https://ebookmass.com/product/mind-shift-how-culturetransformed-the-human-brain-john-parrington/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Conscious Mind, Resonant Brain: How Each Brain Makes a Mind Stephen Grossberg
https://ebookmass.com/product/conscious-mind-resonant-brain-how-eachbrain-makes-a-mind-stephen-grossberg/
ebookmass.com
A Better Ape: The Evolution of the Moral Mind and How it Made us Human Victor Kumar
https://ebookmass.com/product/a-better-ape-the-evolution-of-the-moralmind-and-how-it-made-us-human-victor-kumar/
ebookmass.com
Disembodied Brains: Understanding our Intuitions on HumanAnimal Neuro-Chimeras and Human Brain Organoids John H Evans
https://ebookmass.com/product/disembodied-brains-understanding-ourintuitions-on-human-animal-neuro-chimeras-and-human-brain-organoidsjohn-h-evans/ ebookmass.com
(eBook PDF) Employment Relations, 2nd Edition
https://ebookmass.com/product/ebook-pdf-employment-relations-2ndedition/
ebookmass.com
The Criminalisation of Irregular Migration in Europe: Globalisation, Deterrence, and Vicious Cycles Matilde Rosina
https://ebookmass.com/product/the-criminalisation-of-irregularmigration-in-europe-globalisation-deterrence-and-vicious-cyclesmatilde-rosina/
ebookmass.com
Small Molecule Drug Discovery: Methods, Molecules and Applications 1st Edition Andrea Trabocchi (Editor)
https://ebookmass.com/product/small-molecule-drug-discovery-methodsmolecules-and-applications-1st-edition-andrea-trabocchi-editor/
ebookmass.com
Trademarks and Unfair Competition: Law Policy (Aspen Casebook) 5th Edition – Ebook PDF Version
https://ebookmass.com/product/trademarks-and-unfair-competition-lawpolicy-aspen-casebook-5th-edition-ebook-pdf-version/
ebookmass.com
Sparks: China's Underground Historians and their Battle for the Future Ian Johnson
https://ebookmass.com/product/sparks-chinas-underground-historiansand-their-battle-for-the-future-ian-johnson/
ebookmass.com
Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence Arun Lal Srivastav
https://ebookmass.com/product/visualization-techniques-for-climatechange-with-machine-learning-and-artificial-intelligence-arun-lalsrivastav/ ebookmass.com
Border Lampedusa: Subjectivity, Visibility and Memory in Stories of Sea and Land 1st Edition Gabriele Proglio
https://ebookmass.com/product/border-lampedusa-subjectivityvisibility-and-memory-in-stories-of-sea-and-land-1st-edition-gabrieleproglio/ ebookmass.com
MIND SHIFT
Great Clarendon Street, Oxford, ox2 6dp, United Kingdom
Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © John Parrington 2021
The moral rights of the author have been asserted
First Edition published in 2021
Impression: 1
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above
You must not circulate this work in any other form and you must impose this same condition on any acquirer
Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America
British Library Cataloguing in Publication Data Data available
Library of Congress Control Number: 2020948532
ISBN 978–0–19–880163–4
Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.
Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.
INTRODUCTION
TheUniverse, according to estimates, is about ninety-three billion light years across and contains over a hundred billion galaxies, each with hundreds of billions of stars.1 Each year we learn more about cosmic phenomena such as black holes and colliding galaxies through increasingly powerful telescopes. Yet to find the most complex object in the known Universe, we need look no further than the space within our own skulls. Weighing about a kilogram and a half, with the appearance and consistency of cold porridge, the human brain nevertheless has about as many nerve cells or neurons—around a hundred billion—as there are stars in the Milky Way.2 Since each neuron can connect with around ten thousand others through cellular structures called synapses, there are about a hundred trillion such connections in the brain. And as the brain has hundreds of different types of neurons, its complexity is far greater than can be described by simply focusing on the total number of cells or their interconnections.
The power of the human brain is displayed in the wonders of modern civilization. As a species, we are distinguished by our ability to systematic ally shape and transform the world around us via technology, which itself we continually improve. By this means in 40,000 years we have gone from living as hunter-gatherers scratching a living from the earth to sending astronauts to the Moon and unmanned probes to the far reaches of the Solar System and beyond.3 Such technological advances are based upon our species’ ability to continually discover more about the natural world through science, with each new generation.
Of course if human culture were only concerned with science and technology it would be dull indeed.4 To the human mind we also owe the literature of William Shakespeare and Emily Brontë, the music of Wolfgang Amadeus Mozart and Billie Holliday, and the visual art of Pablo Picasso and Paula Rego. Yet despite the human brain’s capacity for such intellectual and technological feats, we still know astonishingly little about how it achieves them. This deficit in understanding is a problem not only because it means we lack basic knowledge of the biological factors that underlie our human uniqueness, but also because, for all its amazing capabilities, the human mind seems particularly prone to dysfunction.
Currently a quarter of the population of Britain suffers from a mental disorder, and the proportion is similar in other developed countries.5 Some would argue that this reflects a tendency to ‘medicalize’ what might once have been considered to be within the spectrum of normal human behaviour. But it would surely be a mistake to underestimate the pain and suffering caused by conditions like schizophrenia, bipolar disorder, and clinical depression. Although drugs can alleviate many of the symptoms of these conditions, even some psychiatrists question whether such drugs treat the underlying causes of these disorders or merely mask the symptoms. In addition, a significant proportion of people fail to respond to such treatments for reasons that are often unclear, but which can have tragic consequences for sufferers and their loved ones.6 I speak here from bitter experience, having recently lost my sister to a severe form of depression that spiralled out of control, being apparently unresponsive to a variety of different types of drugs and psychotherapies, resulting finally in her suicide by hanging, aged just 53. Sadly, there is a history of such matters in my family, adding a personal resonance in my case to the question of whether mental disorders are largely a product of biology or environment. In fact, as we shall see, the idea that one can separate ‘nature’ or ‘nurture’ in this way betrays a misunderstanding of both biological mechanisms and the unique role that society plays in the human condition.
Still, some would argue there is good reason to be optimistic about the prospect of developing new and better treatments for mental disorders in
the not-so-distant future. Such optimism is based on our increasing potential to study how the brain works in various important new ways thanks to recent technological innovations. While methods for measuring the electrical and chemical changes that occur in neurons during nerve impulses have been available for some years, it is now possible to genetically label living cells using fluorescent proteins so that such measurements can be carried out in the brain of a live animal. One approach, called ‘brainbow’, mixes fluorescent colours to create a palette of 90 different shades, making it possible to distinguish many different neurons and their interconnections.7
We also have the DNA sequence of not only the human genome, but those of mice and our closest animal relative, the chimpanzee, and even of extinct proto-humans like Neanderthals.8 While this only allows comparison at a whole organism level, increasingly sophisticated methods for taking a ‘snapshot’ of the genes turned on or off in different brain cells make it possible to compare such patterns of gene ‘expression’ in our brains with those of other species. Meanwhile studies are underway to create a ‘connectome’ of the human brain.9 Just as the Human Genome Project mapped all the genes in our genome, so the Human Connectome Project aims to identify all the connections between different brain cells.
In addition, exciting new technologies now allow us to study the functional roles of individual genes and cells in the brain. For instance, optogenetics uses genetic engineering to make neurons in an animal brain become responsive to light.10 By beaming laser light into the living brain using fibre-optic cables, it is possible to stimulate—or supress—the activity of such neurons in the brains of experimental animals, and investigate their roles. And new forms of ‘gene editing’—discussed in my book Redesigning Life and later in this book—now mean that the function of specific genes in the brain can be investigated in practically any mammalian species, including our primate cousins, whose brains are most similar to ours in terms of size and structure.11 Gene editing makes it possible to totally eliminate a gene’s expression, or subtly modify its properties, akin to what happens in many human diseases, and then study the effects on
brain function. This allows the gene’s normal function to be ascertained, but can also identify potential genetic links with specific mental disorders.
Accompanying these technological advances are important recent conceptual shifts in our understanding of how the brain works. For instance, glial cells—the other main type of brain cell besides neurons— which were formerly thought to only play a supporting role, are increasingly recognized as far more active in transmitting information through the brain.12 Another important shift in our understanding concerns the role of the ‘non-coding’ genome in brain function. Until recently, the genome was defined primarily as the sum of the genes—the molecular entities that encode the proteins that form the building blocks of each living cell but also provide the motors and other molecular machinery that drive its activity. Yet genes account for less than 2 per cent of the genome, and recently there has been a realization that anything between an additional 8 and 80 per cent of the genome may have important roles too, the exact proportion with functional roles being a matter of lively debate.13
Amazingly, this portion of the genome—previously often termed ‘junk’ DNA—contains around four million switches that regulate the 22,000 or so protein-coding genes. It also produces many different types of RNA—DNA’s chemical cousin. Previously RNA was viewed merely as an intermediary between DNA and protein, but regulatory forms of the molecule have recently been shown to have key roles in their own right. One is regulating chemical modifications of the DNA genome and the proteins associated with it, in response to environmental signals. Such ‘epigenetic’ changes mean that the genome is far more affected by cellular activity, and that of the body as a whole than had been suspected.14
Perhaps most surprisingly, regulatory RNAs have been shown to be secreted by both neurons and glial cells and to travel to other cells in the brain, where they can then directly affect the functions of such cells.15 Indeed, recent studies suggest that RNAs generated by brain cells in response to stress can even travel via the blood to sperm cells, and are thereby transmitted to the embryo, carrying with them the ability to transmit stress and anxiety to the next generation.16 If that sounds somewhat worrying,
there is increasing evidence that more positive life events can beneficially affect the brain through epigenetic mechanisms.17
Yet while focusing on the molecular and cellular biology of the human brain is a crucial aspect of understanding how our minds work, it is unlikely to be enough on its own, for our brains are shaped by our social environment to a degree unique to our species. In this book, I argue that society radically restructures the human brain within an individual person’s lifetime, and that it has also played a central role in the past history of our species, by shaping brain evolution. So if we are truly to understand the human mind we must explain how the biological object that is the brain has become infused with this social influence. But in so doing, we must also steer a path between two overly polarized views of the human mind.
The first viewpoint was expressed by Jim Watson, co-discoverer of the famous double helix structure of DNA, who said of the Human Genome Project that ‘we used to think that our fate was in our stars, but now we know that, in large measure, our fate is in our genes.’18 This viewpoint can be applied to humans both as a species and as individuals. At the species level, it is linked with the idea that human behaviour and society are direct readouts of our genetic code, which is why the genome is sometimes referred to as the ‘blueprint’ of the species. Such a view may also be associated with the belief that supposedly universal human characteristics like competition, selfishness, sexism, homophobia, racism, and even a willingness to make war on other nations are intimately linked to our biology, and not just tendencies specific to the particular type of society in which we currently live.
At the individual level, this viewpoint seeks to explain differences between people—expressed via their personality, intellectual capacity, or sexuality—primarily at the level of genetics. For Jim Watson, ‘If someone’s liver doesn’t work, we blame it on the genes; if someone’s brain doesn’t work properly, we blame the school. It’s actually more humane to think of the condition as genetic. For instance, you don’t want to say that someone is born unpleasant, but sometimes that might be true.’19
Showing how widespread such views are among some sections of the scientific establishment, Daniel Koshland, former editor of Science magazine, when asked in 1989 why so much money was being invested in the Human Genome Project rather than used to help the homeless, replied, ‘What these people don’t realize is that the homeless are [mentally] impaired . . . Indeed, no group will benefit more from the application of human genetics.’20 Here, current social problems are reduced to a problem of the individual, rooted in a defective biology. But Koshland’s statement also reflects the optimistic view that it will be possible to identify a clear link between genes and mental disorders, thereby leading to revolutionary new drug treatments for such disorders.
The second viewpoint rejects the idea that human behaviour and society are primarily a matter of biology, but makes the equally bold assumption that genetics has little or no influence on how an individual turns out in life. Such a view was expressed forcibly by John Watson, founder of the behaviourist movement in psychology, who in 1930 said, ‘Give me a dozen healthy infants, well-formed, and my own specified world to bring them up in and I'll guarantee to take any one at random and train him to become any type of specialist I might select doctor, lawyer, artist, merchant-chief and, yes, even beggar-man and thief, regardless of his talents, penchants, tendencies, abilities, vocations and the race of his ancestors.’21
More recently, in 2013, the British Psychology Society (BPS) issued a statement attacking what it calls the ‘biomedical model’ of mental disorders, which many BPS members see as the dominant standpoint of most psychiatrists and one that views such disorders primarily as illnesses to be treated using drugs. Instead Lucy Johnstone, a clinical psychologist who helped draw up the statement, rejects the idea that mental disorders have any biological basis, saying that ‘On the contrary, there is now overwhelming evidence that people suffer breakdown as a result of a complex mix of social and psychological circumstances—bereavement and loss, poverty and discrimination, trauma and abuse.’22
This statement is interesting because it suggests that psychiatrists and clinical psychologists—the two main sets of health professionals that
treat mental disorders—fundamentally disagree about the basis for mental disorders, despite having to work together to diagnose and treat such disorders. So what is the best way to resolve this dilemma? In this book I will make the case that focusing solely on biology or environment alone is unlikely to provide us with a proper picture of how the mind works, or explain why some individuals rather than others succumb to mental disorders. I will argue that purely biomedical, or psychological, views of the mind and its disorders both suffer from major flaws that restrict our understanding of how the human brain and mind work, and also adversely influence our ability to properly diagnose and treat serious mental disorders.
A central problem with the view that mental disorders are primarily due to differences in an individual’s DNA has become apparent following attempts to define such clear genetic links in the wake of the Human Genome Project. At the project’s conclusion, Daniel Koshland was far from alone in believing that clear genetic links for ‘illnesses such as manic depression, Alzheimer’s, schizophrenia, and heart disease’ would soon be uncovered, providing new targets for drug design.23 To identify such links, over recent decades, millions of dollars have been invested in so-called ‘genome-wide association studies’ (GWAS).24
Yet while GWAS have identified over a hundred links between different regions of the genome and schizophrenia, the vast majority are not even in the genes themselves but in non-protein-coding regions, and each apparently contributes only a tiny amount to the chance of succumbing to this disorder.25 This seems to make a mockery of the idea that just a few ‘schizophrenia genes’ strongly influence an individual’s chance of succumbing to this disorder. What is more, this scenario is being repeated for other common mental disorders.
As we shall see, another explanation for these findings is that rather than many small genetic differences contributing to a disorder, instead particular affected individuals may have genetic differences that contribute strongly to their chance of getting a disorder, but are rare in the population as a whole. But it remains far from clear whether this is true for a
disorder as a whole, or only for a proportion of affected individuals. Either way, both scenarios pose potential problems for the development of new drug treatments, for if many genetic differences, each with a tiny effect, contribute to a disorder like schizophrenia, how could these be targeted simultaneously with drugs? Or if rare gene variants are the key to understanding mental illness, each different in a specific individual, then could targeting such variants really form a viable economic strategy? Perhaps most importantly, a focus on genetic differences alone neglects the fact that these may only create a predisposition in a highly specific set of environmental circumstances, so that they are far from deterministic in their action, and may even be irrelevant in most other circumstances.
Indeed, the biomedical model as a whole, and therapies designed around it, may require a major rethink as we learn more about the brain’s intricate structure, and the way that genes—and mutations in these genes—affect its overall function. A still common view in psychiatry is that serious mental disorders are due to an imbalance in neurotransmitters—the chemicals that transmit signals between neurons—in the brain.26 So schizophrenia is believed to be caused by an excess of dopamine, while depression is due to a lack of another neurotransmitter, serotonin, also known as 5-HT. Bipolar disorder presents a challenge to this view since sufferers fluctuate between depression and psychotic mania, as this disorder’s previous name—manic depression—indicates. Here the idea is that the fluctuating moods are due to cyclical changes in serotonin, dopamine, and a third neurotransmitter, noradrenaline.
One problem with viewing the human brain as a vat of chemicals, with excesses or deficiencies of particular chemicals causing a particular disorder, is that this contradicts new insights about its intricate structure. Although neurotransmitters play key roles in normal brain function, so that alterations in their action may underlie particular mental disorders, such changes only make sense in the context of the detailed neural circuits that constitute the functional architecture of the brain and its sub-regions. The chemical imbalance viewpoint may also be based on a faulty interpretation of how some drugs used to treat mental disorders actually
work. Selective serotonin re-uptake inhibitors (SSRIs), of which the most well known is the drug Prozac, are commonly used to treat depression.27 SSRIs increase the concentration of serotonin in the brain by blocking its re-uptake by neurons, which has led to the claim that depression is caused by a serotonin deficiency.
Yet recent evidence suggests that SSRIs may also stimulate the growth of new neurons.28 Such neurogenesis is becoming recognized as a very important process in the adult human brain, in contrast to previous beliefs that it only occurred in the embryo, foetus, and child. Defects in neurogenesis may therefore underlie some types of depression, which is why SSRIs can be effective as a treatment. But lest we get too carried away with substituting one explanation for depression with another, it is important to note that a significant number of seriously depressed individuals fail to respond to SSRIs, my sister being a tragic example in my own family. Coupled with the fact that genetic evidence is pointing to a variety of underlying biological causes for depression, it seems likely that we will need to revise ideas that view such a biological link in an overly simplistic and unitary fashion.
If these are some of the problems with the biomedical model of mental disorders, what about the idea that such disorders are solely socially and psychologically based? I have already mentioned the behaviourist movement in psychology, which was pioneered by John Watson and later by B. F. Skinner, becoming particularly influential in the mid-twentieth century. Behaviourism was initiated by the Russian psychologist Ivan Pavlov’s observation that dogs salivate not only when presented with food, but also when in the presence of a human laboratory assistant whom the dogs associate with bringing that food.29 This led to Pavlov’s famous experiment in which he showed, by ringing the bell at the same time as the food was presented, that a dog could eventually be trained to salivate in response to a bell alone.
Behaviourism developed into the view that all behaviour, including that of humans, is due to conditioned reflexes.30 Behaviourists believed that the brain could be treated as a ‘black box’, whose specific biology was
irrelevant to understanding how the stimuli that entered it resulted in subsequent actions. Eventually there was a backlash against the idea that all human behaviour can be seen as equivalent to rats pressing levers to get a reward. Yet the influence of behaviourism on psychology today is more pervasive than is often realized.
The dominant current view in psychology is ‘cognitive behaviourism’.31 Like classical behaviourism, this sees the human mind as something that processes incoming information and generates a response. However, this viewpoint does not believe that the specific structure of the mind can be totally ignored; instead, it sees the mind as similar to a computer, and with humans having a bigger brain in proportion to body size than other animals, the extra information processing that occurs within our brains is assumed to explain the distinctive features of human consciousness. Based on this model, the standard method of treatment used by many psychologists today is ‘cognitive behavioural therapy’ (CBT).32 This views people with a disorder like depression as being trapped in a vicious cycle of negative thoughts and feelings. It does not ignore the fact that depression may reflect real dilemmas in a person’s life, but argues that the best way out of the depressive state is to break down problems that seem overwhelming into smaller parts, allowing exit from a pathological cycle.
In contrast to Freudian psychoanalysis, which looks for the source of mental illness in the past, CBT is more focused on the present. As an approach for treating mental disorders, CBT is very influential, being the main form of therapy used by the British National Health Service (NHS).33 To some extent this is because, unlike psychoanalysis with its expensive therapy sessions extending often over several years, led by practitioners who are required to have undergone extensive training, CBT can be carried out by less skilled practitioners, over a much shorter space of time. Because of this apparent cost-effectiveness, CBT has sold itself as a pragmatic, scientific approach to the treatment of mental disorders. And indeed I have benefited from this approach myself in that it has helped me
deal with the effects of various traumatic deaths in my family, as well as with more mundane life incidents.
Yet recently doubts have been raised about the value of this type of therapy, at least for serious mental disorders. So Tom Johnsen and Oddgeir Friborg of the University of Tromsø in Norway conducted a ‘meta-analysis’—an approach that uses statistics to integrate the findings of multiple independent studies—to assess 70 studies, conducted between 1977 and 2014, that looked at the use of CBT in treating depression.34 This analysis indicated that the therapy is only half as effective at treating this disorder now as when it first began to be used in the 1970s. So what could be responsible for this startling decline?
One explanation is that cuts in healthcare budgets mean the quality of therapy has decreased, as the length of sessions is reduced or less experienced therapists are employed. But another explanation is that early publicity around this approach made it seem like a miracle cure, so it may have functioned like one initially by virtue of the placebo effect, whereby a patient experiences an improvement in their condition due to personal expectations, rather than because of the treatment itself. Now expectations are more realistic, the effectiveness of CBT has fallen as a consequence.
For psychotic disorders like schizophrenia, the situation is even more problematic. Although initial meta-analyses suggested that around 50 per cent of schizophrenics showed a significant reduction of symptoms following CBT, more recent ones indicate that only 5 per cent of people benefited significantly compared to untreated individuals. Most troubling was a meta-analysis published in the British Journal of Psychiatry in 2014.35 The largest of its kind, this examined the effects of CBT in 3,000 schizophrenics. The analysis revealed a ‘small’ therapeutic effect in reducing symptoms like delusions and hallucinations, yet even this minor effect disappeared in studies conducted ‘blind’, that is when effects were assessed without knowledge of whether an individual had undergone therapy or was left untreated.
The failure of both pharmacological and ‘talking cure’ therapies to effectively treat many cases of serious mental disorder comes with a high human cost. Figures released by the British NHS in 2016 showed that the number of annual deaths of mental health patients in England had risen by 21 per cent over the previous three years.36 The number of mentally distressed patients who killed themselves, or tried to do so, rose by 26 per cent over the same period. This surge in deaths may be partially due to cuts in the health services and support networks available to help such people. According to Paul Farmer, chief executive of Mind (a British mental health charity) and chair of NHS England’s mental health taskforce, ‘Suicides among people in touch with crisis resolution and home treatment teams—which are there to support people in crisis to stay in their own homes rather than be admitted to hospital—have increased significantly. These teams have in recent years been starved of funding and in some cases have been disbanded altogether or else merged into community teams, losing their specialist function.’37 However, Simon Wessely, president of the Royal College of Psychiatrists, believes that the apparent dramatic increases may be more a reflection of healthcare staff being more likely to report such events.38
What is clear is that the incidence of reported mental disorder is rising at the same time as healthcare services seem increasingly unable to cope with increased demand. In Britain, the number of people seeking help for mental health problems increased by more than 40 per cent between 2005 and 2015, and the number of prescriptions for antidepressant drugs rose by more than 100 per cent during this period.39 Meanwhile, the number of specialist mental health nurses fell by more than 10 per cent over that time. While such figures may seem like mere numbers to many people, to those grieving the loss of a loved one who ended their life following a mental disorder, they serve as a grim reminder of how different things might have been with better resources. In the case of my sister’s suicide, the coroner concluded that she was ‘discharged too informally by those responsible for her with no paperwork and no advice to the family on
how to help her.’40 Of course it is easy with hindsight to imagine what might have been, but there seems little doubt that the erosion of NHS services has had a negative impact on mental health diagnosis and treatment.
In the USA, the lack of a publicly funded health service like the NHS means that the situation for people with mental disorders is even worse.41 Until recently, even those with a private health insurance plan were not covered for mental illness. In November 2013 President Barack Obama’s health reforms forced insurance companies to cover mental disorders in the same way as other medical conditions.42 Yet the legacy of this lack of cover means that the infrastructure to deal with mental disorders remains woefully inadequate. Paul Appelbaum, a psychiatrist and expert on legal issues in medicine at Columbia University, New York, has noted that ‘right to care does not mean access to treatment. Tens of millions of people who did not have insurance coverage may now be prompted to seek mental health treatment. And the capacity just isn’t there to treat them. There really is no mental health system in the US.’43 As a consequence, more than half a million US citizens with serious mental illness are falling through the cracks of society, leading Tim Murphy, a child psychologist and Republican congressman, to remark that ‘we have replaced the hospital bed with the jail cell, the homeless shelter and the coffin. How is that compassionate?’44
While US states have been reducing hospital bed places for decades, the worst cuts occurred following the recession that began in 2008, with $5 billion disappearing from mental health services budgets from 2009 to 2012.45 In the same period, 4,500 public psychiatric hospital beds—nearly 10 per cent of the total supply—were lost in the USA. According to the 2012 US National Survey on Drug Use and Health, nearly 40 per cent of adults with ‘severe’ mental illness received no treatment at all.46 One possible consequence of this situation is mass shooting incidents, reports of which now regularly punctuate the US news. Yet a less reported but ultimately far greater loss is the number of Americans who commit suicide each year, with, for instance, almost 45,000 people taking their own
lives in the USA in 2016—a fate that claims the lives of more citizens than car accidents, prostate cancer, or homicides, according to the US Centers for Disease Control and Prevention.47 Worryingly, the US suicide rate increased 33 per cent from 1999 to 2017, with rates rising particularly sharply since 2006.48 So while the US suicide rate increased by about 1 per cent a year from 2000 to 2006, that rate doubled from 2006 to 2016.49 And although suicide is the starkest indicator of mental distress, there are others; so drug overdoses claimed 70,000 US lives in 2017. Because of this, US life expectancy, perhaps the broadest measure of a nation’s health, fell from 2016 to 2019, in part because of the rise in drug overdoses and suicides.50 This was the biggest three-year drop since the years 1915 to 1918.
Mental health problems cause misery for sufferers and their families, but also have an economic impact; for instance they cost the British economy £110 billion a year, according to a 2009 report by the Royal College of Psychiatrists, the London School of Economics, and the NHS Mental Health Network.51 Obviously, a better resourced health service would be a key step to helping people with mental disorders, but improving the treatments—based on both drugs and psychotherapy—available for such people is also critical. Ultimately, the possibility of such an improvement rests on a better understanding of how the human mind works, and how this relates to human brain function, topics with which this book will be concerned. Here though we face a problem, for while there are many different viewpoints about these subjects, what is lacking is a unifying framework that binds them together.
This problem is not new. In 1934, comparing viewpoints about the mind at that time, the Russian psychologist Lev Vygotsky stated that ‘there exist many psychologies, but [no] unified psychology.’52 At the time, three particularly influential views were introspective psychology, behaviourism, and psychoanalysis. Introspective psychology, pioneered by individuals like William James (brother of novelist Henry James) sought to understand the human mind by questioning individuals about their innermost thoughts. Behaviourism, as already mentioned, was stimulated by Ivan Pavlov’s discovery of conditional reflexes. The third viewpoint, psychoanalysis,
developed from Sigmund Freud’s discovery that the neurotic individuals he analysed seemed to be supressing important thoughts and desires, particularly those relating to sex, leading to the idea of an unconscious mind coexisting alongside the conscious one.
Vygotsky believed that James, Pavlov, and Freud had all provided important insights, but he pointed to two problematic tendencies within the schools of thought that grew from these insights. The first was for each to develop into an all- encompassing view of the mind that tended to exclude other viewpoints; the second was for this world view to collapse under the weight of its own internal contradictions. 53 The first tendency was illustrated by the way behaviourism developed into the idea that all human behaviour is merely a series of conditioned reflexes. In contrast, Freudian psychoanalysis viewed an individual’s behaviour, and even human society as a whole, as a battle between the conscious and unconscious mind. Meanwhile, introspective psychology argued that only the individual can truly assess his or her innermost feelings. These mutually exclusive ways of viewing the mind meant that ‘any behavioural or mental act being expressed in terms of these three systems would acquire three entirely different meanings.’ 54 The second tendency involved a view of the mind expanding to the point that it became almost a parody of the original insight. So Freud’s view that unconscious impulses are primarily due to repressed sexuality led to his eventually trying to explain all of human society in this way, so much so that he came to see ‘communism and totem, religion and Dostoevsky’s writings, occultism and commercials, myth and Leonardo da Vinci’s inventions [as all] just a libido in disguise and nothing else.’ 55
Given that Vygotsky was writing in the early twentieth century, one might wonder how relevant his arguments are today. Yet almost a century later, it is far from clear whether contemporary mainstream viewpoints about the mind are any more unified. As I have already highlighted, the two views of the mind that dominate clinical practice—the biomedical model espoused by most psychiatrists, and the cognitive behavioural