https://ebookmass.com/product/models-of-quantum-matter-a-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
An Introduction to quantum optics and quantum fluctuations First Edition. Edition Milonni
https://ebookmass.com/product/an-introduction-to-quantum-optics-andquantum-fluctuations-first-edition-edition-milonni/
ebookmass.com
Integrability: From Statistical Systems to Gauge Theory First Edition. Edition Patrick Dorey
https://ebookmass.com/product/integrability-from-statistical-systemsto-gauge-theory-first-edition-edition-patrick-dorey/
ebookmass.com
A First Course in Probability 9th Edition, (Ebook PDF)
https://ebookmass.com/product/a-first-course-in-probability-9thedition-ebook-pdf/
ebookmass.com
Public Humanities and the Spanish Civil War: Connected and Contested Histories 1st ed. Edition Alison Ribeiro De Menezes
https://ebookmass.com/product/public-humanities-and-the-spanish-civilwar-connected-and-contested-histories-1st-ed-edition-alison-ribeirode-menezes/ ebookmass.com
Wicked Beauty (Wicked Trilogy Book 2) M. James https://ebookmass.com/product/wicked-beauty-wicked-trilogybook-2-m-james/
ebookmass.com
Mental Health Effects of COVID-19 Ahmed A. Moustafa (Editor)
https://ebookmass.com/product/mental-health-effects-of-covid-19-ahmeda-moustafa-editor/
ebookmass.com
The Rational software Engineer: Strategies for a Fulfilling Career in Tech 1st Edition Mykyta Chernenko
https://ebookmass.com/product/the-rational-software-engineerstrategies-for-a-fulfilling-career-in-tech-1st-edition-mykytachernenko-2/ ebookmass.com
The Magic Paintbrush and Other Enchanted Tales Henry Lien
https://ebookmass.com/product/the-magic-paintbrush-and-otherenchanted-tales-henry-lien/
ebookmass.com
Eternal Bandwagon: The Politics of Presidential Selection 1st ed. Edition Byron E. Shafer
https://ebookmass.com/product/eternal-bandwagon-the-politics-ofpresidential-selection-1st-ed-edition-byron-e-shafer/
ebookmass.com
Studio Thinking from the Start: The Ku20138 Art Educatoru2019s Handbook (Ebook PDF)
https://ebookmass.com/product/studio-thinking-from-the-startthe-k-8-art-educators-handbook-ebook-pdf/
ebookmass.com
MODELSOFQUANTUMMATTER ModelsofQuantumMatter AFirstCourseonIntegrabilityandtheBetheAnsatz Hans-PeterEckle
HumboldtStudyCentre UlmUniversity
GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom
OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©Hans-PeterEckle2019
Themoralrightsoftheauthorhavebeenasserted
FirstEditionpublishedin2019
Impression:1
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove
Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica
BritishLibraryCataloguinginPublicationData Dataavailable
LibraryofCongressControlNumber:2019930263
ISBN978–0–19–967883–9
DOI:10.1093/oso/9780199678839.001.0001
Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.
FürIrene
Preface WhystudyBetheansatz?TheBetheansatzprovidesoneoftheveryfewmethodologiesto calculatethephysicalpropertiesofmodelsforstronglyinteractingquantummatter non–perturbatively.Arguablyitistheonlysuchmethodwehavewhichisexact.Thismeans, oncewehavesetupthemodel,therearenoapproximationsorfurtherassumptions necessary:wecanexactlycomputephysicallyrelevantpropertiesofthemodel.Thereis, furthermore,aninfinitesetofconservedquantities:thequantummechanicalmodelis integrable.
Thismakesthesearchforquantummodelswhichareamenabletoanexactsolutionby theBetheansatzmethodologysoimportantandrewarding.Evenif—asissometimes,but certainly notalways,thecase—themodelwithanexactsolutionisnotthemostphysically relevantone,theexactsolutionwillprovideimportantbenchmarksforothermodelsthat mayoccasionallybeclosertophysicalreality,butdonotadmitanexactsolution.Hence, foraplethoraofcases,theBetheansatzsolutionprovidesvaluableinsightintothephysics ofstronglyinteractingquantummatter.
SinceHansBetheprovidedtheeponymousmethodtosolvetheHeisenbergquantum spinchain,manymoremodelsoflow-dimensionalquantumsystemshavebeenfoundto beintegrablebytheBetheansatz.
Moreover,thesemodelsandtheirintegrabilityhavebeenandcontinuetoplayaninfluentialroleinmanysubfieldsofphysics,whichincludeclassicalandquantumstatistical mechanics,quantumfieldtheory,andquantummany-particleandcondensedmatter physics,thelatterinrecenttimesespeciallyinconnectionwithmoderndevelopmentsin physicsonthenanometrescaleandinlowdimensions.Quantumopticshasalsobenefited fromstudyingintegrablemodels,especiallyininvestigationsofultracoldBosonicand FermionicquantumgasesandBose–Einsteincondensatesinartificialcrystalsoflight, theso-calledopticallattices.Recentlyinstringtheoryandcosmologythereisahype ofactivityinvolvingconjecturesofBetheansatzintegrabilityintheframeworkofthe celebratedanti-de-Sitterspace/conformalfieldtheory(AdS/CFT)correspondence.
Ofcourse,BetheansatzandintegrabilityarediscussedinMathematicalPhysics,but thereisalsoanongoingcross-fertilizationwithvarioussubfieldsofpureMathematics.
Someprominentexamplesofintegrablemodelsinclude:variousvariantsofthe Heisenbergquantumspinchainwhosephysicalrealizationsareprobedbyneutron scattering;theHubbardmodelanditsvariantswhichinteraliahavebeendiscussed inconnectionwithhigh-temperaturesuperconductivity;theKondomodelwhichhas recentlyseenarenaissancebecauseofthedevelopmentoftunablequantumdots; interactingBoseandFermigaseswhichcannowbeproducedinverypureandtunable forminopticallattices.
But,whatistheBetheansatz?Initsoriginalform,devisedbyBethe,itisaningeniously guessedformforthewavefunctionofaone-dimensionalquantumsystem.However, whythiswavefunctioniscorrectandevenexactremainedanopenquestionwhichhas onlybeenansweredmuchlaterthroughthealgebraicformoftheBetheansatz.This methodenablesustoconstructanintegrablequantummodelinonedimensionfrom atwo-dimensionalstatisticalmechanicalmodel.Theconstructionrevealsthereason forquantumintegrabilityanddeliverstheinfinitesetofconservedquantitiestogether withthewavefunctionwhichBetheguessed.InourexpositionoftheBetheansatz methodology,weshallthereforestart,somewhatunhistorically,butmoresystematically, withthealgebraicBetheansatz.
Whoisthisbookfor?Interestingly,alookatRichardFeynman’slastblackboards(Paz, 1989)revealsthathemaywellhavebeeninterested.Inoneofhislastpublications(1988), Feynmaninfactwrote:
‘Igotreallyfascinatedbythese(1 + 1)-dimensionalmodelsthataresolvedbytheBethe ansatzandhowmysteriouslytheyjumpoutatyouandworkandyoudon’tknowwhy.I amtryingtounderstandallthisbetter.’CitedafterBatchelor(2007).
InviewoftheexcitingdevelopmentsinBetheansatzofthelasttwodecades,Richard Feynman’sfascinationwouldcertainlyhavecontinued.
Themosthelpfulprerequisitesforpresentreadersareagoodgroundinginquantum mechanics,statisticalmechanics,andthebasicsofquantummany-particletheory, especiallysecondquantization.However,weshallcomprehensivelydiscussthenecessary toolsandbackgroundinpartIofthebook.Throughthisapproach,thebookshould besmoothlyaccessibleforMaster’sstudentswholookforanareaofspecializationas wellasforbeginninggraduatestudents.Moreover,toparaphrasePaulHalmos(inthe prefaceofhisbookonMeasureTheory(Halmos,1978)),thenovicetotheBetheansatz methodologyshould not bediscouragedifsheorhefindsthatsheorhedoesnothavethe prerequisitestoreadthepreliminaries.Afterall,asMaxBornremindsus,wherewould quantumphysicsbeifWernerHeisenberghadbeendiscouragedthathedidnotknow whatamatrixwaswhenhedevelopedthematrixformofquantummechanics?
Thebookgrewoutoflecturenotestheauthorpreparedforaninvitedgraduatelecture seriesattheIndianInstituteofScienceinBangalorein1995,summerschoolcourses attheUniversityofJyväskyläinCentralFinlandin1997(on BetheAnsatzMethodsin Many–BodyPhysics)and1999(on ConformalInvarianceinStatisticalPhysics),agraduate courseatthesameUniversitywhich,togetherwithanamiablegroupofstudents, madetheextremelycoldFinnishwinterof1999actuallyanenjoyableexperience,and postgraduatecoursesattheUniversityofNewSouthWalesinSydneyin2000,and withintheMathematics–Physics MP 2 PlatformatGöteborgUniversityin2009,aswell assummerschoollecturesinTurkey:2013inTurunç,2014inIzmirand2013inIreland inDungarvenundertheauspicesoftheSchoolofTheoreticalPhysicsoftheDublin InstituteforAdvancedStudies.
Acknowledgements Theauthor’s workingknowledge ofthetopicsandmethodsonwhichthisbookfocuses wasshapedthroughcollaborationswithseveralpeoplewhoaregratefullyacknowledged inchronologicalorder:FerencWoynarovich,TuongTruong,ChrisHamer,Rudolf Römer,BillSutherland,AlexanderPunnoose,HenrikJohannesson,CharlesStafford, TimByrnes,RobertBursill,AndersSandvik,andJohanNilsson.Gratefullyacknowledgingdiscussionswithmanyothers,especiallymythesisadvisorDieterSchotteand withIngoPeschelandKarolPenson,Ishallnotattempttomentionallofthemforfear thatsomeone’snamemightescapemyattention.
IlearnedcoordinateBetheansatzfromandduringafruitfulcollaborationwithFerenc Woynarovich.WebothwereinitiatedtothealgebraicBetheansatzbyTuongTruong.
IalsooftenenjoyedstimulatingdiscussionswithHolgerFrahmaswellasmutualvisits withFabianEssler,AndreasKl ¨ umper,andAndreasSchadschneider.
MydeeplyfeltthanksgotoHenrikJohannessonforhiskindinvitationstoprepareand deliverlecturesinGöteborgand,veryespecially,forourlong-standingcollaborationand friendship.
GreatthanksarealsoduetoHenrikagainandAlexanderStolinfororganizing andco–lecturingthecourseon‘IntegrableModelsandQuantumGroups’withinthe Mathematics–Physics MP 2 PlatformatGöteborgUniversity.
JussiTimonen’sinitiativeishighlyappreciatedforsuggestingandencouragingmy lecturesinJyväskylä.
ValuablediscussionswithBalazsHetényi,especiallyinconnectionwiththecoorganizationofthesummerschoolsinTurkey,andwithDanielBraak,aregratefully acknowledged.ManythanksalsogotoKarstenSeifertwhovolunteeredtoundertake thealtruistictaskofproof-readingpartsofthisbookatvariousstagesofitsformation.
ManythanksareduetoNatanAndrei,NikolayBogoliubov,andthelateAnatoli IzerginfortheirhospitalityatRutgersandinSanktPetersburg,respectively,andthe sharingoftheirknowledgeinstimulatingpersonaldiscussionsandinthewrittenform oflecturenotes,andalsotoVladimirKorepinforencouragementonmanyoccasions.
ManythanksarealsoduetoPeterHorsch,JoachimStolze,andJohannesVoit,and thelateHeinzBarentzenandHellmutKeiterfordiscussionsandhospitalityinStuttgart, Bayreuth,andDortmund,respectively,andthesharingofpertinentsetsoflecturenotes.
TheteamatOxfordUniversityPresscannotbepraisedhighlyenough,especiallytheir friendlypatienceandcheerfulspirit,whichappeartobeinexhaustible.Theincentiveof AprilWarmangotthisprojectunderwayandhelpeditalonginitsearlyinfantsteps. SönkeAdlungsuppliedfreshguidancetohelptheprojectalongwheneverthereseemed tobeanimpasse.AniaWronksinevertiredofprovidingmotivationandmomentumfor thebookprojectand,ofcourse,allthenecessaryinformation.
1Introduction 1
Part1MethodsandModelsintheTheoryofQuantumMatter
2QuantumMany-ParticleSystemsandSecondQuantization 5
2.1Many-particleHilbertspaces8
2.2Occupationnumberrepresentation:BosonsandFermions19
2.3CreationandannihilationoperatorsforBosons21
2.4Basistransformation26
2.5Quantumfieldoperators27
2.6One-particleoperators29
2.7Two-particleoperators33
2.8SecondquantizationoftheSchrödingerequation:Bosoniccase35
2.9CreationandannihilationoperatorsforFermions36
2.10SecondquantizationoftheSchrödingerequation:Fermioniccase40
2.11Secondquantizationformalismandthemany-particlewavefunction41
2.12Normalordering43
3AngularMomentum 45
3.1Angularmomentumofasinglequantumparticle45
3.2Angularmomentumofseveralquantumparticles56
4EquilibriumStatisticalMechanics 63
4.1Fundamentalpostulateofequilibriumstatisticalmechanics64
4.2Microcanonicalensemble66
4.3Entropy67
4.4Secondlawofthermodynamics68
4.5Temperature69
4.6Pressureandchemicalpotential69
4.7Firstlawofthermodynamics70
4.8Canonicalensemble70
4.9Partitionfunction72
4.10Grandcanonicalensemble75
4.11Gibbsentropy77
4.12Densitymatrix78
4.13Non-interactingquantumgases82
4.14Classicallatticemodelsinstatisticalmechanics93
4.15Interactingmagneticmoments:mean-fieldtheory97
4.16Transfermatrix106
4.17Exactsolutionoftheone-dimensionalIsingmodel108
5PhaseTransitions,CriticalPhenomena,andFinite-SizeScaling 111
5.1Phases,phasediagrams,andphasetransition113
5.2Criticalbehaviour116
5.3Landau–Ginzburgtheory120
5.4Scaling126
5.5Renormalizationgroup131
5.6Finite-sizescaling147
5.7Quantumphasetransitions154
6StatisticalMechanicsandQuantumFieldTheory 177
6.1Connectionbetweenstatisticalmechanicsandquantumfieldtheory177
6.2Thermalfluctuationsandquantumfluctuations181
7ConformalSymmetryinStatisticalMechanics 188
7.1Fromscaletoconformalinvariance189
7.2Conformalsymmetry194
7.3Conformaltransformationsindimensionslargerthantwo195
7.4Conformaltransformationsintwodimensions202
7.5Orderparameterfieldsandcorrelationfunctions205
7.6Energy-momentumtensor209
7.7Energy-momentumtensorintwodimensions212
7.8ConformalWardidentities213
7.9Energy-momentumtensorandtheVirasoroalgebra218
7.10Finite-sizecorrectionsrevisited234
8ModelsofStronglyInteractingQuantumMatter 241
8.1Bosefluid242
8.2Electroniccorrelations255
8.3Coulombgas269
8.4LandauFermiliquidtheory278
8.5Luttingerliquidtheory289
8.6Magnetism313
8.7Hubbardmodel356
8.8Heisenbergmodel366
8.9Magneticquantumimpuritymodels372
8.10QuantumRabimodel395
Part2AlgebraicBetheAnsatz
9IceModel 425
9.1Physicalmotivationforthesquarelatticeicemodel425 9.2Definitionoftheicemodel428
10GeneralSquareLatticeVertexModels
430
10.1Vertexmodelsintwodimensions432 10.2Sixteen-andeight-vertexmodels432 10.3VertexBoltzmannweightsandthepartitionfunction432 10.4R-matrix:matrixofBoltzmannweightsofavertex434 10.5Integrabilityandthetransfermatrix438 10.6Commutingtransfermatrices438
10.7Monodromymatrix440 10.8FurthertotheL-operator446 10.9Yang–Baxterrelations447 10.10MoreonYang–Baxterrelations449 10.11ExploitingYang–Baxterintegrability451
11Six-VertexModel 454
11.1Yang–Baxterrelationforthesix-vertexmodel455 11.2Parameterizationofthesix-vertexmodel456 11.3AlgebraicBetheansatzsolutionofthesix-vertexmodel459 11.4QuantumHamiltoniansfromthetransfermatrix467 11.5InhomogeneousYang–Baxterquantumintegrablemodels470
12QuantumTavis–CummingsModel
12.1AlgebraicBetheansatzrevisited474 12.2ModifiedquantumTavis–Cummingsmodel475
12.3TransfermatrixofthemodifiedquantumTavis–Cummingsmodel476 12.4Commutativityofthetransfermatrix479 12.5SimplequantumTavis–Cummingsmodel481 12.6BetheansatzsolutionofthequantumTavis–Cummingsmodel484
Part3CoordinateBetheAnsatz 13TheAnisotropicHeisenbergQuantumSpinChain 491
13.1DescriptionoftheXXZHeisenbergquantumspinchain492 13.2SpecialcasesoftheXXZHeisenbergquantumspinchain495 13.3BasicpropertiesoftheXXZHeisenbergquantumspinchain498
14BetheAnsatzfortheAnisotropicHeisenbergQuantumSpinChain 502 14.1VerificationoftheBetheansatz503 14.2Periodicboundaryconditions508 14.3Parameterizationofthequasi-momenta511
14.4GroundstateoftheXXZHeisenbergquantumspinchain517 14.5ExcitationsoftheXXZHeisenbergquantumspinchain522 14.6Excitationsoftheisotropicantiferromagneticspinchain537
15BoseGasinOneDimension:Lieb–LinigerModel 545
15.1Classicalnon-linearSchrödingerequation546 15.2Quantumnon-linearSchrödingermodel547
15.3Lieb–Linigermodelinthehardcorelimit:gas549
15.4 δ -potentialasboundarycondition552
15.5FormoftheBetheeigenfunctions553 15.6ConstructionoftheBetheansatzwavefunction558 15.7Unrestrictedconfigurationspace562
15.8Periodicboundaryconditions:Betheansatzequations565
15.9Groundstateofthe δ -Bosegasinthethermodynamiclimit568 15.10Excitedstates573
Part4ElectronicSystems:NestedBetheAnsatz 16ElectronicSystems 585
16.1Fermigasinonedimension586 16.2One-dimensionalHubbardmodel598 16.3Kondomodel600
16.4AlgebraicBetheansatzforthespineigenvalueproblem612 16.5Magneticimpuritiesinnanostructures:Betheansatzresults625
Part5ThermodynamicBetheAnsatz 17ThermodynamicsoftheRepulsiveLieb–LinigerModel 633
17.1Thermodynamiclimit,particles,andholes633 17.2Betheansatzequationsforparticlesandholes634 17.3EntropyandthermodynamicBetheansatz636
18ThermodynamicsoftheIsotropicHeisenbergQuantumSpinChain 641
18.1SummaryofBetheansatzfortheisotropicspinchain641 18.2PreparationofthethermodynamicBetheansatz:particlesandholes644
18.3ThermodynamicBetheansatzequations649
18.4Thermodynamics652
18.5Thermodynamicsforsmall T and h 653
Part6BetheAnsatzforFiniteSystems 19MathematicalTools 657
19.1Euler–Maclaurinformula657
19.2Wiener–Hopftechnique661
20.1BetheansatzforthefiniteHeisenbergquantumspinchain668
20.2Finite-sizecorrections669
20.3ApplicationoftheEuler–Maclaurinformula673
20.4ApplicationoftheWiener–Hopftechnique675
20.5Higherorderfinite-sizecorrections685 References
Ajourneyofathousandmilesbeginswithasinglestep.
–LaoTzu
Thisbriefintroductorychapter’spurposeistodirectyou,thereader,quicklytothose placesinthebookwhereyoucanfindgeneralintroductoryinformationthatmaybe helpfulforanoverviewofandtheorientationwithinthebook.Itisdeliberatelykept shorttoavoidredundancies.
Thegeneralmotivationforthewritingofthebookandthemaintargetedreaderships aswellasthelevelsofsophisticationassumedanddetailaimedatinthepresentation ofthevariouspartsofthebookareoutlinedinthepreface.There,wealsoattempta delineationofanassessmentoftherelevanceofthebook’stopicsforcurrentandpotential futureresearch.
Thelistofcontents,byitsnatureintheformofkeywordsandkeyphrases,provides amorecomprehensiveorientationofallthetopicstreatedandtheirmutualdependence.
Thebookisdividedintosixmajorpartsand,includingthisshortintroductorychapter, intotwentychapters.Eachpartandeachchapterbeginswithadescriptiondetailing theirrespectivesubjectmatter.Thepartdescriptionssupplythebiggerpicture,whilethe outlinesatthebeginningsofeachchapterpointmorespecificallytothetopicstreated. Whereverthisseemedtobehelpful,wehaveattemptedtosupplyfurthersignpostsabout whatwehaveachievedandwhereweplantogofromthere.
Atvariousplaces,wealsoremarkonthedepthwithwhichthetopicsaretreated,what mayhavebeenleftoutorwillonlybementionedinpassing,therelationtootherparts andchaptersandthebook’sintentionsasawhole,andwheretofindalternativeand furtherspecializedtreatmentsofthesetopics.
Inordertosupplyaroughoverview,letusbrieflysummarizethemajorpartsofthe bookandtheirinterrelationship.
PartIrangesfromthefundamentalconceptsandtoolsrequiredforanunderstanding ofstronglyinteractingquantummattertothefundamentalmodelsthatrepresentthe physicalsystemsofstronglyinteractingquantummatter.Inthisbook,wewantto investigateselectedaspectsofthesemodelswithaparticularemphasisontheusesof theexactmethodologyoftheBetheansatzandofquantumintegrability.
PartIIisdevotedtothequantuminversescatteringmethodandthealgebraicBethe ansatzthatdemonstratethequantumintegrabilityofcertainone-dimensionalstrongly interactingquantummodelsandprovidetheirexactsolution.Ourapproachmakes decisiveuseoftheintimateconnectionbetweenthesemodelsandtwo-dimensional
modelsofclassicalstatisticalmechanics.Theconcretemodelsweshallbeenlistingin thispartaretheHeisenbergquantumspinchainasone-dimensionalquantummodel andthesix-vertexmodelastwo-dimensionalclassicalstatisticalmodel.
InpartIII,weintroducethecoordinateBetheansatz,theoriginalapproachBethe usedtosolvetheHeisenbergquantumspinchain.Sincethisapproachdoesnotallow ustounderstandwhythemodelsarequantumintegrable,weshalladdressitonlyafter wediscussthealgebraicBetheansatzandthequantuminversescatteringmethod.The coordinateBetheansatzapproachis,however,stillextremelyuseful.Wedemonstratethis againfortheHeisenbergquantumspinchainandalsoforagasofBosonsinteractingvia δ -functionpotentialsinonedimension.
PartIVisconcernedwithstronglyinteractingquantummodelswherethefundamentalconstituentshaveinternaldegreesoffreedom.Ourexamples,theone-dimensionalgas ofFermionsinteractingvia δ -functionpotentials,theone-dimensionalHubbardmodel, andtheKondomodelofamagneticimpurityinteractingwithconductionelectrons,are allelectronicmodelswherethereisonlyoneinternaldegreeoffreedominadditiontothe particledegreeoffreedom,whichiselectronicspin.Weshallfindthatthesemodelscan besolvedbytwointerconnectedBetheansätze.Themethodisthuscalled nested Bethe ansatz.
Thusfar,theBetheansatzmethodsdiscussedweremainlyinvestigatingthelow-lying andthereforezerotemperaturepropertiesofthequantummodels.InpartVweexamine howtoextendtheBetheansatztofinitetemperatures.Again,ourquantummodelsof choicewillbetheHeisenbergquantumspinchainandalsotheBosegasinteractingvia δ -functionpotentialsinonedimension.
InpartVI,thefinalpartofthebook,werelinquishanotherassumptionwemade orhadtomakeinordertofindsolutionsoftheBetheansatzequations,equationswhich generallyholdforafinitesystem.Sofar,weusuallyconsideredthethermodynamiclimit, thelimitofaninfinitesystemsize.ThislimitallowedustorewritetheBetheansatz equationsaslinearintegralequationsforcertaindensitieswhosesolutionscharacterized solutionsoftheBetheansatzequations,butonly,ofcourse,forthethermodynamiclimit. TheBetheansatzforfinitesystemsattemptstofindcorrectionstotheBetheansatz solutionsandphysicalquantities,e.g.thegroundstateenergyofthethermodynamiclimit thattakesintoaccountthefinitenessofasystem.Again,weinquireintohowthiscanbe achievedusingtheHeisenbergquantumspinchainasourexemplarymodelsystem.
Thefocusofthisbookisonselectedconcepts,methods,andmathematicaltechniques intheareaofstronglyinteractingquantummattersystems,especiallythevarious Betheansatztechniquesdiscussed.Wehopethatthesetechniqueswillproveuseful infutureresearchintheareaofstronglyinteractingquantummatter.Wealsohope thatsomephysicalinsightwillbegainedfromthemodelsofquantummatterusedas examplestodemonstratetheconceptsandtechniquesandwillprovideguidanceforthe understandingofothersystemsnottreatedhere.
Forthemostpart,weshallusenaturalunitswherethespeedoflight,Boltzmann’s, andPlanck’sconstantsare
exceptwhenincludingtheconstantsexplicitlywillrendertheresultsmoretransparent.
Part1 MethodsandModelsinthe TheoryofQuantumMatter Cannotwebecontentwithexperimentalone?No,thatisimpossible;thatwouldbea completemisunderstandingofthetruecharacterofscience.Themanofsciencemust workwithmethod.Scienceisbuiltupoffacts,asahouseisbuiltofstones;butan accumulationoffactsisnomoreasciencethanaheapofstonesisahouse.
–HenriPoincaré(1854–1912)
Thisfirstpartofthebookpresentsanoverviewofthemostimportantmethods indispensableforanunderstandingofthetheoryofstronglyinteractingquantummatter. Moreover,weintroduceaselectionofquantummechanicalmany-particlemodelsand therelatedconceptsthatformthebackgroundofthetheoryofquantummatter, especiallyinviewofthequantumintegrablemodels,whoseexactBetheansatzsolutions arediscussedinlaterpartsofthebook.Thesemethodsandmodelsarerelevantalsoin manyotherpartsoftheoreticalandmathematicalphysics.Itisthereforerecommended thatreadersreviewthismaterialtojudgehowfamiliartheyarewithit.
Thesechapters,however,donottreatanddonotattempttotreattheirtopicsinafully comprehensivemanner.Thereisalwaysalotmorethatcouldbecovered.Infact,there isavastliteraturespecificallydevotedtothesetopics.Nevertheless,weattemptasclear andcomprehensibleatreatmentaspossibleoftheaspectswecoverwiththeintentionto renderthoseaspectsthatwedocoverself-contained.Whereaself-containedtreatmentis beyondthelimitationsofthisbook,weprovideappropriatehintstotheliteraturespecially devotedtothesetopics.
Morespecifically,inchapter2,basicfactsarereviewedfromthequantummechanics ofmany-particlesystems,inparticularleadingfromtheHilbertspacesrepresenting quantummany-particlesystemstoadiscussionofsecondquantization,whichisthe languagemostusefultoformulatethemodelsofstronglyinteractingquantummatter.
Moreover,inchapter3weaddressthequantummechanicaltheoryofangular momentum,especiallyformanyquantumparticles,whichisindispensableforan understandingofthemagneticpropertiesofthemodelsofstronglyinteractingquantum
MethodsandModelsintheTheoryofQuantumMatter
matter.Thesemagneticpropertieswillbeatthecentreofmuchofourdiscussionof quantumintegrablemodelsandtheirexactBetheansatzsolutions.
Quantummany-particletheoryis,ofcourse,restingonthefoundationsofequilibrium statisticalmechanics,especiallyquantumstatisticalmechanics.Butclassicalstatistical mechanicsalsowillbenecessarytoappreciatethedevelopmentsofquantummodels thatareintegrablebytheBetheansatzmethod.Anexaminationofthemethodsand resultsofequilibriumstatisticalmechanics,bothclassicalandquantum,willthereforebe ausefuladditioninthisfirstpartofthebook,andwhichwetakeupinchapter4.
Amongthemostfascinatingphenomenaofmany-particlesystems,againclassical andquantum,phasetransitionsandcriticalphenomenaoccupyaprominentplace. Theirtheoreticaldescriptionischallengingandrequiresanarsenalofsophisticatedand innovativemethodsthatareoutlinedinchapter5,wherewealsoanalysetheapproach tothethermodynamiclimitofsystemsoffinitesize.
Thereisanintimateconnectionbetweenquantumfieldtheoryand(classical)statisticalmechanicsonwhichmuchofthequantuminversescatteringmethodandthe algebraicBetheansatzisfounded.Chapter6offersanintroductiontothisimmensely usefulconnection,whichwillalsoplayacentralroleinthesubsequentchapter.
Betheansatzcalculationsforfinitesystems,beingrathermoreinvolvedthanthosein thethermodynamiclimit,produceresultsthatcanbedirectlycomparedtopredictions basedontheconformalsymmetryoftwo-dimensionalclassicalstatisticalmechanics. Inordertofullyappreciatethisconnection,chapter7offersanintroductionintobasic aspectsoftheconformalsymmetryofcriticalsystems.
Whilethechaptersdescribedsofarweremainlyconcernedwithmethodsusefulfor athoroughappreciationoftheBetheansatzmethodologiesexaminedinlaterpartsof thebook,chapter8ofthisfirstpartintroducesthephysicalbackgroundofaselectionof modelsofstronglyinteractingquantummattertogetherwithmethodstoinvestigateand understandthem.Theselectioncriteriahavebeenwhetherappropriateversionsofthe modelsexhibitquantumintegrabilityandaresolvablebyBetheansatz.Thequantum many-particlemodelsconsideredrangefromtheBosefluidtomodelsofitinerantas wellaslocalizedmagnetismandtotheFermiliquidandultimatelytomodelsofstrong light–matterinteraction.
QuantumMany-ParticleSystems andSecondQuantization Oneoftheprincipalobjectsoftheoreticalresearchistofindthepointofviewfrom whichthesubjectappearsinthegreatestsimplicity.
JosiahWillardGibbs(1839–1903)
Thischapterreviewssomeaspectsofthequantummechanicsofsystemscomposedof manyparticles(many-bodyormany-particlesystems),whichwillproveusefulforthe laterdevelopmentsinthisbook.Wemainlyconcentrateonthefoundationsofquantum many-particlephysicsleadingtotheformalismof secondquantization asaconvenient languagefortheformulationofthepropertiesofthemany-particlesystemsofquantum matter.
Many-particlequantumsystemscanbedescribedbyamany-particleSchrödinger equation,whosecorrespondingwavefunctiondependsontheconfigurationofthe particles,e.g.theirpositions ri andpossiblyfurtherquantumnumbers,e.g.thespin quantumnumbers σ i oftheparticles.Inpracticethisapproachisverycumbersomeeven forquitemodestnumbersofparticles,letaloneforthemacroscopicnumbersofparticles ofquantumstatisticalmechanicsandcondensedmatterphysics. Secondquantization is aformulationorlanguageofmany-particlequantummechanicsthathelpstominimize thetechnicalcomplicationsofpracticalcalculationsformany-particlesystems.
Itisalsotheappropriatelanguageofotherbranchesoftheoreticalphysics,most notablyquantumfieldtheory(see,forexampleLancasterandBlundell,2014).
Twoexamplesillustratetheusefulnessofsecondquantization.Inquantumfield theoryaswellasmanyapplicationsofmany-particlephysicsandcondensedmatter physics,thenumberofparticlesisvariable,i.e.particlescanbecreatedaswellas destroyed.1 Moreover,theSchrödingerequation,andhencethewavefunction,fora
1 Asweshallsee,theconceptofcreatingandannihilatingparticlesisaratherabstractone,especiallyfor Fermions,i.e.particlesforwhichthePauliexclusionprincipleapplies.RichardFeynman,inhisNobelprize acceptancespeech(Feynman,1965),alludestothisinapersonalreminiscence:‘Irememberthatwhensomeone hadstartedtoteachmeaboutcreationandannihilationoperators,thatthisoperatorcreatesanelectron,Isaid, “howdoyoucreateanelectron?Itdisagreeswiththeconservationofcharge”,andinthatway,Iblockedmy mindfromlearningaverypracticalschemeofcalculation.’
QuantumMany-ParticleSystemsandSecondQuantization
systemof N = 1024 particlesisdifferentfromthoseofasystemof N = 1024 1particles. Yet,weexpectbothsystemstoexhibitthesamemacroscopicphysics.Inthelanguageof secondquantization,whichisspecificallyadaptedtoaccommodatevariablenumbersof particles,wecancopeeasilywithbothsituationsasdetailedworkinthischapterandin chapter4onequilibriumstatisticalmechanicsshows,aswellasthroughoutmanyother chaptersofthisbook.
Secondquantizationisastandardtopicofquantummany-particletheoryand treatmentscanbefoundinmanybookswhollyorpartlydevotedtothistopic.A classicreferencedevotedtothemethodofsecondquantizationisBerezin(1966).Some standardreferencesarethecorrespondingchaptersofAbrikosov etal. (1975),Fetter andWalecka(2003),Mahan(2000),andNegeleandOrland(1998).Morerecentwork includesNazarovandDanon(2013),AltlandandSimons(2010),andColeman(2015). Ofcourse,alloftheseworkstreatmanymoretopicsinthetheoryofquantummanyparticlephysics.
Inparticular,applicationsofthemethodofsecondquantizationcanbefoundin thecitedworksandinlaterchaptersofthisbook,whereweshallmakeampleuseof thelanguageofsecondquantization.Inthischapter,however,weconcentrateonthe formalism,demonstratingitspowerwithonlyafewelementaryexamples.
Section2.1ofthischapterconstructstheHilbertspaces,thetensorproductspaces, andtheFockspaces,appropriateforthestatesofthemany-particlesystemandthen section2.2,selectsfromtheseHilbertspacesthesymmetrizedmany-particlestatesof themany-particleHilbertspacethatdescribeBosons,whereanynumberofparticles canoccupythesamequantumstateandtheantisymmetrizedmany-particlestatesthat describeFermions,whereatmostoneparticlecanoccupythesamequantumstate.
ThisconstructionofHilbertspacesismoregeneral:foranyquantumsystemcomposedofsubsystems,aHilbertspacecanbeconstructedinthewaywedescribe. Therefore,weinitiallykeepthediscussionmoregeneralbeforewefocusagainonHilbert spacescomposedof(many)quantumparticles.
Forthefollowingfewsections,wefocusontheBosoniccase,beforeeventuallyalso discussingFermions.Insection2.3,weintroducecreationandannihilationoperators forBosons.Theseoperatorsarethemainobjectsinwhichtheformalismofsecond quantizationisexpressed.
Thecreationandannihilationoperatorscanbeexpressedindifferentorthonormal andcompletebases.Thetransformationsofthecreationandannihilationoperators betweendifferentabstractorthonormalandcompletebasesarederivedinsection2.4, whileinsection2.5thecreationandannihilationoperatorsinthepositionbasis,then calledquantumfieldoperators,areintroducedasoneofthemostimportantexamples.
Section2.6isdevotedtotheintroductionofone-particleoperators,section2.7to two-particleoperatorsintheformalismofsecondquantization.
Anelementaryintroductionofsecondquantizationstartsfromthetime-dependent single–particleSchrödingerequationofbasicquantummechanics.Howthiscanbe achievedisdemonstratedforBosonsinsection2.8andforFermionsinsection2.10.
Section2.9finallyreturnstoFermions,introducingcreationandannihilationoperatorsfortheFermioniccase.
Thepenultimatesectionofthischapter,2.11demonstratesexplicitlytheequivalence ofthemany-particlewavefunctionandtheformalismofsecondquantization,whilethe finalsection2.12ofthischaptertouchesontheissueofthecorrectorderingofcreation andannihilationoperators,i.e.thenormalordering.
Asapreludetotheformalism,westartwithanelementaryexercise:thequantum treatmentofthesingleparticleone-dimensionalharmonicoscillatorintermsofcreation andannihilationoperators,sometimesalsocalledladderoperators.Inthisexerciseweare remindedofimportantnotionsthathelpilluminatethemoreformaltreatmentoftherest ofthischapter.Moreover,thealgebraicstructureencounteredherewillreappearmany timesinthisandinlaterchapters.Hence,itmaybequiteagoodideatogothroughthis elementaryexercisetogainconfidenceforthemoreinvolvedlaterdevelopments.
EXERCISE2.1 Quantummechanicalharmonicoscillator TheHamiltonianof theone-dimensionalharmonicoscillatorofamass m andfrequency ω isgiveninterms ofthepositionoperator x andthemomentumoperator p =−i d dx satisfyingthecanonical commutationrelation
AmongthemanywaystosolvetheSchrödingerequationoftheharmonicoscillator,a particularlyelegant,andfruitful,waydeconstructstheHamiltonian(2.2)intooperators, thecreationandannihilationoperator,respectively
• Show,usingtheladderoperators a and a† ,thatthecanonicalcommutationrelation [x,p] = i becomes
andtheHamiltonian(2.2)
• Furthermore,showthat,if λ istheeigenvaluecorrespondingtothenormalized eigenstate |λ oftheoperator = a† a,then
• Calculatethecoefficients c λ and d λ
• Provethat λ ≥ 0andthat λ = 0mustbeaneigenvalue.Whatis,hence,thespectrum ofeigenvaluesof and H,respectively?Showthatthisimpliesforthegroundstate a|0 = 0.
• Usetherepresentation(2.3)oftheladderoperatorsasdifferentialoperatorsto solvetheSchrödingerequationforthegroundstatecorrespondingto λ = 0,i.e. determinethegroundstatewavefunction x|0
• Determinethewavefunctionofthefirstexcitedstatebyapplyingthecreation operator a† oncetothegroundstatewavefunction.
Theresultsobtainedthusfarsuggestthattheoperator canbeinterpretedas anoperatorcountingthenumberofexcitationsoftheharmonicoscillator.Inorder tomakethisevenmoresuggestiveletuschangethenotationandreplace by n and |λ by |n .Furthermore,asweshallseeinmoredetailinthischapter,theseresults suggestaninterpretationoftheexcitationsoftheharmonicoscillatoras particles or quasiparticles.Thestatewithnoparticles |0 thencorrespondstothevacuumstate.
• Showwiththehelpof(2.6)and(2.7)thattheproperlynormalizedstateof n excitationsor n particlesis
• Finally,toappreciatehowfruitfulthisalgebraictreatmentoftheharmonicoscillator is,calculatetheexpectationvaluesofthefirstfewpowersofthepositionoperator inthestate |n ,letussay x,x2 , x3 ,and x4 .
• Hint:Provefirstthatthenumberoperator n = a† a,andhencetheHamiltonian H = ω a† a + 1 2 ,areHermitianoperatorsandthatthereforethecorresponding eigenstates,whicharenon–degenerate(why?),areorthogonal.
Withthisexerciseatthebackofourminds,wecannowstarttodeveloptheformalism ofsecondquantizationbyfirstconstructingaHilbertspaceappropriateforaquantum many-particlesystem.
2.1Many-particleHilbertspaces Theformalismof‘secondquantization’2 providesanelegantandeconomicwayto describeaphysicalsystemcontainingagreat,possiblyindeterminate,numberof
2 Thenameisatrifleunfortunateandoriginatesfromtheinterpretationofthealgebraofladderoperators (seeexercise2.1).Theseoperatorsandtheircorrespondingquantumexcitationscanbeviewedasdiscrete ‘quantized’units.Itmustbeemphasized,however,that‘second’quantizationisarepresentationofquantum mechanicsparticularlysuitableforproblemsinvolvingmanyparticles.Itis not aquantizinganalreadyquantized theory.However,tobeabletodistinguishrepresentations,weshallinplacesalsohavetousetheequally unfortunateepithet‘first’quantization.
Many-particleHilbertspaces 9 particles.Itdescribesparticlesasquantaofaquantumfieldandis,hence,attheheart ofthemodernunderstandingofquantummechanicsandquantumfieldtheory.
Weassumethatthesolutionofthequantumproblemforoneparticleisknown,i.e. weassumethat
• thereisaone-particleHilbertspace(quantumstatespace) H1 ,with,especially,the scalarproduct φ |ψ ofstates |ψ , |φ ∈ H1 fromthisHilbertspace;
• thismeansinparticular,thattheone-particleSchrödingereigenvalueproblemhas beensolvedforthesingleparticleHamiltonian H:
where |λ ∈ H1 isanormalizedeigenstateand λ thecorrespondingeigenvalue;
• furthermore,thetimeevolutionoftheparticleisdeterminedbytheunitaryoperator (ignoringthepossibilityofanexplicitlytime-dependentHamiltonian)
• lastly,observablessuchasposition r,momentum p,angularmomentum L,etc.,of thesingleparticleproblemhavebeendetermined.
Secondquantizationisaformalismpermittingtoconstructquantitiesthatcorrespond toasystemcomposedofanarbitrary,indeterminatenumberofsuchquantumparticles undertheassumptionthatthestatementsaboveforasingleparticleholdtrue.
ThebasisoftheformalismconsistsinconstructingHilbertspacesandstatesforan arbitrarynumberofparticlesfromtheHilbertspaceandstatesofasingleparticle.
2.1.1CompositeHilbertspaceoftwosystemsAandB Asmentionedintheintroductiontothischapter,webeginwithamoregeneralpointof view.Assumethattherearetwoquantumsystems A and B whichmaybutneednotbe individualquantumparticles.Forinstance,system A coulddenoteamicroscopicsystem, whilesystem B couldrepresentamacroscopicmeasurementapparatus.Theirrespective Hilbertspacesare H A and H B .Weareinterestedinthecompositequantumsystem AB WecanconstructaHilbertspaceforthecompositequantumsystemintwodifferent ways.Bothwaysbeginbyformingaspaceofallorderedpairsofstatestakenfromthe Hilbertspaces H A and H B
whichcanbemadeintoacompositeHilbertspacebychoosingascalarproductintwo differentways.