https://ebookmass.com/product/introduction-to-scanningtunneling-microscopy-3rd-edition-c-julian-chen/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Scanning Nonlinear Dielectric Microscopy Yasuo Cho
https://ebookmass.com/product/scanning-nonlinear-dielectricmicroscopy-yasuo-cho/
ebookmass.com
Introduction to Computing Systems: From Bits & Gates to C & Beyond 3rd Edition Yale Patt
https://ebookmass.com/product/introduction-to-computing-systems-frombits-gates-to-c-beyond-3rd-edition-yale-patt/
ebookmass.com
Cricket For Dummies 3rd Edition Julian Knight
https://ebookmass.com/product/cricket-for-dummies-3rd-edition-julianknight/
ebookmass.com
L'infirmier(e) en néphrologie. Clinique Pratique et évaluation de la Qualité des Soins 4th Edition Edition Afidtn (Auth.)
https://ebookmass.com/product/linfirmiere-en-nephrologie-cliniquepratique-et-evaluation-de-la-qualite-des-soins-4th-edition-editionafidtn-auth/
ebookmass.com
Homer's Iliad and the Problem of Force Charles H. Stocking https://ebookmass.com/product/homers-iliad-and-the-problem-of-forcecharles-h-stocking/
ebookmass.com
(eTextbook PDF) for Introduction to One Health: An Interdisciplinary Approach to Planetary Health
https://ebookmass.com/product/etextbook-pdf-for-introduction-to-onehealth-an-interdisciplinary-approach-to-planetary-health/
ebookmass.com
A Man of Legend Linda Broday
https://ebookmass.com/product/a-man-of-legend-linda-broday/
ebookmass.com
Fundamentals of Physics,Volume 1, 12th edition David Halliday
https://ebookmass.com/product/fundamentals-of-physicsvolume-1-12thedition-david-halliday/
ebookmass.com
Pediatric Hand Therapy, 1e 1st Edition Joshua M. Abzug
https://ebookmass.com/product/pediatric-hand-therapy-1e-1st-editionjoshua-m-abzug/
ebookmass.com
Django 2.2 & Python: The Ultimate Web Development
Bootcamp: Build three complete websites, learn back and front-end web development, and publish your site online with DigitalOcean. Alam https://ebookmass.com/product/django-2-2-python-the-ultimate-webdevelopment-bootcamp-build-three-complete-websites-learn-back-andfront-end-web-development-and-publish-your-site-online-withdigitalocean-alam/ ebookmass.com
MONOGRAPHSONTHE PHYSICSANDCHEMISTRYOF MATERIALS
GeneralEditors
RichardJ.BrookAnthonyCheetham
ArthurHeuerSirPeterHirsch
TobinJ.MarksDavidG.Pettifor
ManfredRuhleJohnSilcox
AdrianP.SuttonMatthewV.Tirrell
VaclavVitek
MONOGRAPHSONTHEPHYSICSANDCHEMISTRYOFMATERIALS
Theoryofdielectrics H.Frohlich
Strongsolids(Thirdedition) A.KellyandN.H.Macmillan
Opticalspectroscopyofinorganicsolids B.HendersonandG.F.Imbusch
Quantumtheoryofcollectivephenomena G.L.Sewell
Principlesofdielectrics B.K.P.Scaife
Surfaceanalyticaltechniques J.C.Rivi`ere
Basictheoryofsurfacestates SydneyG.DavisonandMariaSteslicka
Acousticmicroscopy G.A.D.Briggs
Lightscattering:principlesanddevelopment W.Brown
Quasicrystals:aprimer(Secondedition) C.Janot
Interfacesincrystallinematerials A.P.SuttonandR.W.Balluffi
Atomprobefieldionmicroscopy M.K.Miller,A.Cerezo,M.G.Hetherington,and G.D.W.Smith
Rare-earthironpermanentmagnets J.M.D.Coey
Statisticalphysicsoffractureandbreakdownindisorderedsystems B.K.Chakrabarti andL.G.Benguigui
Electronicprocessesinorganiccrystalsandpolymers(Secondedition) M.Popeand C.E.Swenberg
NMRimagingofmaterials B.Bl¨umich
Statisticalmechanicsofsolids L.A.Girifalco
Experimentaltechniquesinlow-temperaturephysics(Fourthedition) G.K.Whiteand P.J.Meeson
High-resolutionelectronmicroscopy(Thirdedition) J.C.H.Spence
High-energyelectrondiffractionandmicroscopy L.-M.Peng,S.L.Dudarev,and M.J.Whelan
Thephysicsoflyotropicliquidcrystals:phasetransitionsandstructuralproperties A.M.FigueiredoNetoandS.Salinas
Instabilitiesandself-organizationinmaterials,Volume1:Fundamentalsof nanoscience,Volume2:Applicationsinmaterialsdesignandnanotechnology N.GhoniemandD.Walgraef
Introductiontoscanningtunnelingmicroscopy(Secondedition) C.J.Chen
IntroductiontoScanning TunnelingMicroscopy ThirdEdition C.JulianChen DepartmentofAppliedPhysicsandAppliedMathematics, ColumbiaUniversity,NewYork
GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom
OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries
c C.JulianChen2021
Themoralrightsoftheauthorhavebeenasserted ThirdEditionpublishedin2021
Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove
Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer
PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica
BritishLibraryCataloguinginPublicationData Dataavailable
LibraryofCongressControlNumber:2020952115
ISBN978–0–19–885655–9
DOI:10.1093/oso/9780198856559.001.0001
PrintedandboundinGreatBritainby ClaysLtd,ElcografS.p.A.
LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.
TOLICHING,WINSTON,KRISTIN,MARCUS,ANDNORA PrefacetotheThirdEdition xxv
Chapter1:Overview 1
1.1Thescanningtunnelingmicroscope ...............1
1.2Theconceptoftunneling .....................3
1.2.1Transmissioncoefficient.................3
1.2.2Semiclassicalapproximation...............6
1.2.3TheLandauertheory...................6
1.2.4Tunnelingconductance ..................10
1.3Probingelectronicstructureatatomicscale..........12
1.3.1Experimentalobservations................15
1.3.2OriginofatomicresolutioninSTM...........18
1.3.3Observingandmappingwavefunctions .........21
1.4Theatomicforcemicroscope..................22
1.4.1Atomic-scaleimagingbyAFM.............22
1.4.2RoleofcovalentbondinginAFMimaging.......25
1.5Illustrativeapplications.....................26
1.5.1Self-assembledmoleculesataliquid-solidinterface..26
1.5.2ElectrochemistrySTM..................30
1.5.3Catalysisresearch ....................34
1.5.4Atommanipulation...................38
PartIPrinciples
Chapter2:TunnelingPhenomenon
2.1Themetal–insulator–metaltunnelingjunction .........46
2.2TheBardeentheoryoftunneling ................48
2.2.1One-dimensionalcase..................48
2.2.2Tunnelingspectroscopy .................53
2.2.3Energydependenceoftunnelingmatrixelements...54
2.2.4Asymmetryintunnelingspectrum ...........55
2.2.5Three-dimensionalcase.................57
2.2.6Errorestimation.....................59
2.2.7Wavefunctioncorrection.................60
2.2.8Thetransfer-Hamiltonianformalism..........61
2.2.9Thetunnelingmatrix ..................63
2.2.10RelationtotheLandauertheory............64
2.3Inelastictunneling........................64
2.3.1Experimentalfacts....................65
2.3.2Frequencycondition...................66
2.3.3Effectoffinitetemperature...............67
2.4Spin-polarizedtunneling .....................69
2.4.1Generalformalism....................70
2.4.2Thespin-valveeffect...................72
2.4.3Experimentalobservations................76
Chapter3:TunnelingMatrixElements 77
3.1Introduction............................77
3.2Tipwavefunctions... .....................78
3.2.1Generalform.......................78
3.2.2TipwavefunctionsasGreen’sfunctions ........81
3.3Thederivativerule:individualcases..............83
3.3.1 s-wavetipstate......................83
3.3.2 p -wavetipstates.....................84
3.3.3 d -wavetipstates.....................84
3.4Thederivativerule:generalcase................85
3.5Tipswithaxialsymmetry....................90
3.5.1Lateraleffectsoftipstates...............91
Chapter4:AtomicForces 93
4.1VanderWaalsforce.......................93
4.1.1ThevanderWaalsequationofstate..........93
4.1.2TheoriginofvanderWaalsforce............94
4.1.3VanderWaalsforcebetweenatipandasample...96
4.2Paulirepulsion..........................98
4.3Theionicbond..........................98
4.4Thechemicalbond........................100
4.4.1Theconceptofthechemicalbond...........100
4.4.2BondingenergyasaBardeensurfaceintegral.....102
4.5Thehydrogenmolecularion...................104
4.5.1VanderWaalsforce...................106
4.5.2EvaluationoftheBardeensurfaceintegral.......108
4.5.3Comparewiththeexactsolution............110
4.6Chemicalbondsofmany-electronatoms............112
4.6.1Themuffin-tinpotentialapproximation........112
4.6.2Theblack-ballmodelofatoms.............114
4.6.3Wavefunctionsoutsidetheatomiccore.........116
4.6.4Typesofchemicalbonds.................117
4.6.5Comparingwithexperimentaldata...........120
4.6.6Abriefsummary.....................123
4.7Chemicalbondasresonanceandtunneling.. ........123
4.7.1Heisenberg’smodelofresonance............123
4.7.2Resonanceenergyastunnelingmatrixelement....126
Chapter5:AtomicForcesandTunneling 131
5.1Theprincipleofequivalence...................131
5.2Anexperimentallyverifiabletheory...............134
5.2.1Caseofelastictunneling.................134
5.2.2Ameasurableconsequence................137
5.2.3VanderWaalsforce...................138
5.2.4Repulsiveforce......................138
5.3Experimentalverifications....................138
5.3.1Earlyexperimentsonmetalsurfaces..........138
5.3.2Experimentswithfrequency-modulationAFM....140
5.3.3ExperimentswithstaticAFM..............142
5.3.4Silicontipandsiliconsample... ...........143
5.3.5Noncontactatomicforcespectroscopy.........145
5.4MappingwavefunctionswithAFM ...............147
5.4.1Caseofan s-wavetip..................147
5.4.2CaseofaCO-functionalizedtip.............149
5.4.3Viewpointofreciprocity.................151
5.4.4Anintuitiveexplanation.................153
5.4.5PaulirepulsionandvanderWaalsforce........153
5.5Thresholdresistanceinatommanipulation..........154
5.6Generaltheoreticalarguments..................157
5.6.1Thedouble-wellproblem.................157
5.6.2CanonicaltransformationoftransferHamiltonian...160
5.6.3Diagonizingthetunnelingmatrix ............161
5.7TheHofer–Fishertheory.....................163
Chapter6:Nanometer-ScaleImaging 167
6.1TypesofSTMandAFMimages................167
6.2TheTersoff–Hamannmodel. ..................169
6.2.1Theconcept........................169
6.2.2Theoriginalderivation..................170
6.2.3Profilesofsurfacereconstructions............173
6.2.4Extensiontofinitebiasvoltages............176
6.2.5Surfacestates:theconcept...............178
6.2.6Surfacestates:STMobservations............180
6.2.7Heterogeneoussurfaces..................184
6.3LimitationsoftheTersoff–Hamannmodel ...........184
Chapter7:Atomic-ScaleImaging 187
7.1Experimentalfacts........................188
7.1.1Universalityofatomicresolution............188
7.1.2Corrugationinversion..................188
7.1.3Tip-statedependence..................189
7.1.4Distancedependenceofcorrugation..........191
7.2Intuitiveexplanations......................192
7.2.1Sharpnessoftipstates..................192
7.2.2Phaseeffect........................193
7.2.3Argumentsbasedonthereciprocityprinciple.....195
7.3Analytictreatments.......................196
7.3.1Aone-dimensionalcase.................196
7.3.2Surfaceswithhexagonalsymmetry ...........200
7.3.3Corrugationinversion..................204
7.3.4ProfilesofatomicstatesasseenbySTM ........208
7.3.5Independent-orbitalapproximation...........212
7.4First-principlesstudies:tipelectronicstates..........215
7.4.1WclustersasSTMtipmodels.............216
7.4.2DFTstudyofaW–CuSTMjunction .........217
7.4.3Transition-metalpyramidaltips.............217
7.4.4Transition-metalatomsadsorbedonWslabs.....218
7.5First-principlesstudies:theimages...............220
7.5.1Transition-metalsurfaces................220
7.5.2Atomiccorrugationandsurfacewaves.........222
7.5.3Atom-resolvedAFMimages...............223
7.6Spin-polarizedSTM.......................227
7.7Chemicalidentificationofsurfaceatoms............230
7.8Theprincipleofreciprocity...................231
Chapter8:ImagingWavefunctions 235
8.1Useofultrathininsulatingbarriers...............237
8.2ImagingwavefunctionswithSTM.. ..............238
8.2.1Imagingatomicwavefunctions .............238
8.2.2Imagingmolecularwavefunctions ............240
8.2.3Imagingnodalstructures................241
8.3ImagingwavefunctionswithAFM ...............245
8.4Meaningofwavefunctionobservation ..............247
8.4.1Interpretationsofwavefunctions ............248
8.4.2Wavefunctionasaphysicalfield............249
8.4.3Born’sstatisticalinterpretation.............251
Chapter9:NanomechanicalEffects
9.1Mechanicalstabilityofthetip-samplejunction ........254
9.1.1Experimentalobservations................254
9.1.2Conditionofmechanicalstability............257
9.1.3Relaxationandtheapparent G ∼ z relation......263
9.2Mechanicaleffectsonobservedcorrugations..........265
9.2.1Softsurfaces.......................265
9.2.2Hardsurfaces.......................267
9.3Forceintunneling-barriermeasurements............270
Chapter10:PiezoelectricScanner
10.1Piezoelectricity..........................277
10.1.1Piezoelectriceffect....................277
10.1.2Inversepiezoelectriceffect................278
10.2PiezoelectricmaterialsinSTMandAFM...........281
10.2.1Quartz...........................281
10.2.2Leadzirconatetitanateceramics............282
10.3PiezoelectricdevicesinSTMandAFM............286
10.3.1Tripodscanner......................286
10.3.2Bimorph..........................287
10.4Thetubescanner.........................289
10.4.1Deflection.........................290
10.4.2Insitutestingandcalibration..............292
10.4.3Resonantfrequencies...................295
10.4.4Tiltcompensation:thes-scanner............296
10.4.5Repolarizingadepolarizedtubepiezo.........297
10.5Theshearpiezo..........................297
Chapter11:VibrationIsolation
11.2.1Measurementmethod..................304
11.2.2Vibrationisolationofthefoundation..
11.3VibrationalimmunityofSTM..................307
11.4Suspension-springsystems....................308
11.4.1Analysisoftwo-stagesystems..............308
11.4.2Choiceofsprings.....................310
11.4.3Eddy-currentdamper
Chapter12:ElectronicsandControl
12.1.4Logarithmicamplifier
14.3Exsitutiptreatments......................347
14.3.1Annealing.........................347
14.3.2Fieldevaporationandcontrolleddeposition......348
14.4Insitutiptreatments......................349
14.4.1High-fieldtreatment...................350
14.4.2Controlledcollision
14.5Tiptreatmentforspin-polarizedSTM.............351
14.5.1Coatingthetipwithferromagneticmaterials.....351
14.5.2Coatingthetipwithantiferromagneticmaterials...353
14.5.3Controlledcollisionwithmagneticsurfaces. .....353
14.6TippreparationforelectrochemistrySTM...........354
14.7Tipfunctionalization
14.7.1TipfunctionalizationwithXeatom
14.7.2TipfunctionalizationwithCOmolecule
15.4.2TiptreatmentforSTM-IETS..............369
15.4.3Effectoffinitemodulationvoltage...........371 15.4.4Experimentalobservations................372
16.3.2Opticalinterferometry..................386
16.4.1Acousticactuationinliquids
16.4.2Magneticactuationinliquids
16.5.1Caseofsmallamplitude.................391
16.5.2Caseoffiniteamplitude.................393
16.5.3Responsefunctionforfrequencyshift
16.5.4Secondharmonics....................396
16.5.5Averagetunnelingcurrent
ListofFigures 1.1Thescanningtunnelingmicroscopeinanutshell ........1
1.2Gray-scaleimageandcontourplot................2
1.3Thedifferencebetweenclassicaltheoryandquantumtheory..3
1.4Aone-dimensionalmetal–vacuum–metaltunnelingjunction..5
1.5Thesemiclassicalapproximation.................6
1.6TheLandauertheoryoftunneling ................7
1.7Experimentalobservationofconductancequantum.......8
1.8Statisticalresultsofexperimentalobservationofconductance quantum...............................9
1.9Tunnelingthroughacontrollablevacuumgap ..........11
1.10Distancedependenceoftunnelingconductanceforthreemetals12
1.11Dalton’satomsandSchr¨odinger’satomicwavefunctions ....13
1.12EstimationofthelateralresolutioninSTM...........14
1.13ThestructureofSi(111)-7×7resolvedinrealspace.......15
1.14ElectronicstatesandDASmodelofSi(111)-7×7........16
1.15FourSTMimagesof4Hb-TaS2 ..................17
1.16Corrugationreversalduringascan................18
1.17Dependenceofcorrugationontip–sampledistance.......19
1.18MicroscopicviewofSTMimagingmechanism..........20
1.19ElectronicstatesonWclusters..................20
1.20Observingnodalstructuresinmolecularwavefunctions .....21
1.21Theatomicforcemicroscope(AFM)...............22
1.22Aschematicofthedynamic-modeAFM.............23
1.23AtomicresolutiononSi(111)7×7surfacebyAFM........24
1.24TheoreticalexplanationofatomicresolutionbyAFM......25
1.25Large-scaleSTMimageoflinearmoleculesongraphite.....27
1.26Coadsorptionofsolvantmolecules.................28
1.27BiasdependenceofSTMimages.................29
1.28Thefour-electrodeelectrochemicalcellwithSTM........30
1.29Au(111)surfaceimagedbySTMinliquids ............31
1.30VoltammogramandSTMimageofAuin0.1MH2 SO4 .....32
1.31Self-assembledmonolayerofcysteineonAu(111) ........33
1.32STMtopographicalimagesoftheNi-Ausystem.........34
1.33ConversionratesoftheNicatalystandtheNi-Aucatalyst...35
1.34ReactionofHandthiophenewithaMoS2 nanocluster.....37
1.35Thebasicstepsofatommanipulation..............38
2.1Metal–insulator–metaltunnelingjunction ............46
2.2Tunnelingspectroscopyinclassictunnelingjunctions ......47
2.3TheBardeentunnelingtheory:one-dimensionalcase ......49
2.4Theoriginoftheelastic-tunnelingcondition...........52
2.5Energydependenceoftunnelingmatrixelement .........55
2.6Bardeentunnelingtheory:three-dimensionalcase........58
2.7Aschematicoftheinelasticelectrontunnelingspectroscopy experiment.............................65
2.8ObservedIETSofaceticacidmolecule..............66
2.9FrequencyconditionandenergydiagramofIETS........67
2.10LineprofileofIETSduetofinitetemperature..........68
2.11TheBardeentheoryofspin-polarizedtunneling.........70
2.12Thespin-valveeffect........................72
2.13TheEulerangles..........................74
2.14Theferromagnet–insulator–ferromagnettunnelingjunction...75
2.15Angulardependenceoftunnelingresistance ...........76
3.1Derivationoftunnelingmatrixelements .............78
3.2Derivationofthederivativerule:generalcase..........86
3.3Lateraleffectsoftipstates.....................91
4.1QuantummechanicsofvanderWaalsforce...........95
4.2VanderWaalsforcebetweenaparaboloidaltipandaflatsample97
4.3TheionicbondenergyofNaCl..................99
4.4Conceptofthechemicalbond...................101
4.5Potentialcurveforthehydrogenmolecularion.........105
4.6Perturbationtreatmentofthehydrogenmolecularion.....106
4.7Wavefunctionsofthehydrogenmolecularion ..........107
4.8Evaluationofthecorrectionfactor................108
4.9Accuracyoftheperturbationtreatmentofhydrogenmolecular ion..................................110
4.10Muffin-tinpotentialforperiodpotentialproblem........113
4.11Theblack-ballapproximationforthechemicalbond......114
4.12Wavefunctionsoutsidetheatomiccore ..............117
4.13Molecularorbitalsbuiltfromtwo s-typeatomicorbitals....118
4.14The pσ and pσ ∗ molecularorbitals................119
4.15The pπ and pπ ∗ molecularorbitals................119
4.16CovalentbondenergyandMorsefunction ............121
4.17Comparingwithexperimentaldata................122
4.18Heisenberg’sresonance:caseoftunneling ............124
4.19Heisenberg’sresonance:caseofenergy-levelsplit........125
4.20Heisenberg’sresonance:transferofoscillationamplitude ....126
4.21Threeregimesofinteractioninthehydrogenmolecularion..127
5.1Simultaneousmeasurementofforceandtunnelingconductance132
5.2Perturbationtreatmentofforceandtunneling ..........135
5.3Correlationbetweentunnelingconductanceandforce ......139
5.4Verifyingtherelationbetweentunnelingcurrentandchemical force1:extractingthedecaylengthoftunnelingcurrent....140
5.5Verifyingtherelationbetweentunnelingcurrentandchemical force2:subtractionofthevanderWaalsforcefromthetotal force.................................141
5.6Resultsofsimultaneousmeasurementofforceandcurrent...142
5.7Verificationofthequadraticrelationbetweentunnelingcurrent andforce..............................143
5.8ForceandtunnelingconductancewithaSitipandaSisample144
5.9InteractionforcebetweenaSitipandaSisample.......145
5.10ResonanceforceobservedbynoncontactAFM..........146
5.11The4s wavefunctionofCuatom. ................149
5.12PredictedAFMimageofaCuatomwithaCOtip.......150
5.13Viewpointofreciprocity......................152
5.14Anintuitiveexplanation......................153
5.15Thebasicstepsofatommanipulation..............154
5.16Thresholdresistanceinatommanipulation...........155
5.17Thedouble-wellprobleminquantummechanics.........158
5.18Forceandtunnelingcurrentinthelow-currentregime1 ....164
5.19Forceandtunnelingcurrentinthelow-currentregime2 ....165
6.1TheTersoff–HamannmodelofSTM. ..............171
6.2Calculated ρ(r,EF )ofAu(110)surface ..............174
6.3Ametalsurfacewithone-dimensionalperiodicity........175
6.4FeaturesoftheFermi-levelLDOScorrugationamplitude....176
6.5Theconceptofsurfacestates...................179
6.6SurfacestateobservedonAu(111) ................180
6.7SurfacestateonCu(111),scatteredbyanadatom ........182
6.8SurfacestateonCu(111),scatteredbyanedge .........183
7.1AtomicresolutiononAu(111)bySTM ..............187
7.2Atomic-scaleimagesofDyonW(110) ..............188
7.3InvertedcorrugationandatomicdefectsofDyonW(110)...189
7.4EffectoftipstateonSTMimages.................189
7.5Changesofimagepatternduetotip-stateswitching......190
7.6Distancedependenceofcorrugation................191
7.7STMcorrugationobservedonSi(111)7×7surface........192
7.8Roleof dz 2 tipstatesinSTMimaging..............193
7.9ThephaseeffectinSTMimaging.................194
7.10Originofatomicresolutiononmetalsurfaces..........195
7.11Ametalsurfacewithone-dimensionalperiodicity........197
7.12Tip-inducedcorrugationenhancements..............198
7.13Geometricstructureofaclose-packedmetalsurface.......201
7.14Thehexagonalcosinefunctions ..................202
7.15Charge-densitycontourplotofAl(111)film ...........203
7.16Interpretationofatom-resolvedSTMimagesonAl(111) ....204
7.17LDOSofseveraltipelectronicstates...............205
7.18Enhancementfactorfordifferenttipstates ............207
7.19Apparentradiusforasphericalconductancedistribution ....209
7.20Apparentradiusasafunctionoftip–sampledistance......211
7.21Close-packedsurfacewithtetragonalsymmetry .........213
7.22ElectronicstatesofWclustersneartheFermilevel.......217
7.23AmodelSTMsystem:aWtipandaCusample........218
7.24ElectronicstatesofaWpyramid.................219
7.25Electronicstatesofatransition-metalatomadsorbedonaW slab.................................220
7.26ExperimentalandtheoreticalcorrugationsonW(110) .....221
7.27CorrugationinversiononW(110)surface .............221
7.28AtomiccorrugationandsurfacewaveonBe(1010).......223
7.29Siliconclustersasmodelsfornon-contactAFMtips ......224
7.30VanderWaalsforcebetweenaSitipandaSisurface.....224
7.31Fittingofthechemical-bondforcesbyMorsefunctions .....225
7.32Chemical-bondforcebetweenaSitipandaSisurface.....226
7.33Spin-polarizedSTMinindependentorbitalapproximation...228
7.34Chemicalidentificationofsurfaceatoms.............231
7.35ObservationofatipstatebyAFM................232
7.36ObservationofatipstatebySTM................233
7.37QuantitativeprofileofatipstateobservedbySTM.......234
8.1Ultrathininsulatingbarrierforimagingwavefunctions .....237
8.2Wavefunctionofground-statehydrogenatom ..........238
8.3STMimagesofAuatomsonNaClfilm..............239
8.4Explanationofthecharge-stateswitchingofanAuatom....240
8.5ChargedensityandSTMimageofnaphthalocynine.......241
8.6STMimagesofHOMOofpentacene, s-wavetipand p-wavetip242
8.7STMimagesofLUMOofpentacene, s-wavetipand p-wavetip242
8.8MechanismofSTMimagingwitha p-wavetip..........243
8.9ImagingnaphthalocyninewithaCutipandaCOtip.....244
8.10ImagingnaphthalocyninewithaCutipandaCOtip.....245
8.11AFMimagesofapentacenemoleculewithdifferenttips....246
8.12Three-dimensionalelectricalchargemapinsideamolecule...247
8.13Observingandmappingelectricalfields.............249
8.14Observingandmappingmagneticfields.............250
8.15Double-slitexperimentwithsingle-photondetectors......251
9.1AcombinedSTMandFIM....................255
9.2Recordsofthreesetsofapproachingandretractingcurves...256
9.3StiffnessofaW(100)tip ......................258
9.4RelaxationofaW–AuSTMjunction ...............262
9.5StabilityofSTMandtherigidityofsurfaces ...........263
9.6Theeffectofrelaxationontheapparent G ∼ z relation.....264
9.7Amplificationofcorrugationamplitudebydeformation.....266
9.8Dependenceofcorrugationontunnelingconductance ......267
9.9AtomicforcebetweenanAltipandanAlsample........268
9.10Variationofmeasuredapparentbarrierheightwithdistance..271
10.1Piezoelectriceffect.........................277
10.2Theinversepiezoelectriceffect..................278
10.3Definitionofpiezoelectricconstants................279
10.4Aphotographofanartificialquartzcrystal...........280
10.5Axesandvariouscutsofquartzcrystal..............281
10.6PZT:piezoelectricpropertiesandcomposition..........283
10.7Variationofpiezoelectricconstantwithtemperature......284
10.8Tripodscanner...........................286
10.9Bimorph...............................287
10.10Deflectionofabimorph......................288 10.11Thetubescanner..........................289 10.12Deflectionofatubescanner....................290 10.13Accuracyoftheanalyticexpression................291
10.14Doublepiezoelectricresponse...................293
10.15Measuringcircuitforthedoublepiezoelectricresponse.....294
10.16Measureddoublepiezoelectricresponseofatubescanner...295 10.17Thes-scanner............................297 10.18Theshearpiezo...........................298
11.1Avibratingsystemwithonedegreeoffreedomanditstransfer function ...............................300
11.2SchematicandworkingmechanismoftheHall–Searsseismometer,HS-10-1.............................304
11.3Vibrationspectraoflaboratoryfloors...............305
11.4Vibrationisolationofthefoundation. ..............306
11.5Aphotographofthefoundationwithvibrationisolation ....306
11.6VibrationalimmunityofSTM...................307
11.7Atwo-stagesuspension-springvibrationisolationsystem....308
11.8Transferfunctionsfortwo-stagevibrationisolationsystem...309
11.9Eddy-currentdamper ........................311
11.10Dimensionlessconstantinthecalculationofthedampingconstant.................................312
12.1Twobasictypesofcurrentamplifiers...............314
12.2Broad-bandcurrentamplifiers...................316
12.3Theinfluenceoftheinputcapacitanceonoutputnoise .....317
12.4Logarithmicamplifier... ....................319
12.5AschematicofthefeedbackloopinanSTM..........320
12.6Asimplefeedbackelectronicswithintegrationcompensation..323
12.7TransientresponseoftheSTMfeedbacksystem.........325
12.8Theessentialelementsofacomputer-controlledSTM ......327
13.1Thepiezoelectricsteppe:Thelouse................329
13.2Thepocket-sizeSTM........................330
13.3Single-tubeSTM..........................331
13.4TheBesocke-typeSTM......................333
13.5WorkingprincipleoftheBesockedesign.............333
13.6TipapproachingandretrievingoftheBesockedesign......334
13.7ABesocke-typevariable-temperatureSTM............335
13.8STMwithawalker.........................335
13.9Workingprincipleofthewalker..................336
13.10Thestick-slipstepper........................337
13.11TheInchworm...........................338
13.12AnSTMwithanInchwormascoarsepositioner.........339
13.13TheAarhusSTMdesign......................340
13.14PhotographsoftheAarhusSTM.................341
14.1Electrochemicaletchingoftungstentips.............344
14.2Dependenceoftipradiusofcurvaturewithcutofftime.....346
14.3FIMimageofaWtipimmediatelyafteretching........347
14.4ThephasediagramoftheW–Osystem..............348
14.5Tipannealingmethods.......................348
14.6Tipformationbyfieldevaporation................349
14.7Mechanismoftipsharpeningbyanelectricfield.........350
14.8Mechanismoftipsharpeningbycontrolledcollision... ....351
14.9Thespin-densityorientationofGd-andFe-coatedtips.....352
14.10Bias-dependenceofspin-densityorientationoftips.......353
14.11Tippreparationforelectrochemistrystudies...........354
14.12TransferringaXeatomtoandfromthetip...........356
14.13PickingupandputtingdownaCOmolecule..........357
14.14ImagesbeforeandafterpickingupaCOmolecule.......357
14.15ImagesofCOmoleculeswithahigherdosage..........358
15.1Electronicsforscanningtunnelingspectroscopy .........364
15.2Natureoftheobservedtunnelingspectrum ...........366
15.3Tiptreatmentfortunnelingspectroscopy ............367
15.4Structureofsomelow-Miller-indexWsurfaces ..........368
15.5AschematicofSTM-IETS.....................369
15.6Instrumentationofinelasticelectrontunnelingspectroscopy..370
15.7Broadeningofthespectralpeakowingtoafinitemodulation amplitude..............................371
15.8ObservedSTM-IETS,showingisotopeeffect...........372
15.9Tunnelingspectroscopyofsuperconductors ...........374
15.10AbrikosovfluxlatticeofNbSe2 imagedbySTM.........375
15.11Tunnelingspectraatdifferentpointsofthevortex... ....376
15.12VortexlatticeandscanningspectroscopyofBi
16.1SchematicoftheAFM.......................379
16.2Fabricationofsiliconnitridemicrocantileverswithintegrated tips..................................383
16.3Photographsofmicrocantilevers..................384
16.4Detectionofcantileverdeflectionbyopticalbeamdeflection..385
16.5Detectionofcantileverdeflectionusingopticalinterferometer.386
16.6Principleoftapping-modeAFM..................387
16.7Instrumentationoftapping-modeAFM..............388
16.8Excitationspectrumofthecantileverinliquid ..........389
16.9Tapping-modeAFMinliquid-phaseusingmagneticactuation.390
16.10Cantileverresponsespectrafromacousticandmagneticactuationmethods............................390
16.11Effectofforceontheresonancefrequencyofacantilever....392
16.12Dependenceoffrequencyshiftonvibrationalamplitude....396
16.13SecondharmonicsinthedynamicmodeAFM..........397
16.14AveragecurrentindynamicmodeAFM-STM..........398
16.15Aschematicofthefrequency-modulationAFM.........400
B.1Realsphericalharmonics......................405
C.1SphericalmodifiedBesselfunctions ................408
D.1TheplanegroupsI.........................412
D.2TheplanegroupsII........................413
D.3Relationsamongplanegroups...................414
D.4TheSi(110)surface .........................415
E.1Normalstressandnormalstrain.................417
E.2Shearstressandshearstrain...................418
E.3Bendingofabeam.........................420
E.4Deformationofasegmentofabeam...............421
E.5Vibrationofabeam........................422
E.6Torsionofacircularbar......................424
E.7Torsionandtorsionalvibrationofarectangularcantilever...425
E.8Stiffnessofahelicalspring.....................426
E.9Contactstressandcontactdeformation.............427
ListofTables 1InternationalSTMConferences.................xxxiii
1.1Workfunctionsanddecayconstants ..............5
1.2Tunnelingconductanceandtip–sampledistance ........10
1.3Corrugationamplitudeandtip–sampledistance........19
3.1Tipwavefunctions... .....................80
3.2TipwavefunctionsandGreen’sfunctions ............82
3.3Tunnelingmatrixelements ....................85
3.4Tipstatesandtunnelingmatrixelements ...........90
4.1Potentialcurveofhydrogenmolecularion...........111
4.2Examplesofatomicwavefunctiondata .............115
4.3Parametersofhomonucleardiatomicmolecules........120
5.1Tunnelingconductanceandchemicalbondforce ........133
5.2Slaterparametersofthe4s wavefunctionofCuatom .....148
5.3Thresholdresistances Rt inatommanipulation........155
5.4DiffusionactivationenergymeasuredbyFIM.........156
6.1Experimentalparametersofsurfacestates...........181
6.2Parametersofthescatteredsurfacewaves...........182
7.1Tunnelingmatrixelementsfor d-typetypetipstates.....206
7.2Apparentcurvatureofindividualatomicstates........210
7.3Theindependent-orbitalmodel.................215
7.4ParametersoftheMorsefunctions ...............225
8.1Wavelengthandelectronenergy.................236
8.2Wavefunctionradiiandenergylevels ..............239
9.1Stiffnessofvariouspyramidaltips................259
9.2Stiffnessofclose-packedmetalsurfaces.............261
10.1Physicalconstantsofquartz...................282
10.2PropertiesofPZTceramics...................285
11.1Propertiesofcommonspringmaterials.............310
PrefacetotheThirdEdition Morethantenyearshavepassedsincethepublicationofthesecondeditionof IntroductiontoScanningTunnelingMicroscopy (STM).Significant advancesinthisresearchfieldhavebeenmadeduringthatdecade.Oneof themostimportantadvancesisthedirectexperimentalobservationofthe wavefunctionsofatomsandmolecules(throughfieldquantitiesrepresenting localvaluesofwavefunctions)downtopicometerresolutionwithnegligible disturbance.Thisadvancewasaresultoftwobreakthroughs.
Thefirstbreakthroughcameabout2005whenagroupatIBMZurich Laboratorydiscoveredamethodtoimagethewavefunctionsofsingleatoms andorganicmoleculesinpristinestateusingSTMbyseparatingthemolecule andthemetalsubstratewithanultrathinfilmofinsulator,typicallyNaCl [1,2].Byusingdifferentbiases,imagesofhighestoccupiedmolecularorbital(HOMO)andlowestunoccupiedmolecularorbital(LUMO)areclearly observed,agreeingwiththechargedensitycontoursofthosewavefunctions calculatedfromfirst-principlequantummechanicalcomputations.
Thesecondbreakthroughtookplacearound2011,wherethesamegroup atIBMZurichLaboratoryimagedtheorganicmoleculessittingonaninsulatingfilmusinganSTMtipfunctionalizedwithaCOmolecule[3].The STMimagesdidnotresemblethechargedensitycontouratall,butrather thesquaresofthelateralderivativesofthemolecularwavefunctions,which peakatthenodalstructuresofthemolecularwavefunctions.Forthefirst timeinsciencehistory,thenodalstructuresinsidemolecularwavefunctions aredirectlyobservedandmappedinrealspace.That PhysicsReviewLetter wasreviewedbyaViewpointarticlein Physics [4],entitled Visualizing QuantumMechanics,whichcommentedthatthedirectobservationofthe nodalstructuresinsidemolecularorbitals“willhelpfuturegenerationsof chemistsinobtaininganintuitiveunderstandingofmolecularproperties thatwillguidethemtonovelsolutionsinallareasofchemistry.”
Thedirectobservationofthewavefunctionsandtheirderivativestouches afundamentalscientificquestionunresolvedoveralmostonecentury:the interpretationofwavefunctions.In ABriefHistoryofTime [5],Stephen Hawkingsaid:“Quantummechanicsunderliesallofmodernscienceand technology.Itgovernsthebehavioroftransistorsandintegratedcircuits, andisthebasisofmodernchemistryandbiology.”Ontheotherhand,as RichardFeynmanfamouslysaid,“Ifyouthinkyouunderstandquantum mechanics,youdon’tunderstandquantummechanics”—becausetheinterpretationofitscentralsubject,wavefunction,washighlycontroversial[6,7]. Thedirectexperimentalobservationofwavefunctionsshowsthattheyare observablephysicalreality,similartoMaxwell’selectromagneticfields.This neweditionfeaturesanaddedchapteron ImagingWavefunctions,including asection MeaningofWavefunctionObservation.