Introduction to scanning tunneling microscopy 3rd edition c. julian chen - Experience the full ebook

Page 1


https://ebookmass.com/product/introduction-to-scanningtunneling-microscopy-3rd-edition-c-julian-chen/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Scanning Nonlinear Dielectric Microscopy Yasuo Cho

https://ebookmass.com/product/scanning-nonlinear-dielectricmicroscopy-yasuo-cho/

ebookmass.com

Introduction to Computing Systems: From Bits & Gates to C & Beyond 3rd Edition Yale Patt

https://ebookmass.com/product/introduction-to-computing-systems-frombits-gates-to-c-beyond-3rd-edition-yale-patt/

ebookmass.com

Cricket For Dummies 3rd Edition Julian Knight

https://ebookmass.com/product/cricket-for-dummies-3rd-edition-julianknight/

ebookmass.com

L'infirmier(e) en néphrologie. Clinique Pratique et évaluation de la Qualité des Soins 4th Edition Edition Afidtn (Auth.)

https://ebookmass.com/product/linfirmiere-en-nephrologie-cliniquepratique-et-evaluation-de-la-qualite-des-soins-4th-edition-editionafidtn-auth/

ebookmass.com

Homer's Iliad and the Problem of Force Charles H. Stocking

https://ebookmass.com/product/homers-iliad-and-the-problem-of-forcecharles-h-stocking/

ebookmass.com

(eTextbook PDF) for Introduction to One Health: An Interdisciplinary Approach to Planetary Health

https://ebookmass.com/product/etextbook-pdf-for-introduction-to-onehealth-an-interdisciplinary-approach-to-planetary-health/

ebookmass.com

A Man of Legend Linda Broday

https://ebookmass.com/product/a-man-of-legend-linda-broday/

ebookmass.com

Fundamentals of Physics,Volume 1, 12th edition David Halliday

https://ebookmass.com/product/fundamentals-of-physicsvolume-1-12thedition-david-halliday/

ebookmass.com

Pediatric Hand Therapy, 1e 1st Edition Joshua M. Abzug

https://ebookmass.com/product/pediatric-hand-therapy-1e-1st-editionjoshua-m-abzug/

ebookmass.com

Django 2.2 & Python: The Ultimate Web Development

Bootcamp: Build three complete websites, learn back and front-end web development, and publish your site online with DigitalOcean. Alam https://ebookmass.com/product/django-2-2-python-the-ultimate-webdevelopment-bootcamp-build-three-complete-websites-learn-back-andfront-end-web-development-and-publish-your-site-online-withdigitalocean-alam/ ebookmass.com

MONOGRAPHSONTHE PHYSICSANDCHEMISTRYOF MATERIALS

GeneralEditors

RichardJ.BrookAnthonyCheetham

ArthurHeuerSirPeterHirsch

TobinJ.MarksDavidG.Pettifor

ManfredRuhleJohnSilcox

AdrianP.SuttonMatthewV.Tirrell

VaclavVitek

MONOGRAPHSONTHEPHYSICSANDCHEMISTRYOFMATERIALS

Theoryofdielectrics H.Frohlich

Strongsolids(Thirdedition) A.KellyandN.H.Macmillan

Opticalspectroscopyofinorganicsolids B.HendersonandG.F.Imbusch

Quantumtheoryofcollectivephenomena G.L.Sewell

Principlesofdielectrics B.K.P.Scaife

Surfaceanalyticaltechniques J.C.Rivi`ere

Basictheoryofsurfacestates SydneyG.DavisonandMariaSteslicka

Acousticmicroscopy G.A.D.Briggs

Lightscattering:principlesanddevelopment W.Brown

Quasicrystals:aprimer(Secondedition) C.Janot

Interfacesincrystallinematerials A.P.SuttonandR.W.Balluffi

Atomprobefieldionmicroscopy M.K.Miller,A.Cerezo,M.G.Hetherington,and G.D.W.Smith

Rare-earthironpermanentmagnets J.M.D.Coey

Statisticalphysicsoffractureandbreakdownindisorderedsystems B.K.Chakrabarti andL.G.Benguigui

Electronicprocessesinorganiccrystalsandpolymers(Secondedition) M.Popeand C.E.Swenberg

NMRimagingofmaterials B.Bl¨umich

Statisticalmechanicsofsolids L.A.Girifalco

Experimentaltechniquesinlow-temperaturephysics(Fourthedition) G.K.Whiteand P.J.Meeson

High-resolutionelectronmicroscopy(Thirdedition) J.C.H.Spence

High-energyelectrondiffractionandmicroscopy L.-M.Peng,S.L.Dudarev,and M.J.Whelan

Thephysicsoflyotropicliquidcrystals:phasetransitionsandstructuralproperties A.M.FigueiredoNetoandS.Salinas

Instabilitiesandself-organizationinmaterials,Volume1:Fundamentalsof nanoscience,Volume2:Applicationsinmaterialsdesignandnanotechnology N.GhoniemandD.Walgraef

Introductiontoscanningtunnelingmicroscopy(Secondedition) C.J.Chen

IntroductiontoScanning TunnelingMicroscopy

ThirdEdition

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

c C.JulianChen2021

Themoralrightsoftheauthorhavebeenasserted ThirdEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2020952115

ISBN978–0–19–885655–9

DOI:10.1093/oso/9780198856559.001.0001

PrintedandboundinGreatBritainby ClaysLtd,ElcografS.p.A.

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

TOLICHING,WINSTON,KRISTIN,MARCUS,ANDNORA

PrefacetotheThirdEdition xxv

Chapter1:Overview 1

1.1Thescanningtunnelingmicroscope ...............1

1.2Theconceptoftunneling .....................3

1.2.1Transmissioncoefficient.................3

1.2.2Semiclassicalapproximation...............6

1.2.3TheLandauertheory...................6

1.2.4Tunnelingconductance ..................10

1.3Probingelectronicstructureatatomicscale..........12

1.3.1Experimentalobservations................15

1.3.2OriginofatomicresolutioninSTM...........18

1.3.3Observingandmappingwavefunctions .........21

1.4Theatomicforcemicroscope..................22

1.4.1Atomic-scaleimagingbyAFM.............22

1.4.2RoleofcovalentbondinginAFMimaging.......25

1.5Illustrativeapplications.....................26

1.5.1Self-assembledmoleculesataliquid-solidinterface..26

1.5.2ElectrochemistrySTM..................30

1.5.3Catalysisresearch ....................34

1.5.4Atommanipulation...................38

PartIPrinciples

Chapter2:TunnelingPhenomenon

2.1Themetal–insulator–metaltunnelingjunction .........46

2.2TheBardeentheoryoftunneling ................48

2.2.1One-dimensionalcase..................48

2.2.2Tunnelingspectroscopy .................53

2.2.3Energydependenceoftunnelingmatrixelements...54

2.2.4Asymmetryintunnelingspectrum ...........55

2.2.5Three-dimensionalcase.................57

2.2.6Errorestimation.....................59

2.2.7Wavefunctioncorrection.................60

2.2.8Thetransfer-Hamiltonianformalism..........61

2.2.9Thetunnelingmatrix ..................63

2.2.10RelationtotheLandauertheory............64

2.3Inelastictunneling........................64

2.3.1Experimentalfacts....................65

2.3.2Frequencycondition...................66

2.3.3Effectoffinitetemperature...............67

2.4Spin-polarizedtunneling .....................69

2.4.1Generalformalism....................70

2.4.2Thespin-valveeffect...................72

2.4.3Experimentalobservations................76

Chapter3:TunnelingMatrixElements 77

3.1Introduction............................77

3.2Tipwavefunctions... .....................78

3.2.1Generalform.......................78

3.2.2TipwavefunctionsasGreen’sfunctions ........81

3.3Thederivativerule:individualcases..............83

3.3.1 s-wavetipstate......................83

3.3.2 p -wavetipstates.....................84

3.3.3 d -wavetipstates.....................84

3.4Thederivativerule:generalcase................85

3.5Tipswithaxialsymmetry....................90

3.5.1Lateraleffectsoftipstates...............91

Chapter4:AtomicForces 93

4.1VanderWaalsforce.......................93

4.1.1ThevanderWaalsequationofstate..........93

4.1.2TheoriginofvanderWaalsforce............94

4.1.3VanderWaalsforcebetweenatipandasample...96

4.2Paulirepulsion..........................98

4.3Theionicbond..........................98

4.4Thechemicalbond........................100

4.4.1Theconceptofthechemicalbond...........100

4.4.2BondingenergyasaBardeensurfaceintegral.....102

4.5Thehydrogenmolecularion...................104

4.5.1VanderWaalsforce...................106

4.5.2EvaluationoftheBardeensurfaceintegral.......108

4.5.3Comparewiththeexactsolution............110

4.6Chemicalbondsofmany-electronatoms............112

4.6.1Themuffin-tinpotentialapproximation........112

4.6.2Theblack-ballmodelofatoms.............114

4.6.3Wavefunctionsoutsidetheatomiccore.........116

4.6.4Typesofchemicalbonds.................117

4.6.5Comparingwithexperimentaldata...........120

4.6.6Abriefsummary.....................123

4.7Chemicalbondasresonanceandtunneling.. ........123

4.7.1Heisenberg’smodelofresonance............123

4.7.2Resonanceenergyastunnelingmatrixelement....126

Chapter5:AtomicForcesandTunneling 131

5.1Theprincipleofequivalence...................131

5.2Anexperimentallyverifiabletheory...............134

5.2.1Caseofelastictunneling.................134

5.2.2Ameasurableconsequence................137

5.2.3VanderWaalsforce...................138

5.2.4Repulsiveforce......................138

5.3Experimentalverifications....................138

5.3.1Earlyexperimentsonmetalsurfaces..........138

5.3.2Experimentswithfrequency-modulationAFM....140

5.3.3ExperimentswithstaticAFM..............142

5.3.4Silicontipandsiliconsample... ...........143

5.3.5Noncontactatomicforcespectroscopy.........145

5.4MappingwavefunctionswithAFM ...............147

5.4.1Caseofan s-wavetip..................147

5.4.2CaseofaCO-functionalizedtip.............149

5.4.3Viewpointofreciprocity.................151

5.4.4Anintuitiveexplanation.................153

5.4.5PaulirepulsionandvanderWaalsforce........153

5.5Thresholdresistanceinatommanipulation..........154

5.6Generaltheoreticalarguments..................157

5.6.1Thedouble-wellproblem.................157

5.6.2CanonicaltransformationoftransferHamiltonian...160

5.6.3Diagonizingthetunnelingmatrix ............161

5.7TheHofer–Fishertheory.....................163

Chapter6:Nanometer-ScaleImaging 167

6.1TypesofSTMandAFMimages................167

6.2TheTersoff–Hamannmodel. ..................169

6.2.1Theconcept........................169

6.2.2Theoriginalderivation..................170

6.2.3Profilesofsurfacereconstructions............173

6.2.4Extensiontofinitebiasvoltages............176

6.2.5Surfacestates:theconcept...............178

6.2.6Surfacestates:STMobservations............180

6.2.7Heterogeneoussurfaces..................184

6.3LimitationsoftheTersoff–Hamannmodel ...........184

Chapter7:Atomic-ScaleImaging 187

7.1Experimentalfacts........................188

7.1.1Universalityofatomicresolution............188

7.1.2Corrugationinversion..................188

7.1.3Tip-statedependence..................189

7.1.4Distancedependenceofcorrugation..........191

7.2Intuitiveexplanations......................192

7.2.1Sharpnessoftipstates..................192

7.2.2Phaseeffect........................193

7.2.3Argumentsbasedonthereciprocityprinciple.....195

7.3Analytictreatments.......................196

7.3.1Aone-dimensionalcase.................196

7.3.2Surfaceswithhexagonalsymmetry ...........200

7.3.3Corrugationinversion..................204

7.3.4ProfilesofatomicstatesasseenbySTM ........208

7.3.5Independent-orbitalapproximation...........212

7.4First-principlesstudies:tipelectronicstates..........215

7.4.1WclustersasSTMtipmodels.............216

7.4.2DFTstudyofaW–CuSTMjunction .........217

7.4.3Transition-metalpyramidaltips.............217

7.4.4Transition-metalatomsadsorbedonWslabs.....218

7.5First-principlesstudies:theimages...............220

7.5.1Transition-metalsurfaces................220

7.5.2Atomiccorrugationandsurfacewaves.........222

7.5.3Atom-resolvedAFMimages...............223

7.6Spin-polarizedSTM.......................227

7.7Chemicalidentificationofsurfaceatoms............230

7.8Theprincipleofreciprocity...................231

Chapter8:ImagingWavefunctions 235

8.1Useofultrathininsulatingbarriers...............237

8.2ImagingwavefunctionswithSTM.. ..............238

8.2.1Imagingatomicwavefunctions .............238

8.2.2Imagingmolecularwavefunctions ............240

8.2.3Imagingnodalstructures................241

8.3ImagingwavefunctionswithAFM ...............245

8.4Meaningofwavefunctionobservation ..............247

8.4.1Interpretationsofwavefunctions ............248

8.4.2Wavefunctionasaphysicalfield............249

8.4.3Born’sstatisticalinterpretation.............251

Chapter9:NanomechanicalEffects

9.1Mechanicalstabilityofthetip-samplejunction ........254

9.1.1Experimentalobservations................254

9.1.2Conditionofmechanicalstability............257

9.1.3Relaxationandtheapparent G ∼ z relation......263

9.2Mechanicaleffectsonobservedcorrugations..........265

9.2.1Softsurfaces.......................265

9.2.2Hardsurfaces.......................267

9.3Forceintunneling-barriermeasurements............270

Chapter10:PiezoelectricScanner

10.1Piezoelectricity..........................277

10.1.1Piezoelectriceffect....................277

10.1.2Inversepiezoelectriceffect................278

10.2PiezoelectricmaterialsinSTMandAFM...........281

10.2.1Quartz...........................281

10.2.2Leadzirconatetitanateceramics............282

10.3PiezoelectricdevicesinSTMandAFM............286

10.3.1Tripodscanner......................286

10.3.2Bimorph..........................287

10.4Thetubescanner.........................289

10.4.1Deflection.........................290

10.4.2Insitutestingandcalibration..............292

10.4.3Resonantfrequencies...................295

10.4.4Tiltcompensation:thes-scanner............296

10.4.5Repolarizingadepolarizedtubepiezo.........297

10.5Theshearpiezo..........................297

Chapter11:VibrationIsolation

11.2.1Measurementmethod..................304

11.2.2Vibrationisolationofthefoundation..

11.3VibrationalimmunityofSTM..................307

11.4Suspension-springsystems....................308

11.4.1Analysisoftwo-stagesystems..............308

11.4.2Choiceofsprings.....................310

11.4.3Eddy-currentdamper

Chapter12:ElectronicsandControl

12.1.4Logarithmicamplifier

14.3Exsitutiptreatments......................347

14.3.1Annealing.........................347

14.3.2Fieldevaporationandcontrolleddeposition......348

14.4Insitutiptreatments......................349

14.4.1High-fieldtreatment...................350

14.4.2Controlledcollision

14.5Tiptreatmentforspin-polarizedSTM.............351

14.5.1Coatingthetipwithferromagneticmaterials.....351

14.5.2Coatingthetipwithantiferromagneticmaterials...353

14.5.3Controlledcollisionwithmagneticsurfaces. .....353

14.6TippreparationforelectrochemistrySTM...........354

14.7Tipfunctionalization

14.7.1TipfunctionalizationwithXeatom

14.7.2TipfunctionalizationwithCOmolecule

15.4.2TiptreatmentforSTM-IETS..............369

15.4.3Effectoffinitemodulationvoltage...........371 15.4.4Experimentalobservations................372

16.3.2Opticalinterferometry..................386

16.4.1Acousticactuationinliquids

16.4.2Magneticactuationinliquids

16.5.1Caseofsmallamplitude.................391

16.5.2Caseoffiniteamplitude.................393

16.5.3Responsefunctionforfrequencyshift

16.5.4Secondharmonics....................396

16.5.5Averagetunnelingcurrent

ListofFigures

1.1Thescanningtunnelingmicroscopeinanutshell ........1

1.2Gray-scaleimageandcontourplot................2

1.3Thedifferencebetweenclassicaltheoryandquantumtheory..3

1.4Aone-dimensionalmetal–vacuum–metaltunnelingjunction..5

1.5Thesemiclassicalapproximation.................6

1.6TheLandauertheoryoftunneling ................7

1.7Experimentalobservationofconductancequantum.......8

1.8Statisticalresultsofexperimentalobservationofconductance quantum...............................9

1.9Tunnelingthroughacontrollablevacuumgap ..........11

1.10Distancedependenceoftunnelingconductanceforthreemetals12

1.11Dalton’satomsandSchr¨odinger’satomicwavefunctions ....13

1.12EstimationofthelateralresolutioninSTM...........14

1.13ThestructureofSi(111)-7×7resolvedinrealspace.......15

1.14ElectronicstatesandDASmodelofSi(111)-7×7........16

1.15FourSTMimagesof4Hb-TaS2 ..................17

1.16Corrugationreversalduringascan................18

1.17Dependenceofcorrugationontip–sampledistance.......19

1.18MicroscopicviewofSTMimagingmechanism..........20

1.19ElectronicstatesonWclusters..................20

1.20Observingnodalstructuresinmolecularwavefunctions .....21

1.21Theatomicforcemicroscope(AFM)...............22

1.22Aschematicofthedynamic-modeAFM.............23

1.23AtomicresolutiononSi(111)7×7surfacebyAFM........24

1.24TheoreticalexplanationofatomicresolutionbyAFM......25

1.25Large-scaleSTMimageoflinearmoleculesongraphite.....27

1.26Coadsorptionofsolvantmolecules.................28

1.27BiasdependenceofSTMimages.................29

1.28Thefour-electrodeelectrochemicalcellwithSTM........30

1.29Au(111)surfaceimagedbySTMinliquids ............31

1.30VoltammogramandSTMimageofAuin0.1MH2 SO4 .....32

1.31Self-assembledmonolayerofcysteineonAu(111) ........33

1.32STMtopographicalimagesoftheNi-Ausystem.........34

1.33ConversionratesoftheNicatalystandtheNi-Aucatalyst...35

1.34ReactionofHandthiophenewithaMoS2 nanocluster.....37

1.35Thebasicstepsofatommanipulation..............38

2.1Metal–insulator–metaltunnelingjunction ............46

2.2Tunnelingspectroscopyinclassictunnelingjunctions ......47

2.3TheBardeentunnelingtheory:one-dimensionalcase ......49

2.4Theoriginoftheelastic-tunnelingcondition...........52

2.5Energydependenceoftunnelingmatrixelement .........55

2.6Bardeentunnelingtheory:three-dimensionalcase........58

2.7Aschematicoftheinelasticelectrontunnelingspectroscopy experiment.............................65

2.8ObservedIETSofaceticacidmolecule..............66

2.9FrequencyconditionandenergydiagramofIETS........67

2.10LineprofileofIETSduetofinitetemperature..........68

2.11TheBardeentheoryofspin-polarizedtunneling.........70

2.12Thespin-valveeffect........................72

2.13TheEulerangles..........................74

2.14Theferromagnet–insulator–ferromagnettunnelingjunction...75

2.15Angulardependenceoftunnelingresistance ...........76

3.1Derivationoftunnelingmatrixelements .............78

3.2Derivationofthederivativerule:generalcase..........86

3.3Lateraleffectsoftipstates.....................91

4.1QuantummechanicsofvanderWaalsforce...........95

4.2VanderWaalsforcebetweenaparaboloidaltipandaflatsample97

4.3TheionicbondenergyofNaCl..................99

4.4Conceptofthechemicalbond...................101

4.5Potentialcurveforthehydrogenmolecularion.........105

4.6Perturbationtreatmentofthehydrogenmolecularion.....106

4.7Wavefunctionsofthehydrogenmolecularion ..........107

4.8Evaluationofthecorrectionfactor................108

4.9Accuracyoftheperturbationtreatmentofhydrogenmolecular ion..................................110

4.10Muffin-tinpotentialforperiodpotentialproblem........113

4.11Theblack-ballapproximationforthechemicalbond......114

4.12Wavefunctionsoutsidetheatomiccore ..............117

4.13Molecularorbitalsbuiltfromtwo s-typeatomicorbitals....118

4.14The pσ and pσ ∗ molecularorbitals................119

4.15The pπ and pπ ∗ molecularorbitals................119

4.16CovalentbondenergyandMorsefunction ............121

4.17Comparingwithexperimentaldata................122

4.18Heisenberg’sresonance:caseoftunneling ............124

4.19Heisenberg’sresonance:caseofenergy-levelsplit........125

4.20Heisenberg’sresonance:transferofoscillationamplitude ....126

4.21Threeregimesofinteractioninthehydrogenmolecularion..127

5.1Simultaneousmeasurementofforceandtunnelingconductance132

5.2Perturbationtreatmentofforceandtunneling ..........135

5.3Correlationbetweentunnelingconductanceandforce ......139

5.4Verifyingtherelationbetweentunnelingcurrentandchemical force1:extractingthedecaylengthoftunnelingcurrent....140

5.5Verifyingtherelationbetweentunnelingcurrentandchemical force2:subtractionofthevanderWaalsforcefromthetotal force.................................141

5.6Resultsofsimultaneousmeasurementofforceandcurrent...142

5.7Verificationofthequadraticrelationbetweentunnelingcurrent andforce..............................143

5.8ForceandtunnelingconductancewithaSitipandaSisample144

5.9InteractionforcebetweenaSitipandaSisample.......145

5.10ResonanceforceobservedbynoncontactAFM..........146

5.11The4s wavefunctionofCuatom. ................149

5.12PredictedAFMimageofaCuatomwithaCOtip.......150

5.13Viewpointofreciprocity......................152

5.14Anintuitiveexplanation......................153

5.15Thebasicstepsofatommanipulation..............154

5.16Thresholdresistanceinatommanipulation...........155

5.17Thedouble-wellprobleminquantummechanics.........158

5.18Forceandtunnelingcurrentinthelow-currentregime1 ....164

5.19Forceandtunnelingcurrentinthelow-currentregime2 ....165

6.1TheTersoff–HamannmodelofSTM. ..............171

6.2Calculated ρ(r,EF )ofAu(110)surface ..............174

6.3Ametalsurfacewithone-dimensionalperiodicity........175

6.4FeaturesoftheFermi-levelLDOScorrugationamplitude....176

6.5Theconceptofsurfacestates...................179

6.6SurfacestateobservedonAu(111) ................180

6.7SurfacestateonCu(111),scatteredbyanadatom ........182

6.8SurfacestateonCu(111),scatteredbyanedge .........183

7.1AtomicresolutiononAu(111)bySTM ..............187

7.2Atomic-scaleimagesofDyonW(110) ..............188

7.3InvertedcorrugationandatomicdefectsofDyonW(110)...189

7.4EffectoftipstateonSTMimages.................189

7.5Changesofimagepatternduetotip-stateswitching......190

7.6Distancedependenceofcorrugation................191

7.7STMcorrugationobservedonSi(111)7×7surface........192

7.8Roleof dz 2 tipstatesinSTMimaging..............193

7.9ThephaseeffectinSTMimaging.................194

7.10Originofatomicresolutiononmetalsurfaces..........195

7.11Ametalsurfacewithone-dimensionalperiodicity........197

7.12Tip-inducedcorrugationenhancements..............198

7.13Geometricstructureofaclose-packedmetalsurface.......201

7.14Thehexagonalcosinefunctions ..................202

7.15Charge-densitycontourplotofAl(111)film ...........203

7.16Interpretationofatom-resolvedSTMimagesonAl(111) ....204

7.17LDOSofseveraltipelectronicstates...............205

7.18Enhancementfactorfordifferenttipstates ............207

7.19Apparentradiusforasphericalconductancedistribution ....209

7.20Apparentradiusasafunctionoftip–sampledistance......211

7.21Close-packedsurfacewithtetragonalsymmetry .........213

7.22ElectronicstatesofWclustersneartheFermilevel.......217

7.23AmodelSTMsystem:aWtipandaCusample........218

7.24ElectronicstatesofaWpyramid.................219

7.25Electronicstatesofatransition-metalatomadsorbedonaW slab.................................220

7.26ExperimentalandtheoreticalcorrugationsonW(110) .....221

7.27CorrugationinversiononW(110)surface .............221

7.28AtomiccorrugationandsurfacewaveonBe(1010).......223

7.29Siliconclustersasmodelsfornon-contactAFMtips ......224

7.30VanderWaalsforcebetweenaSitipandaSisurface.....224

7.31Fittingofthechemical-bondforcesbyMorsefunctions .....225

7.32Chemical-bondforcebetweenaSitipandaSisurface.....226

7.33Spin-polarizedSTMinindependentorbitalapproximation...228

7.34Chemicalidentificationofsurfaceatoms.............231

7.35ObservationofatipstatebyAFM................232

7.36ObservationofatipstatebySTM................233

7.37QuantitativeprofileofatipstateobservedbySTM.......234

8.1Ultrathininsulatingbarrierforimagingwavefunctions .....237

8.2Wavefunctionofground-statehydrogenatom ..........238

8.3STMimagesofAuatomsonNaClfilm..............239

8.4Explanationofthecharge-stateswitchingofanAuatom....240

8.5ChargedensityandSTMimageofnaphthalocynine.......241

8.6STMimagesofHOMOofpentacene, s-wavetipand p-wavetip242

8.7STMimagesofLUMOofpentacene, s-wavetipand p-wavetip242

8.8MechanismofSTMimagingwitha p-wavetip..........243

8.9ImagingnaphthalocyninewithaCutipandaCOtip.....244

8.10ImagingnaphthalocyninewithaCutipandaCOtip.....245

8.11AFMimagesofapentacenemoleculewithdifferenttips....246

8.12Three-dimensionalelectricalchargemapinsideamolecule...247

8.13Observingandmappingelectricalfields.............249

8.14Observingandmappingmagneticfields.............250

8.15Double-slitexperimentwithsingle-photondetectors......251

9.1AcombinedSTMandFIM....................255

9.2Recordsofthreesetsofapproachingandretractingcurves...256

9.3StiffnessofaW(100)tip ......................258

9.4RelaxationofaW–AuSTMjunction ...............262

9.5StabilityofSTMandtherigidityofsurfaces ...........263

9.6Theeffectofrelaxationontheapparent G ∼ z relation.....264

9.7Amplificationofcorrugationamplitudebydeformation.....266

9.8Dependenceofcorrugationontunnelingconductance ......267

9.9AtomicforcebetweenanAltipandanAlsample........268

9.10Variationofmeasuredapparentbarrierheightwithdistance..271

10.1Piezoelectriceffect.........................277

10.2Theinversepiezoelectriceffect..................278

10.3Definitionofpiezoelectricconstants................279

10.4Aphotographofanartificialquartzcrystal...........280

10.5Axesandvariouscutsofquartzcrystal..............281

10.6PZT:piezoelectricpropertiesandcomposition..........283

10.7Variationofpiezoelectricconstantwithtemperature......284

10.8Tripodscanner...........................286

10.9Bimorph...............................287

10.10Deflectionofabimorph......................288 10.11Thetubescanner..........................289 10.12Deflectionofatubescanner....................290 10.13Accuracyoftheanalyticexpression................291

10.14Doublepiezoelectricresponse...................293

10.15Measuringcircuitforthedoublepiezoelectricresponse.....294

10.16Measureddoublepiezoelectricresponseofatubescanner...295 10.17Thes-scanner............................297 10.18Theshearpiezo...........................298

11.1Avibratingsystemwithonedegreeoffreedomanditstransfer function ...............................300

11.2SchematicandworkingmechanismoftheHall–Searsseismometer,HS-10-1.............................304

11.3Vibrationspectraoflaboratoryfloors...............305

11.4Vibrationisolationofthefoundation. ..............306

11.5Aphotographofthefoundationwithvibrationisolation ....306

11.6VibrationalimmunityofSTM...................307

11.7Atwo-stagesuspension-springvibrationisolationsystem....308

11.8Transferfunctionsfortwo-stagevibrationisolationsystem...309

11.9Eddy-currentdamper ........................311

11.10Dimensionlessconstantinthecalculationofthedampingconstant.................................312

12.1Twobasictypesofcurrentamplifiers...............314

12.2Broad-bandcurrentamplifiers...................316

12.3Theinfluenceoftheinputcapacitanceonoutputnoise .....317

12.4Logarithmicamplifier... ....................319

12.5AschematicofthefeedbackloopinanSTM..........320

12.6Asimplefeedbackelectronicswithintegrationcompensation..323

12.7TransientresponseoftheSTMfeedbacksystem.........325

12.8Theessentialelementsofacomputer-controlledSTM ......327

13.1Thepiezoelectricsteppe:Thelouse................329

13.2Thepocket-sizeSTM........................330

13.3Single-tubeSTM..........................331

13.4TheBesocke-typeSTM......................333

13.5WorkingprincipleoftheBesockedesign.............333

13.6TipapproachingandretrievingoftheBesockedesign......334

13.7ABesocke-typevariable-temperatureSTM............335

13.8STMwithawalker.........................335

13.9Workingprincipleofthewalker..................336

13.10Thestick-slipstepper........................337

13.11TheInchworm...........................338

13.12AnSTMwithanInchwormascoarsepositioner.........339

13.13TheAarhusSTMdesign......................340

13.14PhotographsoftheAarhusSTM.................341

14.1Electrochemicaletchingoftungstentips.............344

14.2Dependenceoftipradiusofcurvaturewithcutofftime.....346

14.3FIMimageofaWtipimmediatelyafteretching........347

14.4ThephasediagramoftheW–Osystem..............348

14.5Tipannealingmethods.......................348

14.6Tipformationbyfieldevaporation................349

14.7Mechanismoftipsharpeningbyanelectricfield.........350

14.8Mechanismoftipsharpeningbycontrolledcollision... ....351

14.9Thespin-densityorientationofGd-andFe-coatedtips.....352

14.10Bias-dependenceofspin-densityorientationoftips.......353

14.11Tippreparationforelectrochemistrystudies...........354

14.12TransferringaXeatomtoandfromthetip...........356

14.13PickingupandputtingdownaCOmolecule..........357

14.14ImagesbeforeandafterpickingupaCOmolecule.......357

14.15ImagesofCOmoleculeswithahigherdosage..........358

15.1Electronicsforscanningtunnelingspectroscopy .........364

15.2Natureoftheobservedtunnelingspectrum ...........366

15.3Tiptreatmentfortunnelingspectroscopy ............367

15.4Structureofsomelow-Miller-indexWsurfaces ..........368

15.5AschematicofSTM-IETS.....................369

15.6Instrumentationofinelasticelectrontunnelingspectroscopy..370

15.7Broadeningofthespectralpeakowingtoafinitemodulation amplitude..............................371

15.8ObservedSTM-IETS,showingisotopeeffect...........372

15.9Tunnelingspectroscopyofsuperconductors ...........374

15.10AbrikosovfluxlatticeofNbSe2 imagedbySTM.........375

15.11Tunnelingspectraatdifferentpointsofthevortex... ....376

15.12VortexlatticeandscanningspectroscopyofBi

16.1SchematicoftheAFM.......................379

16.2Fabricationofsiliconnitridemicrocantileverswithintegrated tips..................................383

16.3Photographsofmicrocantilevers..................384

16.4Detectionofcantileverdeflectionbyopticalbeamdeflection..385

16.5Detectionofcantileverdeflectionusingopticalinterferometer.386

16.6Principleoftapping-modeAFM..................387

16.7Instrumentationoftapping-modeAFM..............388

16.8Excitationspectrumofthecantileverinliquid ..........389

16.9Tapping-modeAFMinliquid-phaseusingmagneticactuation.390

16.10Cantileverresponsespectrafromacousticandmagneticactuationmethods............................390

16.11Effectofforceontheresonancefrequencyofacantilever....392

16.12Dependenceoffrequencyshiftonvibrationalamplitude....396

16.13SecondharmonicsinthedynamicmodeAFM..........397

16.14AveragecurrentindynamicmodeAFM-STM..........398

16.15Aschematicofthefrequency-modulationAFM.........400

B.1Realsphericalharmonics......................405

C.1SphericalmodifiedBesselfunctions ................408

D.1TheplanegroupsI.........................412

D.2TheplanegroupsII........................413

D.3Relationsamongplanegroups...................414

D.4TheSi(110)surface .........................415

E.1Normalstressandnormalstrain.................417

E.2Shearstressandshearstrain...................418

E.3Bendingofabeam.........................420

E.4Deformationofasegmentofabeam...............421

E.5Vibrationofabeam........................422

E.6Torsionofacircularbar......................424

E.7Torsionandtorsionalvibrationofarectangularcantilever...425

E.8Stiffnessofahelicalspring.....................426

E.9Contactstressandcontactdeformation.............427

ListofTables

1InternationalSTMConferences.................xxxiii

1.1Workfunctionsanddecayconstants ..............5

1.2Tunnelingconductanceandtip–sampledistance ........10

1.3Corrugationamplitudeandtip–sampledistance........19

3.1Tipwavefunctions... .....................80

3.2TipwavefunctionsandGreen’sfunctions ............82

3.3Tunnelingmatrixelements ....................85

3.4Tipstatesandtunnelingmatrixelements ...........90

4.1Potentialcurveofhydrogenmolecularion...........111

4.2Examplesofatomicwavefunctiondata .............115

4.3Parametersofhomonucleardiatomicmolecules........120

5.1Tunnelingconductanceandchemicalbondforce ........133

5.2Slaterparametersofthe4s wavefunctionofCuatom .....148

5.3Thresholdresistances Rt inatommanipulation........155

5.4DiffusionactivationenergymeasuredbyFIM.........156

6.1Experimentalparametersofsurfacestates...........181

6.2Parametersofthescatteredsurfacewaves...........182

7.1Tunnelingmatrixelementsfor d-typetypetipstates.....206

7.2Apparentcurvatureofindividualatomicstates........210

7.3Theindependent-orbitalmodel.................215

7.4ParametersoftheMorsefunctions ...............225

8.1Wavelengthandelectronenergy.................236

8.2Wavefunctionradiiandenergylevels ..............239

9.1Stiffnessofvariouspyramidaltips................259

9.2Stiffnessofclose-packedmetalsurfaces.............261

10.1Physicalconstantsofquartz...................282

10.2PropertiesofPZTceramics...................285

11.1Propertiesofcommonspringmaterials.............310

PrefacetotheThirdEdition

Morethantenyearshavepassedsincethepublicationofthesecondeditionof IntroductiontoScanningTunnelingMicroscopy (STM).Significant advancesinthisresearchfieldhavebeenmadeduringthatdecade.Oneof themostimportantadvancesisthedirectexperimentalobservationofthe wavefunctionsofatomsandmolecules(throughfieldquantitiesrepresenting localvaluesofwavefunctions)downtopicometerresolutionwithnegligible disturbance.Thisadvancewasaresultoftwobreakthroughs.

Thefirstbreakthroughcameabout2005whenagroupatIBMZurich Laboratorydiscoveredamethodtoimagethewavefunctionsofsingleatoms andorganicmoleculesinpristinestateusingSTMbyseparatingthemolecule andthemetalsubstratewithanultrathinfilmofinsulator,typicallyNaCl [1,2].Byusingdifferentbiases,imagesofhighestoccupiedmolecularorbital(HOMO)andlowestunoccupiedmolecularorbital(LUMO)areclearly observed,agreeingwiththechargedensitycontoursofthosewavefunctions calculatedfromfirst-principlequantummechanicalcomputations.

Thesecondbreakthroughtookplacearound2011,wherethesamegroup atIBMZurichLaboratoryimagedtheorganicmoleculessittingonaninsulatingfilmusinganSTMtipfunctionalizedwithaCOmolecule[3].The STMimagesdidnotresemblethechargedensitycontouratall,butrather thesquaresofthelateralderivativesofthemolecularwavefunctions,which peakatthenodalstructuresofthemolecularwavefunctions.Forthefirst timeinsciencehistory,thenodalstructuresinsidemolecularwavefunctions aredirectlyobservedandmappedinrealspace.That PhysicsReviewLetter wasreviewedbyaViewpointarticlein Physics [4],entitled Visualizing QuantumMechanics,whichcommentedthatthedirectobservationofthe nodalstructuresinsidemolecularorbitals“willhelpfuturegenerationsof chemistsinobtaininganintuitiveunderstandingofmolecularproperties thatwillguidethemtonovelsolutionsinallareasofchemistry.”

Thedirectobservationofthewavefunctionsandtheirderivativestouches afundamentalscientificquestionunresolvedoveralmostonecentury:the interpretationofwavefunctions.In ABriefHistoryofTime [5],Stephen Hawkingsaid:“Quantummechanicsunderliesallofmodernscienceand technology.Itgovernsthebehavioroftransistorsandintegratedcircuits, andisthebasisofmodernchemistryandbiology.”Ontheotherhand,as RichardFeynmanfamouslysaid,“Ifyouthinkyouunderstandquantum mechanics,youdon’tunderstandquantummechanics”—becausetheinterpretationofitscentralsubject,wavefunction,washighlycontroversial[6,7]. Thedirectexperimentalobservationofwavefunctionsshowsthattheyare observablephysicalreality,similartoMaxwell’selectromagneticfields.This neweditionfeaturesanaddedchapteron ImagingWavefunctions,including asection MeaningofWavefunctionObservation.

Turn static files into dynamic content formats.

Create a flipbook