Mathematical physics with differential equations yisong. yang all chapter instant download

Page 1


https://ebookmass.com/product/mathematical-physics-withdifferential-equations-yisong-yang/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Asymptotic Perturbation Methods: For Nonlinear Differential Equations in Physics Attilio Maccari

https://ebookmass.com/product/asymptotic-perturbation-methods-fornonlinear-differential-equations-in-physics-attilio-maccari/ ebookmass.com

eTextbook 978-1305965799 Differential Equations with Boundary-Value Problems

https://ebookmass.com/product/etextbook-978-1305965799-differentialequations-with-boundary-value-problems/

ebookmass.com

Differential Equations with Boundary-Value Problems 9th Edition Dennis G. Zill

https://ebookmass.com/product/differential-equations-with-boundaryvalue-problems-9th-edition-dennis-g-zill/

ebookmass.com

Translational Autoimmunity, Volume 1 : Etiology of Autoimmune Diseases

Nima Rezaei

https://ebookmass.com/product/translational-autoimmunityvolume-1-etiology-of-autoimmune-diseases-nima-rezaei/

ebookmass.com

A Man of Legend Linda Broday

https://ebookmass.com/product/a-man-of-legend-linda-broday-7/

ebookmass.com

The Assassin's Curse (Cursed Blood Book 4) J.D. Monroe

https://ebookmass.com/product/the-assassins-curse-cursed-bloodbook-4-j-d-monroe/

ebookmass.com

Good Faith in Contractual Performance in Australia 1st ed. Edition Nurhidayah Abdullah

https://ebookmass.com/product/good-faith-in-contractual-performancein-australia-1st-ed-edition-nurhidayah-abdullah/

ebookmass.com

Winning the Loser's Game Charles D. Ellis

https://ebookmass.com/product/winning-the-losers-game-charles-d-ellis/

ebookmass.com

High Stakes Danielle Steel

https://ebookmass.com/product/high-stakes-danielle-steel-2/

ebookmass.com

A Little Discovery (Manor Drive Book

https://ebookmass.com/product/a-little-discovery-manor-drivebook-1-kate-bauer-k-a-bauer/

ebookmass.com

MathematicalPhysicswithDifferentialEquations

MathematicalPhysicswith DifferentialEquations

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©YisongYang2023

Themoralrightsoftheauthorhavebeenasserted Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2022943690

ISBN978–0–19–287261–6 ISBN978–0–19–287262–3(pbk.)

DOI:10.1093/oso/9780192872616.001.0001

Printedandboundby

CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

4.1Inertialframes,Minkowskispacetime, andLorentzboosts

5.1Spacetime,covariance,andinvariance

5.2Relativisticfieldequations

5.3Couplednonlinearhyperbolicandelliptic equations

6.4Diracequationcoupledwithgauge field

6.5DiracequationinWeylrepresentation

7.1Perfectconductors,superconductors, andLondonequations

8.1Energypartition,fluxquantization, andtopologicalproperties

8.2Vortex-lines,solitons,andparticles

9Non-Abeliangaugefieldequations

dyon

10Einsteinequationsandrelatedtopics

11ChargedvorticesandChern–Simonsequations

13Stringsandbranes

13.1Motivationandrelativisticmotionoffree particleasinitialsetup

13.2Nambu–Gotostrings

13.3 p-branes

14Born–Infeldtheoryofelectromagnetism

ofpointcharges

Preface

Thisbookaimstopresentabroadrangeoffundamentaltopicsintheoretical andmathematicalphysicsinathoroughandtransparentmannerbasedonthe viewpointofdifferentialequations.Thesubjectareascoveredincludeclassical andquantummany-bodyproblems,thermodynamics,electromagnetism, magneticmonopoles,specialrelativity,gaugefieldtheories,generalrelativity, superconductivity,vorticesandothertopologicalsolitons,andcanonical quantizationoffields,forwhich,differentialequationsareessentialfor comprehensionandhaveplayed,andwillcontinuetoplayimportantroles. Overthepastdecade,theauthorhasusedmostofthesetopicsatseveral universities,domesticallyandinternationally,ascoursesandseminarsmainly formathematicalgraduatestudentsandresearcherstrainedandinterestedin differentialequations.Theseactivitiesandexperiencesconvincedtheauthor thatmanyoftheconcepts,construction,structures,ideas,andinsightsof fundamentalphysicscanbetaughtandlearnedeffectivelyandproductively, withemphasisonwhatareofferedbyordemandedfromdifferentialequations.

Withthisinmind,thebookhasseveralgoalstoaccomplish.Firstly,thestyle ofthepresentationhopefullyprovidesahandyanddirectaccesstoapproach thesubjectsdiscussed.Secondly,itservestorenderafairlywideselection ofthemesthatmayfurtherbetailoredforagraduate-levelmathematical physicscurriculumoutoftheindividualpreferenceoftheinstructororreader. Thirdly,itsuppliesabalancedpooloftopicsforupper-levelorhonors undergraduateseminars.Fourthly,itoffersguidanceandstimulationtothe relatedcontemporaryresearchfrontiersandliterature.

Exceptforknowledgeondifferentialequations,theprerequisiteforthereader ofthebookiskeptminimal,althoughcertainlevelsofacquaintancewith undergraduategeneralphysicsishelpfulforthereadertoproceedsmoothly. Thus,thebookbeginswithclassicalmechanicsincanonicalformalismandmoves ontovariousadvancedsubjects.However,unlessneeded,thebookexcludes specializedtopicsoftraditionalclassicalmechanicssuchasfluidsandelasticity theories,sincetheyaretreatedextensivelyelsewhereintheliterature.The bookmaybeusedforself-study,asatextbook,orasasupplementalsource bookforacourseinmathematicalphysicswithconcentrationandinterestsin quantummechanics,fieldtheory,andgeneralrelativity,emphasizinginsights fromdifferentialequations.

Whilethebookholdsfifteenchapters,eachchaptermaybestudiedor presentedseparatelyinamoreorlessself-containedmanner,dependingon interestsandreadinessofthereaderoraudience.

InChapter 1,westartwithapresentationofthecanonicalformalismof classicalmechanics.Wethenconsidertheclassicalmany-bodyproblemsin three-,two-,andone-dimensionalsettings,subsequently.Specifically,inthree dimensions,wediscussthemany-bodyproblemgovernedbyNewton’sgravity, consolidatedbyathoroughstudyofKepler’slawsofplanetarymotionanda derivationofNewton’slawofgravitation,asaby-product;intwodimensions,we introducetheHelmholtz–Kirchhoffpoint-vortexmodel;and,inonedimension, wepresentadynamicalsystemprobleminbiophysicsknownastheDNA denaturation.Forthisthirdsubjectwealsoexplainhowtoimplementideas ofthermodynamicstostudyatemperature-dependentmechanicalsystem.The goalofthischapteristolayaLagrangianfield-theoreticalfoundationforfield theoryandenlightenthestudywithsomeexemplaryapplications.

InChapter 2,weconsiderquantummany-bodyproblems.Weexplainhowthe Schrödingerequationisconceptualizedandthestatisticalinterpretationofthe wavefunction.Then,weformulatethequantummany-bodyproblemdescribing anatomicsystemanddiscussthehydrogenmodelasanillustration.Next, weshowhowtheHartree–Fockmethod,Thomas–Fermiapproach,anddensity functionaltheorymaybeutilizedinvarioussituationsascomputationaltoolsto findthegroundstatesolutionofaquantummany-bodyproblem.Aninitialgoal ofthischapteristoillustrateamonumentaltransitionfromclassicaltoquantum mechanicsbasedontheSchrödingerequationrealizationofthephotoelectric effect.Asecondgoalofthischapteristointroducesomemathematicalchallenges presentedbyquantummany-bodyproblems.Herethestudyofthehydrogen modelservesasamotivatingstartingpointofthequantummany-bodyproblem, whichnaturallyleadstothedevelopmentofsubsequentanalyticmethodsof computationalsignificancewhenthedimensionoftheproblemgoesup.In particular,weshowthatthequantum-mechanicaldescriptionofamany-body problem,whoseclassical-mechanicalbehaviorisgovernedbynonlinearordinary differentialequations,isnowgivenbyalinearpartialdifferentialequation, andthatappropriateapproximationsofsuchalinearequationnecessitatethe formulationofvariousnonlinearequationproblemsinrespectivelyspecialized situations.

Chapter 3 isastudyoftheMaxwellequationsandsomedistinguished consequences.First,wepresenttheequationsanddiscusstheassociated electromagneticdualityphenomenon.WenextformulatetheDiracmonopole andDiracstringsandshowhowtouseagaugefieldtoresolvetheDiracstring puzzleandobtainDirac’schargequantizationformula.Wedemonstratehowthis ideainspiredSchwingertoderiveageneralizedquantizationformulaforaparticle carryingbothelectricandmagneticcharges,knownasdyon.Wethenpresentthe Aharonov–Bohmeffectforwaveinterference,whichdemonstratesthesignificant rolesplayedbythegaugefieldandtopologyofasystematquantumlevel.The goalofthischapteristoappreciatehowsomeofthefundamentalandrich contentsofelectromagneticinteractionmaybeinvestigatedproductivelythrough exploringthestructuresofthedifferentialequationsgoverningtheinteraction.

Specifically,bycomplexifyingthewaveequation,weobtainanovelderivation oftheMaxwellequations,whichalsoembodiesaclearandnaturalrevelationof theelectromagneticduality,and,byconsideringthetopologicalpropertiesofthe solutionstotheMaxwellequations,wearriveatthefindingsofDirac,Schwinger, andAharonov–Bohm.

Chapter 4 isasuccinctintroductiontospecialrelativity.Sincemostofthe subjectscoveredinthistextareconcernedwithrelativisticfieldequations,some solidknowledgeonspecialrelativityisnecessary.Thuswecarryoutastudy ofspecialrelativityinthischapter.Wefirstdiscussspacetime,inertialframes, andtheLorentztransformations.Wepresenttopicsthatincludespacetimeline element,propertime,andaseriesofnotions,includinglengthcontraction,time dilation,andsimultaneityofevents.Then,westudyrelativisticmechanics. Althoughthischapterisshort,itsgoalistoserveasthefoundationfor manyfollowingchapters,includingthoseontheDiracequations,gaugefield theory,generalrelativity,andtopologicalsolitons.Inparticular,theLagrangian actionforthemotionofarelativisticparticlewillbethestartingpointforthe formulationoftheNambu–GotostringactionandtheBorn–Infeldtheory.

InChapter 5,wepresenttheAbeliangaugefieldtheory.Westartwithan introductiontothenotionsofcovariance,contravariance,andinvariancefor quantitiesdefinedoveraspacetime.WeformulatetheKlein–Gordonequation, whichisarelativisticextensionoftheSchrödingerequation.Wethenshow thatagaugefieldisbroughtupagainnaturallyinordertopromotetheinternal symmetryofthesystemfromglobaltolocalsuchthattheMaxwellequationsare deducedasaconsequence.Furthermore,wediscussvariousconceptsofsymmetry breakingandillustratetheideasoftheHiggsmechanismasanotherimportant applicationofgaugefieldequations.Agoalachievedinthischapteristhata vistaofimportantphysicalconsequencesmaybeobtainedfromexaminingsome basicstructuralaspectsoftheequationsofmotionwithoutsufficientknowledge abouttheirsolutions.

Chapter 6 centersaroundtheDiracequation.Wefirstshowhowtoobtainthe classicalDiracequationandwhatimmediateconsequencestheequationoffers incontrasttotheKlein–Gordonequation.WenextconsidertheDiracequation coupledwithagaugefieldandpresentitsSchrödingerequationapproximations inelectrostaticandmagnetostaticlimits,respectively.Inparticular,wederive theStern–Gerlachterm,whosepresenceisessentialfortheexplanationofthe Zeemaneffect.WethenreviewsomenonlinearDiracequations.Thisstudy showsthatsometimesprofoundphysicsmaybeunveiledunexpectedlythrough anexplorationofsomedeeplyhiddeninternalstructuresofthegoverning equations.

Chapter 7 coverstheGinzburg–Landautheoryforsuperconductivity.We beginwithadiscussionofperfectconductors,superconductors,theMeissner effect,theLondonequations,andthePippardequation.Wenextpresentthe Ginzburg–Landauequationsforsuperconductivityandshowhowtocomeup withtheLondonequationsintheuniformorder-parameterlimitanddemonstrate theMeissnereffect.Wethenstudytheclassificationofsuperconductivityin viewofsurfaceenergyanddiscusstheappearanceofmixedstatesintype IIsuperconductors.Weendthechapterwithareviewofsomegeneralized

Ginzburg–Landauequations.Thisstudyretracesthehistoricalpathregarding howdifferentialequationsofvariedsubtletieshavebeenexploitedinlinewith real-worldobservationstoadvancetheunderstandingofsuperconductivity. Inparticular,italsodescribesanunsolvedtwo-pointboundaryvalue problem,arisingintheGinzburg–Landautheory,fortheclassificationof superconductivity.

Chapter 8 growsoutofthesubjectscoveredinChapter5andChapter7. Specifically,inthischapter,wefocusonthestaticAbelianHiggstheoryorthe Ginzburg–Landautheoryintwodimensions,whichpossessesadistinctiveclass ofmixed-statesolutionsofatopologicalcharacteristicknownasvortices.We describesuchsolutionsindetailinviewofseveralimportantfacetsincluding energyconcentration,vortex-linedistribution,quantizationofmagneticfluxor charge,andexponentialdecayproperties.Wealsodiscusstheuseofsuchvortexlinesolutionsinalinearconfinementmechanismformagneticmonopoles,a topicactivelypursuedinquarkconfinementresearchinrecentyears.Thisstudy showsagaintheapplicationsofsolutionsofgaugefieldequations,oftopological characteristics,tofundamentalphysics,ofbothquantitativeandconceptual values.

InChapter 9,wemoveontothesubjectofnon-Abeliangaugefieldtheory. Wefirstpresentthetheoryonagenerallevel,andthenspecializeonthe Yang–Mills–Higgstheory.Wediscussaseriesofconcreteformalismsincluding theGeorgi–GlashowmodelandtheWeinberg–Salamelectroweaktheory.We alsoillustratesomeimportantfamiliesofsolutionssuchasthe’tHooft–Polyakovmonopole,Julia–Zeedyon,andBogomol’nyi–Prasad–Sommerfield explicitsolution.Themaingoalofthischapteristopresentabroadfamily ofnonlinearpartialdifferentialequationsofimportanceinelementaryparticle physics.

InChapter 10,westudytheEinsteinequationsofgeneralrelativityand relatedsubjects.WebeginwithanintroductiontothebasicsofRiemannian geometryandthenpresenttheEinsteintensorandtheEinsteinequations forgravitation.Subsequently,weunfoldourdiscussionmainlyaroundspecial solutionsoftheEinsteinequations,categorizedintotime-dependentspaceuniformsolutionsandtime-independentspace-symmetricsolutions.Inthe formercategory,weelaborateonthecosmologicalconsequencesandimplications richlycontainedinvarioussolutionsoftheFriedmanntypeequationsunderthe Robertson–Walkermetric,whichincludetheBigBangcosmologicalscenario, patternsofexpansionoftheuniverse,andanestimateoftheageoftheuniverse. Inthelattercategory,webeginwithapresentationoftheSchwarzschildsolution andadiscussionofseveralnotionsunveiled,suchastheeventhorizonand blackhole.WethenpresentaderivationoftheReissner–Nordströmsolution forablackholecarryingbothelectricandmagneticchargesanddiscussits consequences.WewillalsodiscusstheKerrsolutiondescribingarotatingblack hole.Afterwards,weconsiderthegravitationalmassproblemandthePenrose boundsasadditionalthemes.Wenextpresentadiscussionofgravitationalwaves intheweak-fieldlimit.Weconcludethechapterwithastudyofthecosmological expansionofanisotropicandhomogeneousuniversepropelledbyascalar-wave

matterknownasquintessence.ThemaingoalofthischapteristousetheEinstein equationsasakeytoaccessabroadrangeofgravity-relatedresearchdirections ofcontemporaryinterests.

Chapter 11 isaboutchargedvorticesandtheChern–Simonsequations.For conciseness,wefocusonthesimplestAbeliansituations.Wefirstpresentthe Julia–Zeetheoremanditsproof,whichstatesthatfinite-energyelectrically chargedvortices,whicharestaticsolutionsintwodimensions,donotexistin theusualYang–Mills–Higgstheory.Thus,somemodificationofthetheoryis tobemadeinordertoaccommodatechargedvortices,andtheadditionofa Chern–SimonstopologicaltermtotheLagrangianactiondensitywillservethe purpose.Inthischapter,ourgoalistopresentabriefintroductiontotheChern–Simonsvortexequations.Besidesthemotivationforallowingelectricallycharged vortices,otherapplicationsoftheChern–Simonstheoryincludeanyonphysics ofcondensedmatters,gravitytheory,andhigh-temperaturesuperconductivity, wherenon-Abelianstructuresarealsoabundantlyutilized.Itishopedthat thisintroductionwillservetosparkinterestandinspirationinthestudyof anenormousfamilyofpartialdifferentialequationproblemsofchallenges,under thesharedtitleoftheChern–Simonsvortexequations.

InChapter 12,weconsidertheSkyrmemodelandsomerelatedtopics.We beginwithanexplorationofthewell-knowndimensionalityconstraintsbrought forthbytheDerricktheoremandthePohozaevidentity.Wethenintroduce theSkyrmemodeltomaneuveraroundthedimensionalityconstraints.Asa relatedtopic,wewillalsodiscusstheFaddeevmodel,whichmaybeviewed asadescentoftheSkyrmemodelandwhichbringsaboutknot-likesolutions characterizedbyfractionally-poweredgrowthlawsrelatingenergytotopology. Inaddition,wepresentadiscussionofColeman’sQ-ballmodel,whichalsohasno dimensionalityrestriction.Duetothedifficultiesassociatedwiththestructuresof thenonlinearitiesandtopologicalcharacteristicsofthesefield-theoreticalmodels, ithasbeenadauntingtasktoconsidertheequationsofmotiondirectly,except innumericalstudies,andoneneedstofocusontheirvariationalsolutions.In eithersituation,hopefullythischapterservesasaninvitationtomanyrelated researchtopics.

Chapter 13 isashortdiscussiononstringsandbranes.Wefirstrevisitthe relativisticmotionofafreeparticleandsubsequentlyformulatetheNambu–Gotostringequations.Wethenextendthestudytoconsiderbranesandtheir governingequations.WenextpresentthePolyakovstringsandbranesand theirequationsofmotion.Thus,ourgoalofthischapteristoemphasizethe challengesanddifficultiesencounteredinthesehighlygeometricandnonlinear partialdifferentialequationsasclassicalfield-theoryequations.Exceptin someextremelysimplifiedorreducedlimits,theseequationsarenotyetwell understood,regardingtheirsolutions.

InChapter 14,wepresenttheBorn–Infeldtheoryofelectromagnetismand someoftheassociatedmathematicalproblems.Tostart,werecalltheenergy divergenceproblemofthepoint-chargemodeloftheelectronandtheideaof BornandInfeldintacklingtheproblembasedonarevisionoftheactiondensity motivatedbyspecialrelativity,sometimesreferredtoasthefirstformulationof

BornandInfeld.Withinthisformalism,weconsidersomeinterestingillustrative calculationsaroundtheelectricanddyonicpointchargeproblems.Wenext presentthesecondformulationofBorn–Infeldbasedoninvarianceconsideration andshowhowtoresolvetheenergydivergenceproblemassociatedwithadyonic pointchargeencounteredinthefirstformulationofBornandInfeld.Wethen relatetheBorn–Infeldequationstotheminimalsurfaceequationsandpropose somegeneralizedBernsteinproblems.Subsequently,weconductadiscussion ofaninteger-squaredlawofauniversalnatureregardingtheglobalvortex solutionsoftheBorn–Infeldequationsintwodimensions.Furthermore,we alsopresentaseriesofelectricallyanddyonicallychargedblackholesolutions oftheEinsteinequationscoupledwiththeBorn–Infeldequations.Thereafter, weconsiderthegeneralizedBorn–Infeldtheoriesandpresentsomeinteresting applications,includinganonlinearmechanismforanexclusionofmonopoles asfinite-energymagneticallychargedpointparticles,relegationandremovalof curvaturesingularitiesofchargedblackholesoftheReissner–Nordströmtype, andtheoreticalrealizationsofcosmologicalexpansionandequationsofstateof cosmologicalfluidsthroughappropriateBorn–Infeldscalar-wavemattersinthe formofk-essence.Insomesense,thischaptermayberegardedasagaugefieldorscalar-fieldextensionofthesubjectsdiscussedinChapter13.Therefore, thedifficultiesweencounterherearesimilartothosethere.Ontheother hand,withinthelimitationoftheBorn–Infeldtheory,hereweareableto seehowrealprogressismadeformanyimportantissuesofconcern,suchas theresolutionofanelectricpointchargeofdivergentenergy,electromagnetic asymmetry,singularityrelegationforchargedblackholes,andk-essencescalar fieldcosmology,allbasedonpursuingspecialsolutionsofthegoverningequations invarioussituations.

Chapter 15 isthefinalchapterandprovidessometasteoffieldquantization andafurtherviewexpansion.Forclarityandconciseness,ourdiscussion willbeclusteredaroundharmonicoscillators.Westartwithastudyofthe quantummechanicsofharmonicoscillatorsbasedoncanonicalquantization. WenextconsidertheHamiltonianformalismofgeneralfieldequationsinterms offunctionalderivativeandcommutators.Wethenshowhowtoquantizethe Klein–GordonequationandtheSchrödingerequation.Indoingso,weencounter thewell-knowninfinityproblemarisingfromadivergentzero-pointenergy, whichgivesusanopportunitytoexplaintheconceptofrenormalization.We thenmoveontoquantizetheMaxwellequationsthatgovernelectromagnetic fieldspropagatinginfreespace.Wefocusourattentiononthequantization ofenergy,momentum,andspinangularmomentumdirectly,ratherthan theelectromagneticfieldsthemselves,andderivethePlanck–Einsteinand Compton–Debyeformulasforthephotoelectriceffectandphotonspininthe contextofquantumfieldtheory.Weconcludethechapterwithadiscussion ofthethermodynamicsofaharmonicoscillator,bothclassicallyandquantum mechanically,suchthatweareabletocomeupwithapictureabouttherelation, rangesofapplicabilityandlimitation,andtransitionwithregardtotemperature, ofclassicalandquantum-mechanicaldescriptionsofaphysicalsystem,ingeneral. Thus,partofthegoalofthischapteristoshowinviewofquantumfieldtheory

whatmaybeexpectedbeyondclassicalfieldequationsbothinsenseofdifferential equationsandmeaningofquantumphysics.

Exercisesappearattheendofeachchapter.Thesemostlystraightforward problemsserveeithertosupplementthedetailsorexpandthescopeofthe materialsofthetext.Workingoutsomeoftheproblemsmaybeusefulfor checkingtheunderstandingofthesubjectscoveredbutomittingthisprocess shouldnotcompromisethequalityoflearningtoomuchsincethroughoutthe textthematerialsarepresentedinsufficientdetailsandelaboration.

Anidealreaderofthisbookisapersonwellversedincollege-leveldifferential equationswhoismotivatedbyphysicalapplicationsandisinterestedingaining insightsintofield-theoreticalphysicsthroughdifferentialequations.Inorderto keepthevolumeofthebooktoareasonablesize,weleaveoutintroductory materialsaboutbasicphysicalconceptscommonlycoveredinanundergraduate courseingeneralphysics.Forexample,whenwediscusstheGinzburg–Landau theoryofsuperconductivity,weassumethereaderknowswhatasuperconductor isandhowitbehaves.Thus,ifthisbookisusedasatextbookforashortor extensivecourse,itwillservethepurposebetterifitissupplementedwithsome extraconceptualnontechnicalreadingmaterials,whichshouldbeeasilyavailable.

Inadditiontoservingforself-study,thematerialscoveredinthebookare plannedinsuchawaythateachofthechaptersmaybeusedforashort concentratedtopiccourserangingfromtwotosevenweeksorlonger,withabout twotothreehoursoflecturesperweek.Specifically,Chapters1,3–9,11,and 13maybecandidatesforatwo-weekcourse,Chapters2,12,and15forathreetofour-weekcourse,andChapters10and14forasix-toseven-weekcourse. Foraone-semestercourse,theauthorsuggestspickingacollectionofaboutsix tosevenchaptersdependingontheinterestsoftheinstructorandstudents.At anelementarylevel,achoicemaybeChapters1–4,Chapter7,Chapter8,and Chapter11,supplementedwithSection5.1ifnecessary.Atamoreadvanced level,achoicemaybeChapters5–10andChapter15.Thematerialsofthefull bookaremorethanenoughforayear-longcourse.Moreover,exceptforChapters 4and15,allotherchaptersmaybestudiedforresearchtopicsandprojectsof differentialequationsandnonlinearanalysisintheoreticalandmathematical physics.

WesupplementthebookwithanAppendiceschapterofsixsections,which coversomeconceptsandsubjectsencounteredandusedelsewhereinthemain text.Inthefirstsection,wegiveafullintroductiontothenotionsofindices ofvectorfieldsandtopologicaldegreesofmaps,inthecontextoftheEuclidean spaces.Webeginourdiscussionfromtheargumentprincipleincomplexanalysis andthenextendtheconstructiontorealsituations,highlightedwithsome applicationsasexamples,includingaproofofthefundamentaltheoremof algebraandastudyoftheissueofexistenceandnon-existenceofperiodicorbits ofsomedynamicalsystems.Subsequently,wedeveloptheconceptsinhigher dimensionsandconcludethediscussionwithaproofoftheBrouwerfixed-point theorem.Inthesecondsection,weconsidertheconceptsoflinkingnumber andtheHopfinvariantbasedonourknowledgeonthetopologicaldegreeof amap.Wethenconsidertheseconstructionsinviewoftheconceptsofthe

helicityofavectorfield,theChern–Simonsinvariant,andtheclassicalintegral representationoftheHopfinvariantbyWhitehead.Inthethirdsection,we presentacomprehensivediscussionoftheNoethertheorem,whichassociates continuoussymmetriesofaLagrangianmechanicalorfield-theoreticalsystem withitsconservedquantitiesschematically.Asillustrations,wefirstconsider themotionofapointmassandderiveitsenergy,linearmomenta,and angularmomenta,asconsequencesoftime-andspace-translationinvarianceand rotation-invariance.Wethendeveloptheformalisminthesettingofageneral Lagrangianfield-theoreticalframeworkandshowhowtoconstructtheassociated energy-momentumtensorandvariousNoetherchargesandcurrents.Inthe fourthsection,wedescribethepossibleeigenvaluesoftheangularmomentum operatorsofaparticleinnon-relativisticquantum-mechanicalmotionbasedon theassociatedcommutationrelationsoftheseoperators.Asaby-product,we explainhowtodeduceDirac’schargequantizationformulausingSaha’smethod withoutresortingtoatreatmentoftheDiracstrings.Inthefifthsection,we showhowtheconceptoftheintrinsicspinofaparticleinquantum-mechanical motionarisesasaresultof“correcting”a“deficiency”inthespectraoforbital quantummomentumoperators.Asaconsequence,wearenaturallyledtothe introductionofspinmatricesandspinors.Inparticular,weshowhowthePauli spinmatricesarecalledupon,andthenexplainhowtheparticlespinsarerelated toparticlestatisticsandclassificationbyvirtueofthespin-statisticstheorem. Inthesixthsection,wepresentacomprehensivediscussionontheproblem ofgravitationaldeflectionoflightnearamassivecelestialbody.Webeginby consideringthelightdeflectionprobleminthecontextofNewtoniangravity andderivetheassociatedbendingangle.Wethenstudythegeodesicequations forthemotionofaphotonsubjecttotheSchwarzschildblackholemetricand deduceEinstein’sdeflectionangle,thatexactlydoublesthatofNewtonandwas famouslyconfirmedbyDyson,Eddington,andDavidsonin1919.

Thus,thesesectionsmaybeclusteredintofoursubgroups.Thefirstsubgroup consistsofthefirsttwosectionsandconcernswithsometopologicalconceptsand constructions;thesecondsubgroupismadeofthesubsequentsectionthatfocuses onconservationlawsinrelationtocontinuoussymmetriesinasystem;thethird subgroupiscomprisedofthenexttwosectionsandaddressesissuesaroundthe eigenvaluesofangularmomentumoperatorsandspinsofparticles;thefourth subgroup,whichisthelastsectionofthischapterandsupplementsChapter1 looselyandChapter10tightly,isastudyofthegravitationallightdeflection phenomenon.Eachofthesefoursubgroupsofsubjectsmaybeofindependent interesttosomereaders.Asintherestofthebook,exercisesappearattheend ofthechapter.

TheauthorthanksSvenBjarkeGudnason,LucianoMedina,WenxuanTao, andTigranTchrakianforsomeconstructivecommentsandsuggestions,andDan TaberofOxfordUniversityPressforvaluableeditorialsuggestionsandadvice, whichhelpedimprovethepresentationandorganizationofthecontentsofthe book.

NotationandConvention

Weuse N todenotethesetofallnaturalnumbers,

N = {0, 1, 2,... }, and Z thesetofallintegers,

Z = {..., 2, 1, 0, 1, 2,... }.

Weuse R and C todenotethesetsofrealandcomplexnumbers,respectively.

Weusetheromantypeletteritodenotetheimaginaryunit √ 1.Fora complexnumber c = a + ib where a and b arerealnumbersweuse

c = a ib

todenotethecomplexconjugateof c.WeuseRe{c} andIm{c} todenotethe realandimaginarypartsofthecomplexnumber c = a + ib.Thatis,

Re{c} = a, Im{c} = b.

Thesignatureofan (n +1)-dimensionalMinkowskispacetimeisalways (+ ···−).The (n +1)-dimensionalflatMinkowskispacetimeisdenotedby Rn,1 and isequippedwiththescalarproduct xy = x 0 y 0

1 y 1

xnyn ,

where x =(x0,x1,...,xn) and y =(y0,y1,...,yn) ∈ Rn,1 arespacetimevectors. Unlessotherwisestated,wealwaysusetheGreekletters α,β,µ,ν todenote thespacetimeindices, α,β,µ,ν =0, 1, 2,...,n, andtheLatinletters i,j,k,l todenotethespaceindices, i,j,k,l =1, 2,...,n.

Weuse t todenotethevariableinapolynomialorafunctionorthetranspose operationonavectororamatrix.

Whenanexpression,say X or Y ,isgiven,weuse X ≡ Y todenotethat Y , or X,isdefinedtobe X,or Y ,respectively.

Occasionally,weusethesymbol ∀ toexpress“forall”,and ∃,toexpress “thereexists”.

Weuse [, ] todenotethecommutatorsoperatedonsuitable“quantities”so that [A,B]= AB BA,A

andsoon.

Weobservethesummationconventionoverrepeatedindicesunlessotherwise stated.Forexample,

TheromantypelettereisreservedtodenotetheEulernumberorthebaseof thenaturallogarithmicsystemandtheitalictypeletter e todenoteanirrelevant physicalcouplingconstantsuchasthechargeofthepositron( e willthenbe thechargeoftheelectron).Theromantypeletterddenotesthedifferentialand theitalictypeletter d denotesa“quantity”,inmathematicaldisplaymode. Thereferencesinbibliographyandtheircitationsintextfollowalphabetic ordersbythelastnamesoftheauthors.

AlthoughtheGreekletters µ,ν,etc.,denotetheindicesofthespacetime coordinates,occasionally,theyarealsousedtodenotetheRadonmeasuresor someparametersinothercontexts,whenthereisnoriskofconfusionbutthere isaneedtobeconsistentwithliterature.Furthermore,sometimes ν isusedto denotetheoutnormaltotheboundaryofaboundeddomain.

Theunitspherecenteredattheorigin,in Rn (n =2, 3,... ),isdenotedby Sn 1 .

Theareaelementofasurfacesuchastheboundaryofaspatialdomainis oftendenotedbydσ.However,theLebesguemeasureofadomainforintegration issometimesomittedtosavespacewhenthereisnoriskofconfusion.

Let S beasetoffinitelymanypoints.Weuse |S| or#S todenotethenumber ofpointsin S.

Let S beasubsetoftheset T inacertainspace.Weuse T \ S todenotethe complementof S in T ,orsimply Sc when T isthefullspace.

Weusetheromantypeabbreviationsupptodenotethesupportofafunction.

Theletter C willbeusedtodenoteapositiveconstantwhichmayassume differentvaluesatdifferentplaces.

Foracomplexmatrix A,weuse A† todenoteitsHermitianconjugate,which consistsofamatrixtranspositionandacomplexconjugation.

Thesymbol W k,p denotestheSobolevspaceoffunctionswhosedistributional derivativesuptothe kthorderareallinthespace Lp . Byconvention,variousmatrixLiealgebrasaredenotedbylowercaseletters. Forexample,theLiealgebrasoftheLiegroups SO(N ) and SU (N ) aredenoted by so(N ) and su(N ),respectively.

Thenotationforvariousderivativesisasfollows,

Besides,withthecomplexvariable z = x1 + ix2,wealwaysunderstandthat ∂z = ∂ ∂z = ∂,∂z = ∂ ∂z = ∂.Thus,foranyfunction f thatonlyhaspartial derivativeswithrespectto x1 and x2,thequantities ∂zf = ∂f ∂z and ∂z = ∂f ∂z are welldefined.

Vectorsandtensorsareoftensimplydenotedbytheirgeneralcomponents, respectively,followingphysicsliterature.Forexample,itisunderstoodthat

Inavolumeofthisscope,itisinevitabletohavealettertocarrydifferent butstandardmeaningsindifferentcontexts,althoughsuchamultipleusage oflettershasbeenkepttoaminimum.Herearesomeexamples.TheGreek letter ν usuallydenotesaspacetimecoordinateindexbutalsostandsforaunit normalvectortoasurface; δ maystandforasmallpositivenumber,variation ofafunctional,ortheDiracdistribution,and δij istheKroneckersymbol; g maystandforacouplingconstantsuchasamagneticcharge,ametrictensor oritsdeterminant,orafunction; x maydenotethecoordinateofapointin therealaxisorapointinspaceorspacetime; P maydenoteamagneticcharge oramomentumvector; G usuallystandsforNewton’suniversalgravitational constantbutmayalsodenotesaLiegrouporafunction; ρ usuallystandsfor acharge,mass,probability,orenergydensity,butmayalsodenotesaradial variableorradialcoordinateunderconsideration;thelowercaseletter c usually denotesthespeedoflightinvacuumbutalsooccasionallyaconstantthatshould bemadeclearinthecontext.

Forconvenience,wesometimesuse x todenoteapointin R3 or Rn ingeneral. Weuse ∇× F andcurlF,and, ∇· F anddivF,interchangeablyforthecurland divergenceoperations,respectively,onavectorfield F over R3.Foran Rn-valued vector,say A,weuse A and |A| alternativelytodenotethelengthornormof A withrespecttotheEuclideanscalarproduct · of Rn suchthat A · A = |A|2 isalsorewrittenas A2 concisely.

Forapositivequantityorvariable,say, r,weuse r 1 or r 1 todenote theassumptionthat r issufficientlysmallorlarge,respectively.

Weusetheoverdot todenotedifferentiationwithrespecttoa“time variable”, t,andtheprime ′ differentiationwithrespecttosomeothervariable, whichshouldbeself-evidentfromthecontext.Alternatively,wealsouse ′ to denoteaquantitythatisavariationofanoriginalonefollowingaspecificrule orunderstanding.

Alldisplayedmathematicalexpressionsarenumberedregardlesswhetherthey arereferredtointhetextforthesakeofconvenienceofthereaderincaseany needoftheirreferenceiscalledonwhileusingthebook.

Insomechapters,thefirstsectionsalsoservetobrieflysurveythesubjects tobecoveredinthesubsequentsections.

1 Hamiltoniansystems andapplications

ThischapterfirstintroducestheHamiltonianorLagrangianformalismof classicalmechanics,whichistheconceptualfoundationofalllaterdevelopments. Asillustrationsofapplications,itthenpresentsafewimportantmany-body problems.Amongthese,itfirstdiscussestheclassical N -bodyproblemin R3 and nextconsidersKepler’slawsofplanetarymotionasanimportantapplicationof theformalismandderiveNewton’slawofgravitationasaby-product.Itthen presentstheHelmholtz–Kirchhoffpointvortexproblem,whichmayberegarded asan N -bodyproblemin R2.Thechapterendswithastudyofan N -body problemin R modelinganover-simplifiedDNAsystem.Inordertounderstand athermodynamicalphenomenonofthesystemknownasDNAdenaturation,it takesthisopportunitytomakeashortintroductiontosomebasicconceptsof statisticalmechanics.

1.1 Motionofmassiveparticle

TheHamiltonianorLagrangianformalismofclassicalmechanicslaysthe foundationofclassicalandquantumfieldtheoriesandgrowsoutofNewtonian mechanicsdescribingtheinteractionofpointmasses.Inthissection,we formulatetheHamilton–LagrangemechanicsfromNewton’slawofmotion.

EquationsofmotionofNewton

Considerthemotionofapointparticleofmass m andcoordinates (qi)= q in apotentialfield V (q,t) describedbyNewtonianmechanicsinthe n-dimensional

MathematicalPhysicswithDifferentialEquations.YisongYang,OxfordUniversityPress. ©YisongYang(2023).DOI:10.1093/oso/9780192872616.003.0001

Figure1.1 Anillustrativeexampleofapotentialwellofthatofatwo-dimensional harmonicoscillatordefinedbythequadraticpotentialfunction V (q)= 1 2 ([

1]2 +[q 2]2) forwhichtheequationsofmotionareseento“drive”theparticletotheequilibrium stategivenby q 1 = q 2 =0,whichminimizesthepotentialenergy.

Euclideanspace Rn.Theequationsofmotionare

wherethe(double)overdot( ) denotes(second)first-ordertimederivative. Since

definesthedirectionalongwhichthepotentialenergy V decreasesmostrapidly, theequation(1.1.1)saysthattheparticleisacceleratedalongthedirectionof theflowofthe steepestdescent of V .Figure 1.1 showsatypicalprofileofthe potentialenergyfunction V intheformofa“potentialwell.”

Lagrangianformalism

Withthe Lagrangianfunction

whichissimplythedifferenceofthekineticandpotentialenergiesofthemoving particle,theequationsin(1.1.1)arethe Euler–Lagrangeequations oftheaction

overtheadmissiblespaceoftrajectories {q(t) | t1 <t<t2} startingand terminatingatfixedpointsat t = t1 and t = t2,respectively.

Hamiltonianformalism

The Hamiltonianfunction or energy atanytime t isthesumofkineticand potentialenergiesgivenby

Introducethe momentumvector p =(pi),

Then,inviewof(1.1.5), H isdefinedfrom L,througha Legendretransformation, by

with p =(pi),andtheequationsofmotion,(1.1.1),area Hamiltoniansystem,

Inacompressedfashion,thesystem(1.1.8)reads

where In denotesthe n×n identitymatrixand J isa symplecticmatrix satisfying J 2 = I2n.

Generalformalism

Forgeneralapplications,itisimportanttoconsiderwhentheLagrangian function L isanarbitraryfunctionof q, ˙ q,and t.Theequationsofmotionare theEuler–Lagrangeequationsof(1.1.4),

TomakeasimilarHamiltonianformulation,wearemotivatedfrom(1.1.6) tointroducethe generalizedmomentumvector p =(pi) bysetting

Turn static files into dynamic content formats.

Create a flipbook