Lagrangian & hamiltonian dynamics first edition. edition mann - The ebook in PDF format is ready for

Page 1


https://ebookmass.com/product/lagrangian-hamiltonian-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Elsevier Weekblad - Week 26 - 2022 Gebruiker

https://ebookmass.com/product/elsevier-weekbladweek-26-2022-gebruiker/

ebookmass.com

Geophysical fluid dynamics : understanding (almost) everything with rotating shallow water models First Edition Zeitlin

https://ebookmass.com/product/geophysical-fluid-dynamicsunderstanding-almost-everything-with-rotating-shallow-water-modelsfirst-edition-zeitlin/

ebookmass.com

Hard Pass Tb Mann

https://ebookmass.com/product/hard-pass-tb-mann/

ebookmass.com

Synoptic analysis and forecasting : an introductory toolkit Shawn Milrad

https://ebookmass.com/product/synoptic-analysis-and-forecasting-anintroductory-toolkit-shawn-milrad/

ebookmass.com

American English File 3th Edition Starter. Workbook without Answer Key (American English File Third Edition) (Spanish Edition) Varios Autores

https://ebookmass.com/product/american-english-file-3th-editionstarter-workbook-without-answer-key-american-english-file-thirdedition-spanish-edition-varios-autores/ ebookmass.com

God after Einstein: What’s Really Going On in the Universe? John F. Haught

https://ebookmass.com/product/god-after-einstein-whats-really-goingon-in-the-universe-john-f-haught/

ebookmass.com

Flirting with Faith: A Reverse Age Gap Romantic Suspense (Flirting with the Finest Book 3) Kaye Kennedy

https://ebookmass.com/product/flirting-with-faith-a-reverse-age-gapromantic-suspense-flirting-with-the-finest-book-3-kaye-kennedy/

ebookmass.com

Crossed Skis Carol Carnac

https://ebookmass.com/product/crossed-skis-carol-carnac/

ebookmass.com

The Western Literary Tradition: The Hebrew Bible to John Milton Margaret L. King

https://ebookmass.com/product/the-western-literary-tradition-thehebrew-bible-to-john-milton-margaret-l-king/

ebookmass.com

Current Developments in Biotechnology and Bioengineering. Biological Treatment of Industrial Effluents 1st Edition

Duu-Jong Lee

https://ebookmass.com/product/current-developments-in-biotechnologyand-bioengineering-biological-treatment-of-industrial-effluents-1stedition-duu-jong-lee/

ebookmass.com

LAGRANGIAN&HAMILTONIANDYNAMICS

Lagrangian&HamiltonianDynamics

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©PeterMann2018

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2018

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2017960667

ISBN978–0–19–882237–0(hbk.)

ISBN978–0–19–882238–7(pbk.)

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY DOI10.1093/oso/9780198822370.001.0001

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

FormybeautifuldaughterHallie.

PARTIIICANONICALMECHANICS

18.3

20Liouville’sTheorem&ClassicalStatisticalMechanics

H.1SirIsaacNewton

H.2LeonhardEuler 515

H.3Jeand’Alembert 516

H.4Joseph-LouisLagrange 517

H.5CarlGustavJacobi 519

H.6SirWilliamHamilton 520

H.7SiméonDenisPoisson 522

H.8AmalieEmmyNoether 522

H.9LudwigEduardBoltzmann 524

H.10EdwardRouth 525

H.11HendrikavanLeeuwen 526

Preface

The purposeofthisbookistointroduceandexplorethesubjectof Lagrangianand Hamiltoniandynamics tosciencestudentswithinarelaxedandself-containedsetting forthoseunacquaintedwithmathematicsoruniversity-levelphysics.Lagrangianand HamiltoniandynamicsisthecontinuationofNewton’sclassicalphysicsintonewformalisms,eachhighlightingnovelaspectsofmechanicsthatgraduallybuildincomplexitytoformthebasisforalmostalloftheoreticalphysics.LagrangianandHamiltonian dynamicsalsoactsasagatewaytomoreabstractconceptsroutedindifferentialgeometryandfieldtheoriesandcanbeusedtointroducethesesubjectareastonewcomers.

Inthisbookwejourneyinaself-containedmannerfromtheverybasics,throughthe fundamentalsandonwardstothecuttingedgeofthesubjectattheforefrontofresearch. Alongtheway,thereaderissupportedbyallthenecessarybackgroundmathematics, fullyworkedexamplesandthoughtfulandvibrantillustrations,aswellasaninformal narrativeandnumerousfresh,modernandinterdisciplinaryapplications.Forexample, thesubjectisrarelydiscussedwithinthescopeofchemistry,biologyormedicine,despite numerousapplicationsandan absolute relevance.

ThebookcontainsaverydetailedandexplicitaccountofLagrangianandHamiltoniandynamicsthatventuresaboveandbeyondmostundergraduatecoursesinthe UK.Alongsidethis,therearesomeunusualtopicsforaclassicalmechanicstextbook. Themostnotableexamplesincludethe“classicalwavefunction”Koopman-vonNeumanntheory,classicaldensityfunctionaltheories,the“vakonomic”variationalprinciplefornon-holonomicconstraints,theGibbs-Appellequations,classicalpathintegrals, Nambubrackets,Lagrangian-Hamilton-Jacobitheory,Diracbracketsandthefullframingofmechanicsinthelanguageofdifferentialgeometry,alongsidemanymoreunique features!

Thebookfeaturesmanyfullyworkedexamplestocomplementthecorematerial; thesecanbeattemptedasexercisesbeforehand.Itisherethatmanymodernapplicationsofmechanicsareinvestigated,suchasproteinfolding,atomicforcemicroscopy, medicalimaging,cellmembranemodellingandsurfaceadsorbateanalysis,toname butafew!Keyequationsarehighlightedthroughoutthetext,andcolourisusedin derivationsthatcouldotherwisebehardtofollow.Atthebackofthebookthereare vastmathematicalchaptersthatcoverallthematerialthatisrequiredtounderstand classicalmechanics,sothatthebookisaself-containedreference.

Themotivationforwritingthistextwasgeneratedduringmyundergraduatedegreeinchemistry.Often,Iwouldtrytoresearchfurtherinformationonmyquantum

mechanicscourses,onlytobeinundatedwithinsurmountablewallsofequationsand complexideaswhichresultedinmanyopenedWikipediatabs!Outoffrustration,Ibegancompilingasetofnotestoaidmyunderstanding;naturally,itgotcompletelyout ofhandandresultedinthecurrentwork!Ifoundmyselfreferringbacktomyownnotes inordertounderstandnewconceptsand,veryquickly,Ifellinlovewithmechanics, appreciatingitsbeautymoreandmorewitheachnewformulationIstudied.Itishence forthosewithoutformaltrainingbutwhowishtounderstandmoreaboutphysicsthat Iwrotethisbook.Itisforthisreasonthateverymathematicalstepis fully detailed, andplentyofdiagramsandexampleshavebeenpackedintothebooktohelpalongthe way!Abriefbiographyofthecharacterswhodevelopedtheideaswepresentisgiven atthebackofthebook,forthoseinterestedinthehistoryofphysics.

Idon’tthinkIcouldpicka“favouriteequation”outofthebook,orevenafavourite formulation-eachbringtheirowneleganceanduniquefeatureswhichstandoutamong therest!Koopman-vonNeumanntheoryisextremelyinterestingandisusefulforprobingthestructuralfeaturesofmechanicsbut,ontheotherhand,d’Alembert’sprinciple andtheGibbs-Appellequationsaresimplybeautiful!Ihappentothinkhoweverthat NewtonandEulerarepossiblythetwocleverestindividualsinthehistoryofnatural philosophy,as,withoutthem,wewouldhavenomechanics!

Thebookcanbeusedinmanywaysandfordifferentaudiences;foraninterested individual,itcanprovidefurtherinformationonaparticulartopic;alternatively,it canserveasasupportforundergraduatecoursesinclassicalmechanics.Thereareperhapsthreetypesofcoursesthisbookwouldsuit:(i)coursesonNewtonianmechanics andclassicalmathematicalphysics;(ii)introductoryLagrangianandHamiltoniandynamicscoursesattheundergraduatelevel;(iii)advancedcoursesonmechanicsatthe postgraduatelevel.

IwouldliketothankDuncanStewartforhisillustrations,whichfarexceededmy expectationsandcrudedrawings.IwouldliketothankElizabethFarrellforcorrecting myferociouslackofpunctuationandterriblegrammar.Iwouldalsoliketothank AniaWronskiandLydiaShinojfortheirhelpinthefinalstagesofthebook.Thank RenaldSchaubandCollinBleakfortheirkindencouragementsandJohnMitchell, BerndBrauneckerandJonathanKeelingfortheirsupportivefeedback.InadditionI wouldliketothankmytutorsatLiverpoolCollegeandmylecturersattheUniversity ofStAndrews,whosepassionandenthusiasmforscienceIhaveinherited.Iwouldlike tothankallmyfriendsfortheirencouragementandforalwaysbeingupforakick aboutwiththefootballatanyspontaneousmoment—inparticularGiorgioandJosh. Aboveall,Iwouldliketothankmyparentsandmybeautifulwife,whoselove,support andencouragements,fromtheopeninglinestothefinaledits,madethisbookareality!

Soherewego—IhopeyouenjoyreadingitasmuchasIenjoyedwritingit!

PartI NewtonianMechanics

TheaimofthissectionistointroducethereadertotheprinciplesofNewtonianmechanics.ThischaptercoversNewton’slawsofmotionandsubsequentlybuildsupa frameworkofclassicalphysicsinpreparationforourtreatmentofanalyticaldynamics. Ithasbeenkeptbriefinordertomovequicklytothemainfocusofthebook,Lagrangian andHamiltonianmechanics,butcoversthenecessaryfoundationsuponwhichwebuild. Newtonianmechanicswasthefirstsuccessfuldescriptionofdynamicsinhistory. TherearepreviousworksandtheoriessomefromtheancientGreekphilosophersor Renaissancemathematicians;however,nonewereassuccessfulasNewton’sapproach. Thetheorywedevelopwillbeusefulinallbranchesofmodernphysics,asitcanbe thoughtofastheveryfirstapplicationofthescientificmethodweunderstandtoday. Webeginbydefiningthebasicideasofpositions,velocitiesandaccelerationsaswell astwotypesofspacesinclassicalmechanics,“configurationspace”and“phasespace”. Newton’sthreelawsareexploredandconservationlawsaredefined.Wethenmoveon todiscussthework-energytheorem,angularmomentumandtheharmonicoscillator beforeclosingwithsomekeyresultsofclassicalmathematicalphysics.Insubsequent chapters,wewillutilisetheconfigurationandphasespacesofmechanicalsystemsfor moreadvanceddescriptionsandseethehiddenstructureofclassicalmechanics!

Newton’s ThreeLaws

Fig. 1.1:SirIsaac Newton(1643–1727).

In1687thenaturalphilosopherSirIsaacNewton(seefigure1.1)publishedthe PrincipiaMathematica andwithit sparkedtherevolutionaryideaskeytoallbranchesofclassicalphysics.InthelateseventeenthandearlyeighteenthcenturyNewtondevelopedhisfindingsintothreefundamental lawsofthemotionofmatter;however,beforedelvinginto themlet’sfirstdiscusssomegeneralconcepts.

Dynamics isconcernedwiththepropagationofsystems inasmooth,continuousandthereforemathematicallydifferentiableevolutionoftime.Thetimecanbedividedup intointervalstoconsiderthemotionofparticlesbetween boundaryconditions,e.g. t1 and t2.The system isour objectofinterestandforthischapterisconsideredtobe eitherasingleoracollectionofgenericparticlesthatare notgovernedbyquantummechanics,forquantumsystems donotfollowtheselawsexplicitly.

Wecanusea coordinatesystem togivethelocationofasingleparticlemeaning ina configurationspace byspecifyingthree Cartesiancoordinates (x,y,z).Figure1.2illustratesthisforacartesiancoordinatesystem;theparametersthatdescribe thelocationoftheparticle(coordinates)inthethree-dimensionalspace(configuration space)areitspositions(time-dependentvectors)alongeachaxis.Specifyingaconfigurationforasystemofparticlesisspecifyingtheirpositionsataninstant.Fortwofree particlestheconfigurationspaceissix-dimensional;for N freeparticles,apointinthe 3N -dimensionalconfigurationspacefullydescribesthesystem’spositions,asthereis asingledimensionforeachdimensioninwhichthesystemisfreetomove.Thecoordinatesofconfigurationspacedon’thavetobeCartesian;anyvalidsetofparameters thatidentifythelocationofaparticlecanbeusedtospanthespace.

Astheparticleevolvesthroughtimeweaimtocharacteriseitsbehaviourwithan equationofmotion,whichwhenappliedtothesystemwillresultin deterministic differentialequationsthatgivecompletepredictabilityforthescenario.Whenasystem isdeterministic,thismeansthat,ifthecurrentstateofasystemisknownandthe

Lagrangian &HamiltonianDynamics

equationsofmotionthatdescribetheevolutionofthesystemareknown,pastandfuture statescanbedeterminedwithcompletepredictability.Forasystemof n dimensionsto bedeterministic,weneedtoknow 2n piecesofinformationaboutthesystem.So,for afreeparticlethatcanmoveinthree-dimensionalspace,wemightchoosetheposition andvelocitiesalongeachaxis x,y and z orthepositionandmomenta.

Fig. 1.2:ACartesiancoordinatesystemandaparticle’strajectorybetweentwotimes.

The position ofaparticle ⃗r waschosenbyNewtontobethefundamentaldynamicalvariableandcanbedividedintothreevector components;almostalltheoriesof classicalmechanicsdescribetheevolutionofpositioninsomewayorother.A trajectory γ(t) isaparticle’spaththroughspaceasafunctionoftime.Itmapstwopositions togetherviaacollectionofintermediatestates.Itisthereforethegoalofclassicalmechanicstoidentifythetrajectoryofthesystem. Velocity ⃗v isthetimederivativeof position,therateofchangeofpositionwithrespecttotime,andcansimilarlybesplit intocomponentsineachdirection.Itisavectorquantitysometimessignifiedbyadot abovethepositioncharacter: vi =˙ ri Speed isthemagnitudeofvelocity.

The acceleration ⃗ a ofaparticleisthetimederivativeofitsvelocity,therateatwhich thevelocityischanging.Iftheparticleisstationaryoristravellingatconstantspeed anddirection thenthereisnoacceleration.Sinceposition,velocityandaccelerationare vectorquantities,achangeinthedirectionofthevelocityconstitutesanacceleration; hence,particlesundergoingcircularmotionareconstantlyacceleratingevenifthespeed isconstant.

Wecanrecovervelocityfromaccelerationbyintegrationandlikewiserecoverpositionfromvelocity.Thisisperhapsthemostimportantconceptandismostlyoverlooked;

Newton’s ThreeLaws 5 whenwetalkofsolutionstoanequationofmotion,wearetryingtoobtaintheaccelerations,velocitiesandpositionsasfunctionsoftime,thereforegivingusdeterminism overthesystem.

Exercise 1.1 Toillustratetheserelationslet’ssupposethatwehaveanequationofmotion foraparticleinonedimensionasafunctionoftime ⃗r(t):

Differentiatingthiswithrespecttotimegivesthevelocity ˙ r(t)= b +2ct,andaseconddifferentiationgivestheacceleration ⃗r(t)=2c.At t =0 theparticleisatposition a,withavelocity of b.Theparticleisunderauniformaccelerationof 2c.Itiseasytointegratewithrespectto timetoobtainthevelocityandagaintoobtainanexpressionfortheparticle’sposition.

A particle’s inertia isitsresistancetochangeinitsstateofmotion,whetheritbe atrestoratacertainvelocity.Itisquantitativelymeasuredbytheparticle’smass;the moremassiveanobjectis,thelargerthe force requiredforagivenacceleration.Forces areinfluencesthatcanchangethestateofmotionofasystem,providedtheyovercome otherforcesthatmayactinoppositiononthebody.

Newton’sthreelawsofmotion areneatlypresentedbelow:

• Anobjectwillremainatrestorconstantvelocityunlessacteduponbyanexternal force,whenviewedinaninertialreferenceframe.

• Thevectorsumoftheforcesonanobjectisequaltotherateofchangeofvelocity multipliedbythemassoftheobject.

• Whenabodyexertsaforceonasecondbody,thesecondbodyexertsaforceequal inmagnitudeandoppositeindirectiononthefirstbody.

AninertialreferenceframeisoneinwhichNewtonianphysicsisvalid.Thethirdlaw tellsusstraightawaytoignorethoseforcesthatdonotconservetotalmomentum,even beforewehaveconsideredtheirdynamics.Newton’ssecondlawiswherehisfamous equationoriginates:thenetforceonabodyistheproductofitsmassandacceleration. Theaccelerationistheresponsetoaforceinagivendirection.

When thenetforceiszerothesystemisin equilibrium.Itmayappearthatthefirst lawissimplyaspecialcaseofthesecondlawwhentheresultantforceonthebodyis zero,setting ⃗ F =0 andsubstituting ⃗a for d⃗v/dt:

0 (1.0.3)

Wecanthereforeseethatifthetimederivativeofvelocityiszerothenthevelocity willhavethesamevalueitdidat t =0,aspredictedbyandqualifyingthefirstlaw.

⃗ F = m⃗a Newton’ssecondlaw (1.0.2)

Lagrangian &HamiltonianDynamics

Thisdoesnotnegatetheneedforthefirstlaw,however,sincethefirstlawgivesusthe notionofinertialframes.Wecannowimagineascenarioofaconstantappliedforce, Fx,foraparticlefreetomoveinonedimension;weaimtoarriveataformulafor themotionofaparticleasafunctionoftimeandwedothisasfollows.Werearrange Newton’ssecondlawtogiveusanexpressionforaccelerationintermsoftheapplied force:

Wenowintegratebothsideswithrespecttotime,betweenthelimitsof t and 0:

Evaluationofthelimitsgivesusanexpressionwecanrearrangetoequalthevelocity attime t:

Anotherintegrationwithrespectto t andsubsequentsolvingfor rx(t) givesus,

Remembering Fx = max wecansubstitutethisintoourequationtogive,

This resultisthe Verletalgorithm,whichisthebasicwaytointegrateanequation ofmotion.ThisdemonstratesthepredictabilityofNewton’sformalism:byknowinga fewparametersofoursystemwecanpredictexactlywhatwillhappenunderaknown appliedforce.Pleasenote,however,weareassumingthatthemassisconstantandthat wedo,indeed,understandtheforceweareapplying.

Someequationsofmotiongenerallyhavemorethanonesolution;itisthechoiceof the initialconditions whichprovidethespecificsolution.Inthiswaywecanfollow auniquepathbetweentwopointsinconfigurationspacefromanynumberoffeasible trajectoriesthatwouldalsoprovideasolution.

1.1PhaseSpace

Momentum ⃗p istheproductoftheparticle’smassanditsvelocity;itisthereforea vectorquantity,evenifwelaterbecomecarelesswiththeassignationofthevectorial notationinfollowingchapters:

If wenowtakethetimederivativeofbothsidesweobtain

WeuseNewton’ssecondlawtoseethatthetimederivativeofthemomentumisequal totheresultantforceonthesystem.WecanthereforerewriteNewton’ssecondlaw bysaying forceistherateofchangeofmomentum.Wenowhavetwoveryimportant relationsthatformthebackboneoftheNewtonianformalism:

Together,theyincorporatetheessenceofNewton’sformalismandallowustomakea statement:

KnowingthepositionandmomentumprovidesuswithcompleteLaplaciandeterminismof thesystem,providedweknowtheequationsofmotionandhavechoseninitialconditions. Wecompilethisintotheideaof phasespace.Consideraparticlefreetomovein onedimension.Itcanmovebackandforthbutlet’ssaythatitslocationiswithin somespecificareaatagiventimealongthe x-axis.Wecanalsoconsidertheparticle’s momentum.Weknowthatit’sgoingtobewithincertainvaluesandthatthere’sgoing tobeamaximum,aminimumandasortofaveragemomentum.Ifwemakeaplot of x-dimensionalmomentumontheverticalaxisversus x-dimensionalpositiononthe horizontalwearegoingtoendupwitharegion,apatch,wherealltheactualvaluesof both px and rx arecontained.Thistwo-dimensionalpatchiscalleda phaseplane and, forourone-dimensionalparticleonaline,itcontainsalltheconfigurationsofposition andpossiblevaluesofmomentumforthatdimension.Formotioninonedimensionthe phaseplaneisatwo-dimensionalspaceandwecantalkof‘theareaofthephaseplane thesystemoccupies’asittracesouttrajectories.

Now,imaginethesameplotforeachdimension x,y and z inCartesiancoordinates andtheirrespectivemomentumcoordinates.Theparticlewillnowoccupysome volumeofphasespace whichisinterpretedascontainingallofitspossibleconfigurations inmomentumandpositionoverthesix-dimensionalspace(positionandmomentafor eachdimension).Tryingtoimaginegraphicallyofwhatthislooklikeisimpossible; rather,wejustacceptthatitisaspaceofstates.Eachpointinphasespacedescribes the state oftheparticle.Thestateofthesystemisdescribednotonlybyitsposition butalsobyitsmomentum(wecouldalsochooseavelocityphasespace,whichispositionversusvelocity).Thestateofasystemof n degreesoffreedomisdescribedbya

Fig. 1.3:Theextendedphasespaceofaparticleevolvingduringthetimeinterval [t1,t2]

volumein 2n-dimensionalphasespace,adegreeoffreedombeing x,y,z,etc.Because wecan’tdrawsuchadiagramformorethanonedimension,wecanuseboldsymbolled characterstorepresentallthedimensionsintoatwo-dimensionalrepresentation;and thenplotthattwo-dimensionalplaneagainstatimeaxistorepresenttimeevolution. Suchaphasespacewithatimeaxisisan extendedphasespace,asdepictedinfigure 1.3.

So,configurationspaceisallthepossiblepositionsofthesystem,andphasespaceis allthepossiblepositions and allthepossiblemomentathesystemcantakeon.Wewill comebacktotheideaofphasespacelaterwhendiscussing Hamiltonianmechanics andthengiveitadeepermeaningwhenwediscussstatisticalentropy,butfornowour definitionisenough.Youseethatknowingthepointinphasespaceasystemoccupies satisfiestheconditionsnecessarytobedeterministic.Apointinconfigurationspace doesnotsatisfythis.Thinkofitthisway:isitenoughtoknowthepositionofamoving bodytoknowwhereitisgoing?No;weneedtoknowitsvelocity(ormomentum),in additiontotheposition,todeterminewhereitwillbe.

1.2SystemsofParticles

Newton’sthirdlawistrickyatfirstbutifwetakesometimewithitwecanseeitis ratherintuitive,especiallyforasystemofparticles,whichwenowturntoconsider.We usethenotation i and j torepresentdifferentparticles,andthesubscript ij under F reads theforceon i dueto j,while ji reads theforceon j dueto i.Forparticles i and j thethirdlawcanbestatedas

The forceonparticle i duetoparticle j isequalyetopposite,hencethenegative sign,totheforceon j dueto i.Thisbegsthequestion,why,ifforcesareseemingly

Newton’s ThreeLaws 9 alwaysbalancedinthesepairsactinginoppositedirections,dowegetresultantforces onbodies?Theanswerisbecausetheyactondifferentparticles,soeachindividual particleexperiencesaresultantforce.Beforewemoveonwemustclarifywhatwe meanby internalforces and externalforces forasystemofparticles.Ifweconsider agasinaboxasoursystemof N particlesthenan externalforce actsontheentire system(i.etheentirebox),whilst internalforces occurwithinthesystem(i.emolecular collisionsorinteractions).

Thetotalinternalforceonaparticleisthesumofalltheforcesactingonitdueto alltheotherparticlesitisinfluencedby:

where ⃗ Fi isthetotalinternalforceonparticle i and ⃗ Fij istheforceon i duetoparticle j.Thesummationisoverall j = i,whichjustmeansovereveryotherparticlethat actson i exceptfortheparticleitself,asyoucan’tconsideraparticle’scollisionwith itself.Thetotalrateofchangeofmomentumforallparticlesisgivenbythesumover i ofthechangeofmomentumofthe ithparticle ⃗pi andisequaltothesumofallthe internalforcesduetoalloftheparticlecollisions:

Sincewearenowcountingover i aswell,weareincludingallthereactiveforcesaswell (i.etheforceon j dueto i).ByNewton’sthirdlawthesumoverbothofthesewill bezero,sinceeveryforceiscountedtwice,butoneis+andtheother-.Thisleaves uswiththe conservationofmomentum:thetotalmomentumofanisolatedsystem neverchanges:

Conservationlaws statethatthesystemretainsinformationaboutthevalueofa quantityasthedynamicsplaysout.Wecantesttoseeifagivenquantityisaconserved quantitybytakingitstimederivative;ifitiszerothenthequantitydoesnotchange withtimeandwillhavethesamevalueoveratimeinterval ∀ t ∈ [t0,t1] between t1 and t2 (∀ means‘forall’, t ‘times’, ∈ ‘in’,the‘interval’ [t0,t1]).

Wenowconsiderexternalforcestoo.Thesecondlawforsuchasystemiswrittenin equation1.2.5,where ˙ pi isnowthetotalrateofchangeinmomentumoftheindividual particle.Thisisthesumofinternalandexternalforces,where F (e) i isthenetexternal forceactingonparticle i,and ∑ Fij isthetotalinternalforce.

Lagrangian &HamiltonianDynamics

Usingthethirdlawandsummingoverall i particleswecanwriteanexpressionfor thetotalrateofchangeofmomentumofthesystemasfollows.Theleft-handsideis writteninequation1.2.6,butnotethat j = i,sinceitissillytothinkoftheforcea particleisexertingonitselfviaacollisionwithitself;so,thesumisfrom j =1 to j = N ,excluding j = i:

Sinceweknowbythethirdlawthat

assumingthemassisconstantwecansumovertheright-handsideofequation1.2.5:

Forasystemwithadistributionofmasswecandefineapointwherethe weighted positionofthemassalladdedupisequaltozero;itisasortofmassbalancepointif youlike.For N identicalparticleswithcoordinates ri wherethecentreofmass relative totheoriginofthecoordinatesystemisgivenby ⃗ R

where M is totalmass,thesumofalltheparticlesofthesystem.Thiscoordinateis definedfrommassbalancetheoryor moments.Thecoordinatesaredefinedbysolving for ⃗ R inthefollowingrelation:

Thevector ⃗ R isamass-weightedaverageofthepositions.Wenowsubstitutethisinto equation1.2.8toobtainanexpressionforthetotalexternalforceactingonthesystem intermsofthecoordinatesofthecentreofmassandthetotalmassoftheparticles.

This resulttellsusthatthecentreofmassmoveslikeapointparticlewithamassequal tothesumofalltheparticlesandwithalltheexternalforcesactingdirectlyonit.This

Newton’s ThreeLaws 11

isveryusefulforasystemwithalargenumberofdegreesoffreedomwherewewishto characterisethedynamicsoftheoverallsystemwithoutallthecomputationalcost.

Wecomebacktotheconservationoflinearmomentumusingtheexpressionforthe totalmomentumandsumtheright-handsideover N particlestogivethetotalrateof changeofmomentumofthesystem:

If thetotalexternalforceonasystemiszerothenthetotallinearmomentumis conserved(sincethetimederivativeiszero)whichcanbeseenbysimpleintegrationof theequationbelow,itisaconstant:

WhenweattempttosolveproblemsinNewtonianmechanicswestartbysolvingthe secondlawforthetrajectoryandoncewehavetheequationofmotionitissimplya mathematicalexercisetofindasolution.Thegeneralproblemiswrittenbelowforthe ithparticle.Thesumoverallparticlescancelsthefirsttermbythethirdlaw:

In general,however,when constraints arepresentwemaynotfullyunderstandthe formoftheexternalforces.WewillnotconsiderconstraintsintheNewtonianformalism butwillcoverthemextensivelyinanalyticalframeworks.Youmustagreethattheabove proofoftheconservationofmomentumisabitcontrivedbut,alas,thereisnoother wayinNewtonianmechanicstofindconservationlawsthanbrutishcalculations;this isnotsoofLagrangianmechanics!

1.3TheN-bodyProblem

Weconcludethissectionbylookingatasystemof N particlesthathaveacentralforce ⃗ F actingbetweenthem.Theforcehasconstantcoefficients κij suchthat

TheequationsofmotionareformedfromNewton’ssecondlawandcanbewrittenas asystemof N -coupledequationswith i = k:

This isknownasthe N-bodyproblem forasetofinitialpositionsandvelocities. MotivatedbyNewton’s Principia,thesolutiontotheproblemwasthesubjectofaprize

Turn static files into dynamic content formats.

Create a flipbook