’sconstantsare

exceptwhenincludingtheconstantsexplicitlywillrendertheresultsmoretransparent.

Part1 MethodsandModelsinthe TheoryofQuantumMatter

Cannotwebecontentwithexperimentalone?No,thatisimpossible;thatwouldbea completemisunderstandingofthetruecharacterofscience.Themanofsciencemust workwithmethod.Scienceisbuiltupoffacts,asahouseisbuiltofstones;butan accumulationoffactsisnomoreasciencethanaheapofstonesisahouse.

–HenriPoincaré(1854–1912)

Thisfirstpartofthebookpresentsanoverviewofthemostimportantmethods indispensableforanunderstandingofthetheoryofstronglyinteractingquantummatter. Moreover,weintroduceaselectionofquantummechanicalmany-particlemodelsand therelatedconceptsthatformthebackgroundofthetheoryofquantummatter, especiallyinviewofthequantumintegrablemodels,whoseexactBetheansatzsolutions arediscussedinlaterpartsofthebook.Thesemethodsandmodelsarerelevantalsoin manyotherpartsoftheoreticalandmathematicalphysics.Itisthereforerecommended thatreadersreviewthismaterialtojudgehowfamiliartheyarewithit.

Thesechapters,however,donottreatanddonotattempttotreattheirtopicsinafully comprehensivemanner.Thereisalwaysalotmorethatcouldbecovered.Infact,there isavastliteraturespecificallydevotedtothesetopics.Nevertheless,weattemptasclear andcomprehensibleatreatmentaspossibleoftheaspectswecoverwiththeintentionto renderthoseaspectsthatwedocoverself-contained.Whereaself-containedtreatmentis beyondthelimitationsofthisbook,weprovideappropriatehintstotheliteraturespecially devotedtothesetopics.

Morespecifically,inchapter2,basicfactsarereviewedfromthequantummechanics ofmany-particlesystems,inparticularleadingfromtheHilbertspacesrepresenting quantummany-particlesystemstoadiscussionofsecondquantization,whichisthe languagemostusefultoformulatethemodelsofstronglyinteractingquantummatter.

Moreover,inchapter3weaddressthequantummechanicaltheoryofangular momentum,especiallyformanyquantumparticles,whichisindispensableforan understandingofthemagneticpropertiesofthemodelsofstronglyinteractingquantum

MethodsandModelsintheTheoryofQuantumMatter

matter.Thesemagneticpropertieswillbeatthecentreofmuchofourdiscussionof quantumintegrablemodelsandtheirexactBetheansatzsolutions.

Quantummany-particletheoryis,ofcourse,restingonthefoundationsofequilibrium statisticalmechanics,especiallyquantumstatisticalmechanics.Butclassicalstatistical mechanicsalsowillbenecessarytoappreciatethedevelopmentsofquantummodels thatareintegrablebytheBetheansatzmethod.Anexaminationofthemethodsand resultsofequilibriumstatisticalmechanics,bothclassicalandquantum,willthereforebe ausefuladditioninthisfirstpartofthebook,andwhichwetakeupinchapter4.

Amongthemostfascinatingphenomenaofmany-particlesystems,againclassical andquantum,phasetransitionsandcriticalphenomenaoccupyaprominentplace. Theirtheoreticaldescriptionischallengingandrequiresanarsenalofsophisticatedand innovativemethodsthatareoutlinedinchapter5,wherewealsoanalysetheapproach tothethermodynamiclimitofsystemsoffinitesize.

Thereisanintimateconnectionbetweenquantumfieldtheoryand(classical)statisticalmechanicsonwhichmuchofthequantuminversescatteringmethodandthe algebraicBetheansatzisfounded.Chapter6offersanintroductiontothisimmensely usefulconnection,whichwillalsoplayacentralroleinthesubsequentchapter.

Betheansatzcalculationsforfinitesystems,beingrathermoreinvolvedthanthosein thethermodynamiclimit,produceresultsthatcanbedirectlycomparedtopredictions basedontheconformalsymmetryoftwo-dimensionalclassicalstatisticalmechanics. Inordertofullyappreciatethisconnection,chapter7offersanintroductionintobasic aspectsoftheconformalsymmetryofcriticalsystems.

Whilethechaptersdescribedsofarweremainlyconcernedwithmethodsusefulfor athoroughappreciationoftheBetheansatzmethodologiesexaminedinlaterpartsof thebook,chapter8ofthisfirstpartintroducesthephysicalbackgroundofaselectionof modelsofstronglyinteractingquantummattertogetherwithmethodstoinvestigateand understandthem.Theselectioncriteriahavebeenwhetherappropriateversionsofthe modelsexhibitquantumintegrabilityandaresolvablebyBetheansatz.Thequantum many-particlemodelsconsideredrangefromtheBosefluidtomodelsofitinerantas wellaslocalizedmagnetismandtotheFermiliquidandultimatelytomodelsofstrong light–matterinteraction.

QuantumMany-ParticleSystems andSecondQuantization

Oneoftheprincipalobjectsoftheoreticalresearchistofindthepointofviewfrom whichthesubjectappearsinthegreatestsimplicity.

Thischapterreviewssomeaspectsofthequantummechanicsofsystemscomposedof manyparticles(many-bodyormany-particlesystems),whichwillproveusefulforthe laterdevelopmentsinthisbook.Wemainlyconcentrateonthefoundationsofquantum many-particlephysicsleadingtotheformalismof secondquantization asaconvenient languagefortheformulationofthepropertiesofthemany-particlesystemsofquantum matter.

Many-particlequantumsystemscanbedescribedbyamany-particleSchrödinger equation,whosecorrespondingwavefunctiondependsontheconfigurationofthe particles,e.g.theirpositions ri andpossiblyfurtherquantumnumbers,e.g.thespin quantumnumbers σ i oftheparticles.Inpracticethisapproachisverycumbersomeeven forquitemodestnumbersofparticles,letaloneforthemacroscopicnumbersofparticles ofquantumstatisticalmechanicsandcondensedmatterphysics. Secondquantization is aformulationorlanguageofmany-particlequantummechanicsthathelpstominimize thetechnicalcomplicationsofpracticalcalculationsformany-particlesystems.

Itisalsotheappropriatelanguageofotherbranchesoftheoreticalphysics,most notablyquantumfieldtheory(see,forexampleLancasterandBlundell,2014).

Twoexamplesillustratetheusefulnessofsecondquantization.Inquantumfield theoryaswellasmanyapplicationsofmany-particlephysicsandcondensedmatter physics,thenumberofparticlesisvariable,i.e.particlescanbecreatedaswellas destroyed.1 Moreover,theSchrödingerequation,andhencethewavefunction,fora

1 Asweshallsee,theconceptofcreatingandannihilatingparticlesisaratherabstractone,especiallyfor Fermions,i.e.particlesforwhichthePauliexclusionprincipleapplies.RichardFeynman,inhisNobelprize acceptancespeech(Feynman,1965),alludestothisinapersonalreminiscence:‘Irememberthatwhensomeone hadstartedtoteachmeaboutcreationandannihilationoperators,thatthisoperatorcreatesanelectron,Isaid, “howdoyoucreateanelectron?Itdisagreeswiththeconservationofcharge”,andinthatway,Iblockedmy mindfromlearningaverypracticalschemeofcalculation.’

QuantumMany-ParticleSystemsandSecondQuantization

systemof N = 1024 particlesisdifferentfromthoseofasystemof N = 1024 1particles. Yet,weexpectbothsystemstoexhibitthesamemacroscopicphysics.Inthelanguageof secondquantization,whichisspecificallyadaptedtoaccommodatevariablenumbersof particles,wecancopeeasilywithbothsituationsasdetailedworkinthischapterandin chapter4onequilibriumstatisticalmechanicsshows,aswellasthroughoutmanyother chaptersofthisbook.

Secondquantizationisastandardtopicofquantummany-particletheoryand treatmentscanbefoundinmanybookswhollyorpartlydevotedtothistopic.A classicreferencedevotedtothemethodofsecondquantizationisBerezin(1966).Some standardreferencesarethecorrespondingchaptersofAbrikosov etal. (1975),Fetter andWalecka(2003),Mahan(2000),andNegeleandOrland(1998).Morerecentwork includesNazarovandDanon(2013),AltlandandSimons(2010),andColeman(2015). Ofcourse,alloftheseworkstreatmanymoretopicsinthetheoryofquantummanyparticlephysics.

Inparticular,applicationsofthemethodofsecondquantizationcanbefoundin thecitedworksandinlaterchaptersofthisbook,whereweshallmakeampleuseof thelanguageofsecondquantization.Inthischapter,however,weconcentrateonthe formalism,demonstratingitspowerwithonlyafewelementaryexamples.

Section2.1ofthischapterconstructstheHilbertspaces,thetensorproductspaces, andtheFockspaces,appropriateforthestatesofthemany-particlesystemandthen section2.2,selectsfromtheseHilbertspacesthesymmetrizedmany-particlestatesof themany-particleHilbertspacethatdescribeBosons,whereanynumberofparticles canoccupythesamequantumstateandtheantisymmetrizedmany-particlestatesthat describeFermions,whereatmostoneparticlecanoccupythesamequantumstate.

ThisconstructionofHilbertspacesismoregeneral:foranyquantumsystemcomposedofsubsystems,aHilbertspacecanbeconstructedinthewaywedescribe. Therefore,weinitiallykeepthediscussionmoregeneralbeforewefocusagainonHilbert spacescomposedof(many)quantumparticles.

Forthefollowingfewsections,wefocusontheBosoniccase,beforeeventuallyalso discussingFermions.Insection2.3,weintroducecreationandannihilationoperators forBosons.Theseoperatorsarethemainobjectsinwhichtheformalismofsecond quantizationisexpressed.

Thecreationandannihilationoperatorscanbeexpressedindifferentorthonormal andcompletebases.Thetransformationsofthecreationandannihilationoperators betweendifferentabstractorthonormalandcompletebasesarederivedinsection2.4, whileinsection2.5thecreationandannihilationoperatorsinthepositionbasis,then calledquantumfieldoperators,areintroducedasoneofthemostimportantexamples.

Section2.6isdevotedtotheintroductionofone-particleoperators,section2.7to two-particleoperatorsintheformalismofsecondquantization.

Anelementaryintroductionofsecondquantizationstartsfromthetime-dependent single–particleSchrödingerequationofbasicquantummechanics.Howthiscanbe achievedisdemonstratedforBosonsinsection2.8andforFermionsinsection2.10.

Section2.9finallyreturnstoFermions,introducingcreationandannihilationoperatorsfortheFermioniccase.

Thepenultimatesectionofthischapter,2.11demonstratesexplicitlytheequivalence ofthemany-particlewavefunctionandtheformalismofsecondquantization,whilethe finalsection2.12ofthischaptertouchesontheissueofthecorrectorderingofcreation andannihilationoperators,i.e.thenormalordering.

Asapreludetotheformalism,westartwithanelementaryexercise:thequantum treatmentofthesingleparticleone-dimensionalharmonicoscillatorintermsofcreation andannihilationoperators,sometimesalsocalledladderoperators.Inthisexerciseweare remindedofimportantnotionsthathelpilluminatethemoreformaltreatmentoftherest ofthischapter.Moreover,thealgebraicstructureencounteredherewillreappearmany timesinthisandinlaterchapters.Hence,itmaybequiteagoodideatogothroughthis elementaryexercisetogainconfidenceforthemoreinvolvedlaterdevelopments.

EXERCISE2.1

Quantummechanicalharmonicoscillator TheHamiltonianof theone-dimensionalharmonicoscillatorofamass m andfrequency ω isgiveninterms ofthepositionoperator x andthemomentumoperator p =−i d dx satisfyingthecanonical commutationrelation

AmongthemanywaystosolvetheSchrödingerequationoftheharmonicoscillator,a particularlyelegant,andfruitful,waydeconstructstheHamiltonian(2.2)intooperators, thecreationandannihilationoperator,respectively

• Show,usingtheladderoperators a and a† ,thatthecanonicalcommutationrelation [x,p] = i becomes

andtheHamiltonian(2.2)

• Furthermore,showthat,if λ istheeigenvaluecorrespondingtothenormalized eigenstate |λ oftheoperator = a† a,then

• Calculatethecoefficients c λ and d λ

• Provethat λ ≥ 0andthat λ = 0mustbeaneigenvalue.Whatis,hence,thespectrum ofeigenvaluesof and H,respectively?Showthatthisimpliesforthegroundstate a|0 = 0.

• Usetherepresentation(2.3)oftheladderoperatorsasdifferentialoperatorsto solvetheSchrödingerequationforthegroundstatecorrespondingto λ = 0,i.e. determinethegroundstatewavefunction x|0

• Determinethewavefunctionofthefirstexcitedstatebyapplyingthecreation operator a† oncetothegroundstatewavefunction.

Theresultsobtainedthusfarsuggestthattheoperator canbeinterpretedas anoperatorcountingthenumberofexcitationsoftheharmonicoscillator.Inorder tomakethisevenmoresuggestiveletuschangethenotationandreplace by n and |λ by |n .Furthermore,asweshallseeinmoredetailinthischapter,theseresults suggestaninterpretationoftheexcitationsoftheharmonicoscillatoras particles or quasiparticles.Thestatewithnoparticles |0 thencorrespondstothevacuumstate.

• Showwiththehelpof(2.6)and(2.7)thattheproperlynormalizedstateof n excitationsor n particlesis

• Finally,toappreciatehowfruitfulthisalgebraictreatmentoftheharmonicoscillator is,calculatetheexpectationvaluesofthefirstfewpowersofthepositionoperator inthestate |n ,letussay x,x2 , x3 ,and x4 .

• Hint:Provefirstthatthenumberoperator n = a† a,andhencetheHamiltonian H = ω a† a + 1 2 ,areHermitianoperatorsandthatthereforethecorresponding eigenstates,whicharenon–degenerate(why?),areorthogonal.

Withthisexerciseatthebackofourminds,wecannowstarttodeveloptheformalism ofsecondquantizationbyfirstconstructingaHilbertspaceappropriateforaquantum many-particlesystem.

2.1Many-particleHilbertspaces

Theformalismof‘secondquantization’2 providesanelegantandeconomicwayto describeaphysicalsystemcontainingagreat,possiblyindeterminate,numberof

2 Thenameisatrifleunfortunateandoriginatesfromtheinterpretationofthealgebraofladderoperators (seeexercise2.1).Theseoperatorsandtheircorrespondingquantumexcitationscanbeviewedasdiscrete ‘quantized’units.Itmustbeemphasized,however,that‘second’quantizationisarepresentationofquantum mechanicsparticularlysuitableforproblemsinvolvingmanyparticles.Itis not aquantizinganalreadyquantized theory.However,tobeabletodistinguishrepresentations,weshallinplacesalsohavetousetheequally unfortunateepithet‘first’quantization.

Many-particleHilbertspaces 9 particles.Itdescribesparticlesasquantaofaquantumfieldandis,hence,attheheart ofthemodernunderstandingofquantummechanicsandquantumfieldtheory.

Weassumethatthesolutionofthequantumproblemforoneparticleisknown,i.e. weassumethat

• thereisaone-particleHilbertspace(quantumstatespace) H1 ,with,especially,the scalarproduct φ |ψ ofstates |ψ , |φ ∈ H1 fromthisHilbertspace;

• thismeansinparticular,thattheone-particleSchrödingereigenvalueproblemhas beensolvedforthesingleparticleHamiltonian H:

where |λ ∈ H1 isanormalizedeigenstateand λ thecorrespondingeigenvalue;

• furthermore,thetimeevolutionoftheparticleisdeterminedbytheunitaryoperator (ignoringthepossibilityofanexplicitlytime-dependentHamiltonian)

• lastly,observablessuchasposition r,momentum p,angularmomentum L,etc.,of thesingleparticleproblemhavebeendetermined.

Secondquantizationisaformalismpermittingtoconstructquantitiesthatcorrespond toasystemcomposedofanarbitrary,indeterminatenumberofsuchquantumparticles undertheassumptionthatthestatementsaboveforasingleparticleholdtrue.

ThebasisoftheformalismconsistsinconstructingHilbertspacesandstatesforan arbitrarynumberofparticlesfromtheHilbertspaceandstatesofasingleparticle.

2.1.1CompositeHilbertspaceoftwosystemsAandB

Asmentionedintheintroductiontothischapter,webeginwithamoregeneralpointof view.Assumethattherearetwoquantumsystems A and B whichmaybutneednotbe individualquantumparticles.Forinstance,system A coulddenoteamicroscopicsystem, whilesystem B couldrepresentamacroscopicmeasurementapparatus.Theirrespective Hilbertspacesare H A and H B .Weareinterestedinthecompositequantumsystem AB WecanconstructaHilbertspaceforthecompositequantumsystemintwodifferent ways.Bothwaysbeginbyformingaspaceofallorderedpairsofstatestakenfromthe Hilbertspaces H A and H B

whichcanbemadeintoacompositeHilbertspacebychoosingascalarproductintwo differentways.

Turn static files into dynamic content formats.

Create a flipbook