Introduction to quantum field theory with applications to quantum gravity 1st edition iosif l. buchb

Page 1


https://ebookmass.com/product/introduction-to-quantum-fieldtheory-with-applications-to-quantum-gravity-1st-edition-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Combinatorial Physics: Combinatorics, Quantum Field Theory, and Quantum Gravity Models Adrian Tanasa

https://ebookmass.com/product/combinatorial-physics-combinatoricsquantum-field-theory-and-quantum-gravity-models-adrian-tanasa/

ebookmass.com

An Introduction to quantum optics and quantum fluctuations First Edition. Edition Milonni

https://ebookmass.com/product/an-introduction-to-quantum-optics-andquantum-fluctuations-first-edition-edition-milonni/

ebookmass.com

Introduction to Quantum Mechanics John Dirk Walecka

https://ebookmass.com/product/introduction-to-quantum-mechanics-johndirk-walecka/

ebookmass.com

Hugo and Russell's Pharmaceutical Microbiology 9th edition Edition Brendan F. Gilmore

https://ebookmass.com/product/hugo-and-russells-pharmaceuticalmicrobiology-9th-edition-edition-brendan-f-gilmore/

ebookmass.com

Henke’s Med-Math: Dosage Calculation, Preparation, and Administration 8th Edition – Ebook PDF Version

https://ebookmass.com/product/henkes-med-math-dosage-calculationpreparation-and-administration-8th-edition-ebook-pdf-version/

ebookmass.com

eTextbook 978-0321989178 Introductory Statistics (10th Edition) by Neil A. Weiss

https://ebookmass.com/product/etextbook-978-0321989178-introductorystatistics-10th-edition-by-neil-a-weiss/

ebookmass.com

Babydoll: A Rock Star Romance (The Revolver Duet Book 1) Thea Lawrence

https://ebookmass.com/product/babydoll-a-rock-star-romance-therevolver-duet-book-1-thea-lawrence/

ebookmass.com

Reason in Nature: New Essays on Themes from John McDowell Matthew Boyle

https://ebookmass.com/product/reason-in-nature-new-essays-on-themesfrom-john-mcdowell-matthew-boyle-2/

ebookmass.com

(eBook PDF) Sociology Unlocked, Canadian Edition

https://ebookmass.com/product/ebook-pdf-sociology-unlocked-canadianedition/

ebookmass.com

Japanese at Work: Politeness, Power, and Personae in Japanese Workplace Discourse 1st ed. 2018 Edition Haruko Minegishi Cook

https://ebookmass.com/product/japanese-at-work-politeness-power-andpersonae-in-japanese-workplace-discourse-1st-ed-2018-edition-harukominegishi-cook/ ebookmass.com

IntroductiontoQuantumFieldTheory withApplicationstoQuantumGravity

IntroductiontoQuantumFieldTheory withApplicationstoQuantumGravity

IosifL.Buchbinder

DepartmentofTheoreticalPhysics,TomskStatePedagogicalUniversity,Tomsk,634061, Russia

IlyaL.Shapiro

DepartamentodeF´ısica–InstitutoCiˆenciasExatas,UniversidadeFederaldeJuizdeFora, JuizdeFora,CEP36036-330,MG,Brazil

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

c Iosif.L.BuchbinderandIlyaShapiro,2021

Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublication Dataavailable

LibraryofCongressControlNumber:2020945719

ISBN978–0–19–883831–9

DOI:10.1093/oso/9780198838319.001.0001

Printedandboundby

CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Preface

Formanydecades,quantumfieldtheoryhasplayedanimportantroleinthesuccessful descriptionoftheinteractionsofelementaryparticles.Besides,thisareaoftheoretical physicshasbeenalwaysimportantduetotheexchangeofnewideasandmethodswith otherbranchesofphysics,suchasstatisticalmechanics,condensedmatterphysics, gravitationalphysics,andcosmology.Thelastapplicationsarebecomingmoreimportantnowadays,especiallybecausetheamountofexperimentalandobservationaldata demonstratesafastgrowthandrequiresmoredetailedandreliabletheoreticalbackground.Oneofthemostevidentexamplesisthestudyofdarkenergy.Everyfewyears, theestimatesofitsequationofstate(EoS)becomemorepreciseanditcannotbe ruledoutthat,atsomepoint,theEoSofthecosmologicalconstantmaybeexcluded fromthelistofphenomenologicallyacceptablepossibilities.Doesthisnecessarilymean thatthereissomespecialfluid(quintessenceoralike)intheUniverse?Orthatthe situationcanbeexplainedbythevariablecosmologicalconstant,e.g.,somequantum effects?Thisisaphenomenologicallyrelevantquestion,whichshouldbeansweredat somepoint.Ontheotherhand,thisisatheoreticalquestion,thatcanbeanswered onlywithinacorrectlyformulatedframeworkofquantumorsemiclassicalgravity.

Ingravitationaltheory,generalrelativityrepresentsasuccessfultheoryofrelativisticgravitationalphenomena,confirmedbyvariousexperimentsinthelaboratoriesand astronomicalobservations.Startingfromtheseventiesandeighties,therehasbeena growinginterestintheideaoftheunificationofallfundamentalforces,including electroweakandstronginteractions.Also,thereisageneralunderstandingthatthe finaltheoryshouldalsoincludegravitation.Animportantcomponentofsuchunificationisthedemandforaquantumdescriptionofthegravitationalfielditselfor,at least,aconsistentformulationofthequantumtheoryofmatterfieldsontheclassical gravitationalbackground,calledsemiclassicalgravity.

Theapplicationofquantumfieldtheorymethodstogravitationalphysics,inboth semiclassicalandfullquantumframeworks,requiresacarefulformulationofthefundamentalbaseofquantumtheory,withspecialattentiontosuchimportantissuesas renormalization,thequantumtheoryofgaugetheoriesandespeciallyeffectiveaction formalism.Theexistingliteratureonthesesubjectsincludesnumerousreviewpapers andalsomanybooks,e.g.,[172,56,80,150,199,240].Atthesametime,theexperience ofthepresentauthors,aftergivingmanycoursesonthesubjectworldwide,showsthat thereisarealneedtohaveatextbookwithamoreelementaryintroductiontothe subject.Thissituationwasoneofthemainmotivationsforwritingthisbookwhich endedupbeingmuchlongerthanoriginallyplanned.

Thetextbookconsistsoftwoparts.PartIisbasedontheone-semestercourse givenbyI.B.inmanyplaces,includingtheTomskStatePedagogicalUniversityand theFederalUniversityofJuizdeFora.Itincludesadetailedintroductiontothegeneral

methodsofquantumfieldtheory,whicharerelevantforquantumgravity,includingits semiclassicalpart.PartIIismainlybasedontheone-semestercoursegivenregularly byI.Sh.intheFederalUniversityofJuizdeForaandonthenumerousmini-courses inmanycountries.Wedidnotpretendtodotheimpossible,thatis,produceacomprehensivecourseofquantumfieldtheoryorquantumgravity.Instead,ourpurpose wastogiveasufficientlydetailedintroductiontothefundamental,basicnotionsand methods,whichwouldenabletheinterestedreadertounderstandatleastpartofthe currentliteratureonthesubjectand,insomecases,startoriginalresearchwork.

ItisapleasureforustoacknowledgethecollaborationsonvarioussubjectsdiscussedinthisbookwithM.Asorey,R.Balbinot,E.V.Gorbar,A.Fabbri,J.C.Fabris,J.-A.Hela¨el-Neto,P.M.Lavrov,T.P.Netto,S.D.Odintsov,F.O.SallesandA.A. Starobinsky.Wewouldlikealsotothankmanycolleagues,especiallyA.O.Barvinsky,A.S.Belyaev,E.S.Fradkin,V.P.Frolov,S.J.Gates,E.A.Ivanov,D.I.Kazakov, S.M.Kuzenko,O.Lechnetfeld,H.Osborn,B.A.Ovrut,N.G.Pletnev,K.Stelle,A.A. Tseytlin,I.V.Tyutin,andG.A.Vilkoviskyforfruitfuldiscussionsoftheproblemsof quantumfieldtheory.

WearegratefultoGuilhermeH.S.Camargo,EduardoA.dosReis,andespecially toWagnoCesareSilvaforcommunicatingtousmisprintsandcorrections;andalso toAndrezaR.RodriguesandYackelinZ.R.L´opezfortypingcertainpartsofthe manuscript,andtoVadimZyubanovforvaluabletechnicalassistance.

ThemainworkonPartIofthebookwasdoneduringthelong-termvisitofJ.B. totheFederalUniversityofJuizdeFora(UFJF).TheauthorsaregratefultoUFJF andespeciallytothePhysicsDepartmentforprovidingbothkindhospitalityandthe conditionsforproductiveworkduringthisvisit.Throughoutthepreparationsofthe manuscript,theworkoftheauthorshasbeensupportedbyaspecialprojectAPQ01205-16fromtheFunda¸c˜aodeAmparo´aPesquisadeMinasGerais(FAPEMIG).On thetopofthat,thescientificactivityofI.Sh.waspartiallysupportedbytheConselho NacionaldeDesenvolvimentoCient´ıficoeTecnol´ogico(CNPq/Brazil).Theauthors arealsogratefultotheRussianMinistryofScienceandHighEducationandRussian FoundationforBasicResearchfortheirlong-termsupportoftheCenterofTheoretical PhysicsattheTomskStatePedagogicalUniversity.

6.4The S-matrixandtheGreenfunctionsforspinorfields

7.1Representationoftheevolutionoperatorbyafunctionalintegral117

7.2FunctionalrepresentationofGreenfunctions

7.3Functionalrepresentationofgeneratingfunctionals

7.4Functionalintegralsforfermionictheories

7.5Perturbativecalculationofgeneratingfunctionals

7.6Propertiesoffunctionalintegrals

7.7Techniquesforcalculatingfunctionaldeterminants

8.1PerturbationtheoryintermsofFeynmandiagrams

8.3Feynmandiagramsforthe S-matrix

8.4ConnectedGreenfunctions

8.5Effectiveaction

8.6Loopexpansion

8.7Feynmandiagramsintheorieswithspinorfields

andinducedgravity

15Therenormalizationgroupincurvedspace

16Non-localformfactorsinflatandcurvedspacetime

18Generalnotionsofperturbativequantumgravity

18.4PropagatorsofquantummetricandBarnes-Riversprojectors438 18.5Gravitationalwaves,quantizationandgravitons

Contents

18.6Gauge-invariantrenormalizationinquantumgravity

19Massiveghostsinhigher-derivativemodels

19.3Massiveghostsinpolynomialmodels

19.4Complexpolesandtheunitarityofthe S-matrix

19.5Ghostsinnonlocalmodels

20.2Gauge-fixingdependenceinquantumGR

20.3Gauge-fixingdependenceinhigher-derivativemodels

20.4One-loopdivergencesinquantumgeneralrelativity

20.5One-loopdivergencesinafourth-derivativemodel

21.2Therenormalizationgroupinfourth-derivativegravity

21.3Therenormalizationgroupinsuperrenormalizablemodels

PartI IntroductiontoQuantumField Theory

Introduction

1.1Whatisquantumfieldtheory,andsomepreliminarynotes

Quantumfieldtheory(QFT)ispartofthebroaderfieldoftheoreticalphysicsandisthe studyofquantumeffectsincontinuousphysicalsystemscalledfields.Onecansaythat quantumfieldtheoryrepresentstheunificationofquantummechanicsandclassical fieldtheory.Sinceanaturalandconsistentdescriptionoffundamentalinteractionscan beachievedintheframeworkofspecialrelativity,itisalsotruetosaythatrelativistic quantumfieldtheoryrepresentstheunificationofquantummechanicsandspecial relativity.

Themainapplicationofquantumfieldtheoryisthedescriptionofelementary particlesandtheirinteractions.However,QFThasalsoextensiveapplicationsinother areasofphysics,includingcosmology.Furthermore,quantumfieldtheoryplaysan importantroleinthetheoreticalcondensedmatterphysics,especiallyinthedescription ofensemblesofalargenumberofinteractingparticles.Theprogressmadeinthetheory ofsuperconductivity,thetheoryofphasetransitionsandotherareasofcondensed matterphysicsischaracterizedbytheconsistentuseofquantumfieldtheorymethods, andviceversa.

Thefirstpartofthisbookisdevotedtothebasicnotionsandfundamentalelements ofmodernQFTformalism.Inthesecondpart,wepresentanintroductiontotheQFT incurvedspaceandquantumgravity,whicharelessdevelopedandessentiallymore complicatedsubjects.

Thereaderwillnotethatthestyleofthetwopartsisdifferent.InalmostallofPart IandinmostofPartII,wetriedtogiveadetailedpresentation,sothatthereader couldeasilyreproduceallcalculations.However,followingthisapproachforthewhole topicofquantumgravitywouldenormouslyincreasethesizeofthebookandmakeit lessreadable.Forthisreason,insomeplacesweavoidedgivingfulltechnicaldetails and,instead,justprovidedreferencesofpapersorpreprintswherethereadercanfind intermediateformulas.Thesameapproachconcernstheselectionofthematerial.Since weintendedtowriteanintroductorytextbook,inPartIIwegaveonlythe need-toknow informationaboutquantumgravity.Forthisreason,manyadvancedsubjects werenotincluded.Inaddition,insomecases,onlyqualitativediscussionandminimal referenceshavebeenprovided.

1.2Thenotionofaquantizedfield

Thefield φ(x)= φ(t, x)isdefinedasafunctionoftime t andthespacecoordinates, thatformathree-dimensionalvector, x.Itisassumedthatthevaluesofthespace

coordinatescorrespondtoaboundedorunboundeddomainofthethree-dimensional space.Fromthephysicalpointofview,thefield φ(t, x)canbetreatedasadynamical objectwithaninfinitenumberofdegreesoffreedom,markedbythethree-dimensional vectorindex x

Thenotionofafieldnaturallyarisesintheframeworkofspecialrelativity.Since thereexistsamaximalspeedofpropagationforanytypeofinteraction,thephysical bodiesseparatedbyspaceintervalscannotaffecteachotherinstantly.Therefore,there shouldbeaphysicalobjectresponsiblefortransmittingperturbationfromonebody toanother.Suchanobjectisafieldthatfillsthespacebetweenthebodiesandcarries perturbationfromonebodytoanother.Thesimplestexampleisanelectromagnetic fieldthatcarriesinteractionbetweenelectricallychargedbodies.

Takingintoaccountquantummechanicaluniversality,itisnaturaltoassumethat fieldsshouldbequantized,likeanyotherphysicalsystem.Thismeansthatquantum statesaregivenbywavefunctions,whiledynamicalvariablesaregivenbyoperators actingonwavefunctions.Thus,inquantumtheory,afieldbecomesanoperator ˆ φ(t, x), whichiscalledafieldoperator.

Aswehavementioned(andwilldiscussinmoredetaillateron),afieldisasystem withaninfinitenumberofdegreesoffreedom.However,itturnsoutthatthestateof thequantumfieldcanbedescribedintermsofeitherparticlesorfields.Itturnsout thatthequantumfieldisaphysicalnotionthatismostsuitableforthedescriptionof systemswithanarbitrarynumberofparticles.

Itiswellknownthat,inrelativistictheory,thereisarelationbetweenmomentum p andtheenergy ε = ε(p)ofafreeparticle,

where c isthespeedoflight,and m isthemassoftheparticle.Ifthefieldcandescribe particles,itmusttakeintoaccounttherelation(1.1)betweenenergyandmomentum. Letustrytoclarifyhowtherelation(1.1)canbeimplementedforthefield.Let ˆ φ(t, x) bethefieldoperator,associatedwiththefreeparticle.Wecanwritetheexpansionas aFourierintegral,

where isthePlanckconstant.Accordingtothestandardinterpretation,thevector p istreatedasthemomentumofaparticle,andthequantity ε astheenergyofthe particle.Then,since,foreachFouriermode, ε and p arerelatedbyEq.(1.1),the quantity ε undertheintegral(1.2)isnotanindependentvariablebutisafunctionof p.Inordertosatisfythiscondition,onecanwrite

where ˆ φ∗(p)dependsonlyon p.Asaresult,wearriveattherepresentation

Considerthefollowingexpressionshowingad’Alembertoperatoractingonthe field(1.2):

Thus,wefindthatthefreefieldoperatorshouldsatisfy

theKlein–Gordonequation.Equation(1.5)isadirectconsequenceoftherelativistic dispersionrelationbetweentheenergyandthemomentumoftheparticle.

Ifthefieldcorrespondstoamasslessparticle,theparameter m inEq.(1.5)iszero. Therefore,thefieldoperatorofafreemasslessfieldsatisfiesthewaveequation

Thus,anykindofafreerelativisticquantumfieldisaspacetime-dependentoperatorsatisfyingtheKlein–Gordonequation.Inthecaseofinteractingquantumfields, theirdynamicsisdescribedbymuchmorecomplicatedequationswhichwillbediscussedinthefollowingchapters.

1.3Naturalunits,notationsandconventions

Itisevidentthattheunitsofmeasurementsofphysicalquantitiesshouldcorrespondto thescalesofphenomenawheretheseunitsareused.Forexample,itisnotreasonable tomeasurethemassesofelementaryparticlesintonsorgrams,orthesizeofatomic nucleiinkilometersorcentimeters.

Whenweconsidertherelativistichigh-energyquantumphenomenainthefundamentalquantumphysicsofelementaryparticles,itisnaturaltoemploytheunits relatedtothefundamentalconstantsofnature.Thismeansthatwehavetochoose thesystemofunitswherethespeedoflightis c =1,andthePlanckconstant(which hasthedimensionoftheaction)is =1.Asaresult,weobtainthenaturalsystemofunitsbasedonlyonthefundamentalconstantsofnature.Intheseunits,the actionisdimensionless,thespeedisdimensionlessandthedimensionsofenergyand momentumcoincide.Asinquantumtheory,thereisaPlanckformula,relatingenergy

andfrequencyas ε ∼ ω,and ω ∼ 1 t , where t istime,andthedimensionssatisfythe relation

ε]=[p]=[m]=[l] 1 =[t] 1 (1.7)

Thus,wehaveonlyoneremainingdimensionalquantity,theunitofenergy.Usually, theenergyinhigh-energyphysicsismeasuredinelectron-volts,suchthattheunitof energyis1 eV ,or1 GeV =109 eV .Thedimensionsoflengthandtimeareidentical.In whatfollows,weshallusethisapproachandassumethenaturalunitsofmeasurements describedabove,with = c =1.

Othernotationsandconventionsareasfollows:

1)Minkowskispacecoordinates xµ ≡ (x0 , x) ≡ (t, x) ≡ (x0,xi),whereGreekletters representthespacetimeindices α,...,µ =0, 1, 2, 3,whileLatinlettersarereservedfor thespaceindices, i,j,k, =1, 2, 3.

2)FunctionsinMinkowskispacearedenotedas φ(x) ≡ φ(x0 ,xi) ≡ φ(

3)TheMinkowskimetricis

andthesameistruefortheinversemetric, ηµν =diag(1, 1, 1, 1).Onecaneasily checktherelations

Furthermore, εµναβ isthefour-dimensional,totallyantisymmetrictensor.Thesign conventionisthat ε0123 =1andhence ε0123 = 1.

4)Partialderivativesaredenotedas

5)Risingandloweringtheindiceslookslike

LetusnotethattheseandsomeotherruleswillbechangedinPartII,whenwestart todealwithcurvedspacetime.

6)Thescalarproductisasfollows:

Inparticular,

7)Theintegraloverfour-dimensionalspaceis

whiletheintegraloverthree-dimensionalspaceis

8)Dirac’sdeltafunctioninMinkowskispaceis

Inparticular,thismeans

9)Thed’Alambertianoperatoris

wheretheLaplaceoperatoris

10)Theconventionisthatrepeatedindicesimplythesummationinallcases,i.e.,

Comments

Therearemanybooksonquantumfieldtheorythatdifferintheirmannerandlevelof presentation,targetingdifferentaudiencesthatrangefrombeginnerstomoreadvanced readers.Letuspresentashortlistofbasicreferences,whichisbasedonourpreferences.

ThestandardtextbookscoveringthebasicnotionsandmethodsarethosebyJ.D. BjorkenandS.D.Drell[57],C.ItzyksonandJ.-B.Zuber[187],M.E.PeskinandD.V. Schroeder[250],M.Srednicki[304]andM.D.Schwartz[274].

Abriefandself-containedintroductiontomodernquantumfieldtheorycanbe foundinthebooksbyP.Ramond[256],M.Maggiore[215]andL.Alvarez-Gaumeand M.A.Vazquez-Mozo[155].

Comprehensivemonographsinmodernquantumfieldtheory,withextensivecoveragebutaimedforadvancedreadersarethosebyJ.Zinn-Justin[356],S.Weinberg[345], B.S.DeWitt[106,109]andW.Siegel[293].

Therearealsoveryusefullecturenotesavailableonline,e.g.,thosebyH.Osborn [235].Formathematicalandaxiomaticalaspectsandapproachestoquantumfield theorysee,e.g.,thebookbyN.N.Bogolubov,A.A.Logunov,A.I.OksakandI.Todorov [60].

Relativisticsymmetry

Inthischapter,webrieflyreviewspecialrelativisticsymmetry,which willbeused intherestofthebook.Inparticular,weintroducebasicnotionsoftheLorentzand Poincar´egroups,whichwillbeusedinconstructingclassicalandquantumfields.

Ingeneral,theprinciplesofsymmetryplayafundamentalroleinphysics.One ofthemostuniversalsymmetriesofnatureistheonethatwecanobserveinthe frameworkofspecialrelativity.

2.1Lorentztransformations

Accordingtospecialrelativity,aspacetimestructureisdeterminedbythefollowing generalprinciples:

1)Spaceandtimearehomogeneous.

2)Spaceisisotropic.

3)Thereexistsamaximalspeedofpropagationofaphysicalsignal.Thismaximal speedcoincideswiththespeedoflight.Inallinertialreferenceframesthespeedof lighthasthesamevalue, c

Let P1 and P2 betwoinfinitesimallyseparatedeventsthatarepointsinspacetime. Insomeinertialreferenceframe,thefour-dimensionalcoordinatesoftheseeventsare xµ and xµ + dxµ.Theintervalbetweenthesetwoeventsisdefinedas

Inanotherinertialreferenceframe,thesametwoeventshavethecoordinates x′µ and x′µ + dx′µ.Thecorrespondingintervalis

Thetwointervals(2.1)and(2.2)areequal,thatis, ds′2 = ds2,reflectingtheindependenceofthespeedoflightonthechoiceoftheinertialreferenceframe.Thus,

Eq.(2.3)enablesonetofindtherelationbetweenthecoordinates x′α and xµ . Let x′α = f α(x),withsomeunknownfunction f α(x).Substitutingthisrelationinto Eq.(2.3),onegetsanequationforthefunction f α(x)thatcanbesolvedinageneral form.Asaresult,

IntroductiontoQuantumFieldTheorywithApplicationstoQuantumGravity.IosifL.Buchbinder andIlyaL.Shapiro,OxfordUniversityPress(2021).©IosifL.BuchbinderandIlyaShapiro. DOI: 10 1093/oso/9780198838319 003 0002

Lorentztransformations 9

whereΛ ≡ (Λα µ)isamatrixwithconstantelements,and aα isaconstantfour-vector. SubstitutingEq.(2.4)intoEq.(2.3),weget

Thecoordinatetransformation(2.4)withthematrixΛα µ,satisfyingEq.(2.5),iscalled thenon-homogeneousLorentztransformation.Onecansaythatthenon-homogeneous Lorentztransformationisthemostgeneralcoordinatetransformationpreservingthe formoftheinterval(2.1).IfinEq.(2.4)thevector aα =0,thecorrespondingcoordinatetransformationiscalledthehomogeneousLorentztransformation,orsimplythe Lorentztransformation.Suchatransformationhastheform

withthematrixΛµ ν satisfyingEq.(2.5).

Itisconvenienttopresenttherelation(2.5)inamatrixform.Letusintroducethe matrices η ≡ (ηαβ )andΛ ≡ (Λα µ).ThenEq.(2.5)canbewrittenas

whereΛT isthetransposedmatrixwiththeelements(ΛT )µ α =Λα µ.Onecanregard Eq.(2.7)asabasicrelation.AnyhomogeneousLorentztransformationischaracterized bythematrixΛsatisfyingthebasicrelation,andviceversa.Therefore,thesetof allhomogeneousLorentztransformationsisequivalenttothesetofallmatricesΛ, satisfying(2.7).

LetusconsidersomeimportantparticularexamplesofLorentztransformations:

1. MatrixΛhastheform

10 0 Ri j (2.8)

wherethematrix R =(Ri j )transformsonlyspacecoordinates, x′i = Ri j xj .Substitutingeq.(2.8)intothebasicrelation(2.7),weobtaintheorthogonalitycondition

where 13 isathree-dimensionalunitmatrixwithelements δij .Relation(2.9)defines thethree-dimensionalrotations

Ifmatrix R satisfiesEq.(2.9),thenthetransformation(2.10)istheLorentztransformation.Thus,thethree-dimensionalrotationsrepresentaparticularcaseofLorentz transformation.

2. ConsideramatrixΛwiththeform

Relativisticsymmetry

where(v/c)2 < 1.Itiseasytoshowthatthismatrixsatisfiesthebasicrelation. Therefore,thismatrixdescribesaLorentztransformation,

ThisisthestandardformoftheLorentztransformationforthecasewhenoneinertial framemoveswithrespecttoanotheroneinthe x3 direction.Indeed,onecanconstruct asimilarmatrixdescribingrelativemotioninanyotherdirection.Transformationsof thetype(2.12)arecalledboosts.

3. ThematrixΛcorrespondingtothetimeinversion,or T -transformation,is

ThismatrixcorrespondstotheLorentztransformation

4. LetthematrixΛhavetheform

Itiseasytocheckthatthebasicrelation(2.7)isfulfilledinthiscase.Thismatrix correspondstothefollowingLorentztransformation:

whichiscalledthespacereflectionorparity(P)transformation.

5. ThematrixΛwiththeform

correspondstothefollowingLorentztransformation:

whichiscalledthefullreflection.

Eqs.(2.13),(2.14),(2.15)arecalleddiscreteLorentztransformations.

Basicnotionsofgrouptheory 11

WewillmainlyneedonlythesubclassofallLorentztransformationsthatcanbe obtainedbysmalldeformationsoftheidenticaltransformation.Letthetransformation matrixhavetheformΛ= I,where I istheunit4 × 4matrixwithelements δµ ν Matrix I satisfiesthebasicrelation(2.7).ThismatrixrealizestheidenticalLorentz transformation

Stipulatingsmalldeformationsofidenticaltransformationsmeansthatweconsider matricesΛoftheform

where ω isamatrixwithinfinitesimalelements ωµ ν .RequiringthatthematrixΛfrom (2.16)correspondtoaLorentztransformation,wearriveattherelation

Takingintoaccountonlythefirst-ordertermsin ω,onegets

Recoveringtheindices,weobtain

Onecanseethatthematrix ω isrealandantisymmetric,andhenceithassixindependentelements.ThematrixΛ(2.16)correspondstothecoordinatetransformation

whichiscalledtheinfinitesimalLorentztransformation.

2.2Basicnotionsofgrouptheory

Grouptheoryisabranchofmathematicsdevotedtothestudyofthesymmetries. Inthissubsection,weconsiderthebasicnotionsofgrouptheorythatwillbeusedin therestofthebook.Itisworthnotingthatthissectionisnotintendedtoreplacea textbookongrouptheory.Inwhatfollows,weconsequentlyomitrigorousdefinitions andproofsofthetheoremsandconcentrateonlyonthemainnotionsofourinterest.

Aset G oftheelements g1, g2, g3,... ,equippedwithalawofcomposition(or productofelements,ormultiplicationrule,orcompositionlaw),e.g., g1g2,iscalleda groupifforeachpairofelements g1,g2 ∈ G,thecompositionlawsatisfiesthefollowing setofconditions:

1)Closure,i.e., ∀g1, g2 ∈ G: g1g2 ∈ G

2)Associativity,i.e., ∀g1,g2,g3 ∈ G,fortheproduct g1(g2g3)=(g1g2)g3

3)Existenceofunitelement,i.e., ∃e ∈ G,suchthat ∀g ∈ G : ge = eg = g

4)Existenceofinverseelement,i.e., ∀g ∈ G, ∃g 1 ∈ G suchthat gg 1 = g 1g = e.

Relativisticsymmetry

Usingtheseconditions,onecanprovetheuniquenessoftheunitandinverseelements.

AgroupiscalledAbelianorcommutativeif, ∀g1, g2 ∈ G,theproductsatisfies g1g2 = g2g1.Intheoppositecase,thegroupiscallednon-Abelianornon-commutative, i.e., ∃g1,g2 ∈ G suchthat g1g2 = g2g1.

Asubset H ⊂ G issaidtobeasubgroupofgroup G if H itselfisthegroupunder thesamemultiplicationruleasgroup G.Inparticular,thismeansif h1,h2 ∈ H,then h1h2 ∈ H.Also, e ∈ H,andif h ∈ H,then h 1 ∈ H

Agroupconsistingofafinitenumberofelementsiscalledfinite.Inthiscase,itis possibletoformagrouptable gigj .Afinitegroupissometimescalledafinitediscrete group.

Letusconsiderafewexamples:

1. Let G beasetof n × n realmatrices M suchthatdet M =0.Itisevidentthat if M1,M2 ∈ G,thendet M1M2 =det M1 det M2 =0andhence M1,M2 ∈ G.Thus, thissetformsagroupundertheusualmatrixmultiplication.Theunitelementisthe unitmatrix E,andtheelementinversetothematrix M istheinversematrix M 1.We knowthatthemultiplicationofmatricesisassociative.Thus,allgroupconditionsare fulfilled.Thisgroupiscalledagenerallinear n-dimensionalrealgroupandisdenoted as GL(n|R).Considerasubset H ⊂ GL(n|R)consistingofmatrices N thatsatisfythe conditiondet N =1.Itisevidentthatdet(N1N2)=det N1 det N2 =1.Hence N1,N2 ∈ H =⇒ N1N2 ∈ H.

Considerotherpropertiesofthisgroup.Itisevidentthat E ∈ H.Onthetopofthis, N ∈ G =⇒ det N 1 =(det N ) 1 =1.

Thelastmeans N 1 ∈ H.Hence H isasubgroupofthegroup GL(n|R).Group H is calledaspeciallinear n-dimensionalrealgroupandisdenotedas SL(n|R).Inasimilar way,onecanintroducegeneralandspecialcomplexgroups GL(n|C)and SL(n|C), respectively,where C isasetofcomplexnumbers.

2. Let G beasetofcomplex n × n matrices U suchthat U +U = UU + = E,where E istheunit n × n matrix.Here,asusual,(U +)ab =(U ∗)ba or U † =(U ∗)T ,where ∗ meanstheoperationofcomplexconjugation,and T meanstransposition.Evidently, E ∈ G and,forany U1,U2 ∈ G,thefollowingrelationstakeplace: (U1U2)+(U1U2)= U + 2 (U + 1 U1)U2 = U + 2 U2 = E, (U1U2)(U1U2)+ = U1(U2U + 2 )U + 1 = U1U + 1 = E. (2.18)

Inaddition,if U ∈ G,then(U 1)+U 1 =(UU +) 1 = U 1(U 1)+ =(U +U ) 1 = E.Therefore,if U ∈ G,then U 1 ∈ G too.Asaresult,thesetofmatricesunder considerationformagroup.Thisgroupiscalledthe n-dimensionalunitarygroup U (n).

Thecondition U +U = E leadsto | det U |2 =1.Hencedet U = eiα,where α ∈ R

Onecanalsoconsiderasubsetofmatrices U ∈ U (n),thatsatisfytherelationdet U = 1.Thissubsetformsaspecialunitarygroupandisdenoted SU (n).

Sincethemultiplicationofmatricesis,ingeneral,anon-commutativeoperation, thematrixgroups GL(n, R), SL(n, R), U (n)and SU (n)are,ingeneral,non-Abelian.

Agroup G iscalledtheLiegroupifeachofitselementisadifferentiablefunction ofthefinitenumberofparameters,andtheproductofanytwogroupelementsisa differentiablefunctionofparametersofeachofthefactors.Thatis,consider, ∀g ∈ G, andfor g1 = g ξ(1) 1 ,...,ξ(1) N and g2 = g ξ(2) 1 ,...,ξ(2) N , g = g1g2 =

(ξ1,...,ξN ). Then

where I =1, 2,...,N arethedifferentiablefunctionsoftheparameters ξ(1) 1 ,...,ξ(1) N ,ξ(2) 1 ,...,ξ(2) N .TheLiegroupiscalledcompactiftheparameters ξ1,...,ξN varywithinacompactdomain.Onecanprovethattheparameters ξ1,...,ξN canbe choseninsuchawaythat g(0,..., 0)= e,where e istheunitelementofthegroup.

AllmatrixgroupsdescribedintheexamplesabovearetheLiegroups,wherethe roleofparametersisplayedbyindependentmatrixelements.

Thetwogroups G and G′ arecalledhomomorphicifthereexistsamap f ofthe group G intothegroup G′ suchthat,foranytwoelements g1,g2 ∈ G,thefollowing conditionstakeplace: f (g1g2)= f (g1)f (g2),andif f (g)= g′,then f (g 1)= g′−1 , where g′−1 isaninverseelementinthegroup G′.Suchamapiscalledhomomorphism. Onecanprovethat f (e)= e′,where e′ istheunitelementofthegroup G′.One-toonehomomorphismiscalledisomorphism,andthecorrespondinggroupsarecalled isomorphic.Wewillwrite,inthiscase, G = G′

Let G besomegroup,and V bearealorcomplexlinearspace.Consideramap R suchthat, ∀g ∈ G,thereexistsaninvertibleoperator DR(g)actinginthespace V Furthermore,lettheoperators DR(g)satisfythefollowingconditions:

1) DR(e)= I,where I isaunitoperatorinthespace V ;and2) ∀g1, g2 ∈ G,we have DR(g1g2)= DR(g1)DR(g2).

Themap R iscalledarepresentationofthegroup G inthelinearspace V .Operators DR(g)arecalledtheoperatorsofrepresentation,andthespace V iscalledthespace oftherepresentation.Onecanprovethat, ∀g ∈ G,thereis DR(g 1)= D 1 R (g),where D 1 R (g)istheinverseoperatorfor DR(g).Thus,thesetofoperators DR(g)formsa groupwhereamultiplicationruleistheusualoperatorproduct.

Wewillmainlyconcernourselveswithmatrixrepresentations,wheretheoperators DR(g)arethe n×n matrices DR(g)i j ,i,j =1, 2,...,n.Let v beavectorinaspaceof representationwiththecoordinates v1,v2,...,vn,insomebasis.Thematrices DR(g)i j generatethecoordinatetransformationoftheform

v ′i = DR(g)i j vj .

Let R bearepresentationofthegroup G inthelinearspace V ,and V bea subspacein V ,i.e., V ⊂ V .Weassumethat,foranyvector˜ v ∈ V andforany operator DR(g),thecondition DR(g)˜ v ∈ V takesplace.Then,thesubspace V is calledtheinvariantsubspaceoftherepresentation R.Anyrepresentationalwayshas twoinvariantsubspaces,whicharecalledtrivial.Thesearethesubspace ˜ V = V ,and thesubspace ˜ V = {0},whichconsistsofasinglezeroelement.Allotherinvariant

Relativisticsymmetry

subspaces,iftheyexist,arecallednon-trivial.Arepresentation R iscalledreducible ifithasnon-trivialinvariantsubspaces,andirreducibleifitdoesnot.Inotherwords, therepresentation R iscalledirreducibleifithasonlytrivialinvariantsubspaces. Arepresentationiscalledcompletelyirreducibleifallrepresentationmatrices DR(g) havetheblock-diagonalform.Thismeansthat,inacertainbasis,

Thissituationmeansthattherepresentationspacehas k non-trivialinvariantsubspaces.Ineachofsuchsubspaces,onecandefineanirreduciblerepresentation, Dk(g). AgivenLiegroupcanhavedifferentrepresentations,wherethematrices DR(g)may havedifferentforms.However,somepropertiesareindependentoftherepresentation. Someofthesepropertiescanbeformulated,e.g.,intermsofLiealgebra.Let DR(g) betheoperatorsofrepresentation,and g = g(ξ).Then,theoperators DR(g)willbe thefunctionsof N parameters ξ1,ξ2,...,ξN ,i.e., DR(g)= DR(ξ)and DR(ξ)|ξI =0 = DR(e)= 1,where 1 isaunitmatrixinthegivenrepresentationspace.Onecanprove that,inaninfinitesimalvicinityoftheunitelement,operators DR(ξ)canbepresented intheform

DR(ξ)= 1 + iξI T

Theoperators TRI arecalledthegeneratorsofthegroup G intherepresentation R Onecanshowthatanyoperator DR(ξ)whichisobtainedbythecontinuousdeformationfromtheunitelementcanbewrittenas

R(ξ)= eiξI TRI . (2.21)

Iftheoperator DR(ξ)isunitary,i.e., DR(ξ)D+ R (ξ)= D+ R (ξ)DR(ξ)= 1,thenthe generators TRI areHermitian,i.e., TRI = TR + I .Thegeneratorsofourinterestsatisfy thefollowingrelationintermsofcommutators:

where fIJ K arethestructureconstantsoftheLiegroup G.Itisevidentthat fIJ K = fJI K .Ingeneral,theformofthematrices TRI dependsontherepresentation.However,onecanprovethatthestructureconstantsdonotdependonthe representation.Thus,theseconstantscharacterizethegroup G itself.

ThegroupgeneratorsarecloselyrelatedtothenotionofLiealgebra.Let A bea realorcomplexlinearspacewiththeelements a1, a2,... .Alinearspace A iscalled Liealgebra,ifforeachtwoelements a1,a2 ∈ A,thereexistsacompositionlaw(also calledmultiplicationortheLieproduct)[a1,a2],suchthat

TheLorentzandPoincar´egroups 15

1)[a1,a2] ∈ A,

2)[a1,a2]= [a2,a1], 3)[c1a1 +

Here, c1 and c2 arearbitraryrealorcomplexnumbers,and a3 ∈ A.Thecomposition law[a1,a2]iscalledtheLiebracket,orthecommutator.Property4iscalledtheJacobi identity.

Itiseasytocheckthatthecommutatorofthegenerators(2.22)oftherepresentationoftheLiegroup G satisfiesallpropertiesofthecompositionlawfortheLie algebra.Therefore,thegenerators TRI formtheLiealgebrawhichiscalledtheLie algebraassociatedwithagivenLiegroup G.Tobemoreprecise,theyformarepresentationoftheLiealgebra.Itmeansthatonecandefinethemap T (a)oftheLie algebraintoalinearspaceofoperatorssuchthat

ALiealgebraiscalledcommutative,orAbelian,if,foranytwoelements a1,a2 ∈ A, [a1,a2]=0.Intheoppositecase,theLiealgebraiscallednon-commutative,ornonAbelian.OnecanprovethattheLiealgebraassociatedwithanAbelianLiegroupis Abelian.

2.3TheLorentzandPoincar´egroups

ConsiderthegrouppropertiesofLorentztransformations.TheLorentztransformation hasbeendefinedintheform

wherethematrixΛsatisfiesthebasicrelation(2.7).LetusshowthatLorentztransformationsformagroup.ConsiderthesetofallLorentztransformationsor,equivalently, thesetofallmatricesΛsatisfyingΛT ηΛ= η

FortheproductoftwomatricescorrespondingtotheLorentztransformations,Λ1 andΛ2,wehave

Thus,thematrixproductΛ1Λ2 satisfiesthebasicrelation(2.7),andhencetwoconsequentLorentztransformationsareequivalenttoanotherLorentztransformation,

Let I betheunit4 × 4matrixwiththeelements δµ ν .Itisevidentthat IT ηI = η, i.e., thematrix I correspondstoaLorentztransformation.

Thenextstepistochecktheexistenceofaninverseelement.Thebasicrelation (2.7)canberecastintheformΛT η = ηΛ 1 or,equivalently, η =(ΛT ) 1ηΛ 1,or (Λ 1)T ηΛ 1 = η.Thus,matrixΛ 1 alsocorrespondstoaLorentztransformation.

Turn static files into dynamic content formats.

Create a flipbook