Instructor’s solution manual for microelectronic circuits 8th edition adel s. sedra - Download the e

Page 1


https://ebookmass.com/product/instructors-solution-manualfor-microelectronic-circuits-8th-edition-adel-s-sedra/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

SEDRA SMITH Microelectronic Circuits 8th Edition By Adel S. Sedra (Author)

https://ebookmass.com/product/sedra-smith-microelectroniccircuits-8th-edition-by-adel-s-sedra-author/

ebookmass.com

(eBook PDF) Microelectronic Circuits 8th Edition

https://ebookmass.com/product/ebook-pdf-microelectronic-circuits-8thedition/

ebookmass.com

Engineering Economy Solution Manual 8th Edition Leland Blank

https://ebookmass.com/product/engineering-economy-solution-manual-8thedition-leland-blank/

ebookmass.com

Bodie's Game: An MM Age Play, Age Gap Romance (The Littles Of Cape Daddy Book 2) Zack Wish & Lana Kyle

https://ebookmass.com/product/bodies-game-an-mm-age-play-age-gapromance-the-littles-of-cape-daddy-book-2-zack-wish-lana-kyle/

ebookmass.com

Constructing Catalan Identity: Memory, Imagination, and the Medieval Michael A. Vargas

https://ebookmass.com/product/constructing-catalan-identity-memoryimagination-and-the-medieval-michael-a-vargas/

ebookmass.com

500 AP Chemistry Questions to Know by Test Day (5 Steps to a 5), 4th Edition Mina Lebitz

https://ebookmass.com/product/500-ap-chemistry-questions-to-know-bytest-day-5-steps-to-a-5-4th-edition-mina-lebitz/

ebookmass.com

Hell's Heir: A Spicy Paranormal Romance Bz Briar

https://ebookmass.com/product/hells-heir-a-spicy-paranormal-romancebz-briar/

ebookmass.com

Advances

in Aerogel Composites for Environmental Remediation 1st Edition Aftab Aslam Parwaz Khan (Editor)

https://ebookmass.com/product/advances-in-aerogel-composites-forenvironmental-remediation-1st-edition-aftab-aslam-parwaz-khan-editor/

ebookmass.com

Never Enough Cowboy Jennie Marts

https://ebookmass.com/product/never-enough-cowboy-jennie-marts-2/

ebookmass.com

The American Convention on Human Rights: A Commentary

https://ebookmass.com/product/the-american-convention-on-human-rightsa-commentary-ludovic-hennebel/

ebookmass.com

EIGHTH INTERNATIONAL EDITION

Instructor’s solution manual for

Microelectronic Circuits

Adel S. Sedra

University of Waterloo

Kenneth C. Smith

University of Toronto

Tonny Chan Carusone

University of Toronto

Vincent Gaudet

University of Waterloo

New York Oxford

OXFORD UNIVERSITY PRESS

Chapter1

SolutionstoExerciseswithintheChapter

Ex:1.1 Whenoutputterminalsare open-circuited,asinFig.1.1a:

Forcircuita. v oc = v s (t )

Forcircuitb. v oc = is (t ) × Rs

Whenoutputterminalsareshort-circuited,asin Fig.1.1b:

Forcircuita. isc = v s (t ) Rs

Forcircuitb. isc = is (t )

Forequivalency

Rs is (t ) = v s (t )

vs (t) Figure1.1a is (t)

Figure1.1b

Ex:1.2

voc vs Rs isc

v oc = 10mV

isc = 10 µA

Rs = v oc isc = 10mV 10 µA = 1k

Ex:1.3 Usingvoltagedivider:

v o (t ) = v s (t ) × RL Rs + RL

vs (t) vo Rs RL

Given v s (t ) = 10mVand Rs = 1k

If RL = 100k

v o = 10mV × 100 100 + 1 = 9.9mV

If RL = 10k

v o = 10mV × 10 10 + 1 9.1mV

If RL = 1k

v o = 10mV × 1 1 + 1 = 5mV

If RL = 100

v o = 10mV × 100 100 + 1K 0.91mV

For v o = 0.8v s , RL RL + Rs = 0.8

Since Rs = 1k , RL = 4k

Ex:1.4 Usingcurrentdivider: Rs is 10 A RL io

io = is × Rs Rs + RL

Given is = 10 µA, Rs = 100k For RL = 1k , io = 10 µA × 100 100 + 1 = 9.9 µA For RL = 10k , io = 10 µA × 100

+ 10 9.1 µA For RL = 100k , io = 10 µA × 100 100 + 100 = 5 µA

For RL = 1M , io = 10 µA × 100K 100K + 1M

0.9 µA

For io = 0.8is , 100 100 + RL = 0.8

⇒ RL = 25k

Ex:1.5 f = 1 T = 1 10 3 = 1000Hz

ω = 2π f = 2π × 103 rad/s

Ex:1.6 (a) T = 1 f = 1 60 s = 16.7ms

(b) T = 1 f = 1 10 3 = 1000s

(c) T = 1 f = 1 106 s = 1 µs

Ex:1.7 If6MHzisallocatedforeachchannel, then470MHzto608MHzwillaccommodate

806 470 6 = 23channels

Sincethebroadcastbandstartswithchannel14,it willgofromchannel14tochannel36.

Ex:1.8 P = 1 T T 0 v 2 R dt

= 1 T × V 2 R × T = V 2 R

Alternatively, P = P1 + P3 + P5 +··· = 4V

Itcanbeshownbydirectcalculationthatthe infiniteseriesintheparentheseshasasumthat approaches π 2 /8;thus P becomes V 2 /R asfound fromdirectcalculation.

Fractionofenergyinfundamental

= 8/π 2 = 0.81

Fractionofenergyinfirstfiveharmonics

= 8 π 2 1 + 1 9 + 1 25 = 0.93

Fractionofenergyinfirstsevenharmonics

= 8 π 2 1 + 1 9 + 1 25 + 1 49 = 0.95

Fractionofenergyinfirstnineharmonics

= 8 π 2 1 + 1 9 + 1 25 + 1 49 + 1 81 = 0.96

Notethat90%oftheenergyofthesquarewaveis inthefirstthreeharmonics,thatis,inthe fundamentalandthethirdharmonic.

Ex:1.9 (a) D canrepresent15equally-spaced valuesbetween0and3.75V.Thus,thevaluesare spaced0.25Vapart.

v A = 0V ⇒ D = 0000

v A = 0.25V ⇒ D = 0000

v A = 1V ⇒ D = 0000

v A = 3.75V ⇒ D = 0000

(b)(i)1levelspacing:20 ×+0.25 =+0.25V

(ii)2levelspacings:21 ×+0.25 =+0.5V

(iii)4levelspacings:22 ×+0.25 =+1.0V

(iv)8levelspacings:23 ×+0.25 =+2.0V

(c)Theclosestdiscretevaluerepresentedby D is +1.25V;thus D = 0101.Theerroris-0.05V,or 0.05/1.3 × 100 =−4%.

Ex:1.10 Voltagegain = 20log100 = 40dB

Currentgain = 20log1000 = 60dB

Powergain = 10log Ap = 10log (Av Ai ) = 10log105 = 50dB

Ex:1.11 Pdc = 15 × 8 = 120mW

PL = (6/√2)2 1 = 18mW

Pdissipated = 120 18 = 102mW

η = PL Pdc × 100 = 18 120 × 100 = 15%

Ex:1.12 v o = 1 × 10 106 + 10 10 5 V = 10 µV

PL = v 2 o /RL = (10 × 10 6 )2 10 = 10 11 W

Withthebufferamplifier:

v o = 1 × Ri Ri + Rs × Av o × RL RL + Ro = 1 × 1 1 + 1 × 1 × 10 10 + 10 = 0.25V

PL = v 2 o RL = 0.252 10 = 6.25mW

Voltagegain= v o v s = 0.25V 1V = 0.25V/V

=−12dB

Powergain (Ap ) ≡ PL Pi where PL =6.25mWand Pi = v i i1 ,

v i = 0.5Vand

ii = 1V 1M + 1M = 0.5 µA

Thus, Pi = 0.5 × 0.5 = 0.25 µW and

Ap = 6.25 × 10 3 0.25 × 10 6 = 25 × 103

10log Ap = 44dB

Ex:1.13 Open-circuit(noload)outputvoltage=

Av o v i

Outputvoltagewithloadconnected

= Av o v i RL RL + Ro

0.8 = 1 Ro + 1 ⇒ Ro = 0.25k = 250

Ex:1.14 Av o = 40dB = 100V/V

PL = v 2 o RL = Av o v i RL RL + Ro 2 RL

= v 2 i × 100 × 1 1 + 1 2 1000 = 2.5 v 2 i

Pi = v 2 i Ri = v 2 i 10,000

Ap ≡ PL Pi = 2.5v 2 i 10 4 v 2 i = 2.5 × 104 W/W

10log Ap = 44dB

Ex:1.15 Withoutstage3(seefigure)

v L

v s = 1M 100k + 1M (10) 100k 100k + 1k

×(100) 100 100 + 1k

v L v s = (0.909)(10)(0.9901)(100)(0.0909) = 81.8V/V

ThisfigurebelongstoExercise1.15.

Ex:1.16 ReferthesolutiontoExample1.3inthe text.

v i1 v s = 0.909V/V

v i1 = 0.909 v s = 0.909 × 1 = 0.909mV

v i2 v s = v i2 v i1 × v i1 v s = 9.9 × 0.909 = 9V/V

v i2 = 9 × v S = 9 × 1 = 9mV v

× 9.9 × 0.909

= 818V/V

v i3 = 818 v s = 818 × 1 = 818mV

v L v s = v L v i3 × v i3 v i2 × v i2 v i1 × v i1 v s = 0.909 × 90.9 × 9.9 × 0.909 744V/V

v L = 744 × 1mV = 744mV

Ex:1.17 Usingvoltageamplifiermodel,the three-stageamplifiercanberepresentedas

vi Ri Ro Avovi

Ri = 1M

Ro = 10

Av o = Av 1 × Av 2 × Av 3 = 9.9 × 90.9 × 1 = 900V/V Theoverallvoltagegain

v o v s = Ri Ri + Rs × Av o × RL RL + Ro

For RL = 10 :

Overallvoltagegain = 1M 1M + 100K × 900 × 10 10 + 10 = 409V/V

For RL = 1000 :

Overallvoltagegain = 1M 1M + 100K × 900 × 1000 1000 + 10 = 810V/V

∴ Rangeofvoltagegainisfrom409V/Vto 810V/V.

Ex:1.18 ii io Ais ii RL Ro Rs Ri is ii = is Rs Rs + Ri

io = Ais ii Ro Ro + RL = Ais is Rs Rs + Ri Ro Ro + RL

Thus, io is = Ais Rs Rs + Ri Ro Ro + RL

Ex:1.19 Ri Ro Gmvi RL Ri vi vo vs v i = v s Ri Ri + Rs

v o = Gm v i (Ro RL )

= Gm v s Ri Ri + Rs (Ro RL ) Thus,

v o v s = Gm Ri Ri + Rs (Ro RL )

Ex:1.20 Usingthetransresistancecircuitmodel, thecircuitwillbe Ri Rs is ii Ro RL vo Rmii

ii is = Rs Ri + Rs

v o = Rm ii × RL RL + Ro

v o ii = Rm RL RL + Ro Now v o is = v o ii × ii is = Rm RL RL + Ro × Rs Ri + Rs = Rm Rs Rs + Ri × RL RL + Ro

Ex:1.21

v b = ib rπ + (β + 1)ib Re = ib [rπ + (β + 1)Re ]

But v b = v x and ib = ix ,thus Rin ≡ v x ix = v b ib = rπ + (β + 1)Re

Ex:1.22 f Gain 10Hz60dB 10kHz40dB 100kHz20dB 1MHz0dB

110 10 10 10 10 10 10 f (Hz)

Ex:1.23

Gain (dB) 20 dB/decade 3 dB frequency

RL Ro Ri Vi Vi Gm Vo CL

V2 Vs = Ri Rs + 1 sC + Ri = Ri Rs + Ri s s + 1 C (Rs + Ri ) whichisanHPSTCfunction.

f3dB = 1 2π C (Rs + Ri ) ≤ 100Hz

C ≥ 1 2π(1 + 9)103 × 100 = 0.16 µF

Ex:1.25 T = 50K

ni = BT 3/2 e Eg/(2kT )

= 7.3 × 1015 (50)3/2 e 1.12/(2×8.62×10 5 ×50) 9.6 × 10 39 /cm3

T = 350K

ni = BT 3/2 e Eg/(2kT )

= 7.3 × 1015 (350)3/2 e 1.12/(2×8.62×10 5 ×350)

= 4.15 × 1011 /cm3

Vo = Gm Vi [Ro RL CL ] = Gm Vi 1 Ro + 1 RL + sCL

Thus, Vo Vi = Gm 1 Ro + 1 RL × 1 1 + sCL 1 Ro + 1 RL

Vo Vi = Gm (RL Ro ) 1 + sCL (RL Ro ) whichisoftheSTCLPtype.

ω0 = 1 CL (RL Ro ) = 1 4.5 × 10 9 (103 Ro )

For ω0 tobeatleast wπ × 40 × 103 ,thehighest valueallowedfor Ro is

Ro = 103 2π × 40 × 103 × 103 × 4.5 × 10 9 1 = 103 1.131 1 = 7.64k

Thedcgainis

Gm (RL Ro )

Toensureadcgainofatleast40dB(i.e.,100), theminimumvalueof Gm is

⇒ RL ≥ 100/(103 7.64 × 103 ) = 113.1mA/V

Ex:1.24 RefertoFig.E1.24

Ex:1.26 ND = 1017 /cm3

FromExercise1.26, ni at T = 350K = 4.15 × 1011 /cm3

nn = ND = 1017 /cm3

pn ∼ = ni2 ND

= (4.15 × 1011 )2 1017 = 1.72 × 106 /cm3

Ex:1.27 At300K, ni = 1.5 × 1010 /cm3

pp = NA

Wantelectronconcentration

= np = 1.5 × 1010 106 = 1.5 × 104 /cm3

∴ NA = pp = ni2 np

= (1.5 × 1010 )2 1.5 × 104

= 1.5 × 1016 /cm3

Ex:1.28 (a) νn drift =−μn E

Herenegativesignindicatesthatelectronsmove inadirectionoppositeto E Weuse Sedra,Smith,Carusone,GaudetMicroelectronicCircuits,8thInternationalEdition©OxfordUniversityPress2021

νn-drift = 1350 × 1 2 × 10 4 ∵ 1 µm = 10 4 cm

= 6.75 × 106 cm/s = 6.75 × 104 m/s

(b)Timetakentocross2-µm

length = 2 × 10 6 6.75 × 104 30ps

(c)In n-typesilicon,driftcurrentdensity Jn is

Jn = qnμn E

= 1.6 × 10 19 × 1016 × 1350 × 1V 2 × 10 4

= 1.08 × 104 A/cm 2

(d)Driftcurrent In = AJn

= 0.25 × 10 8 × 1.08 × 104

= 27 µA

Theresistanceofthebaris

R = ρ × L A

= qnμn × L A

= 1.6 × 10 19 × 1016 × 1350 × 2 × 10 4 0.25 × 10 8

= 37.0k

Alternatively,wemaysimplyusethepreceding resultforcurrentandwrite

R = V /In = 1V/27 µA = 37.0k

Notethat0.25 µm2 = 0.25 × 10 8 cm2

Ex:1.29 Jn = qDn dn(x) dx

FromFig.E1.29,

n0 = 1017 /cm3 = 105 /(µm)3

Dn = 35cm2 /s = 35 × (104 )2 (µm)2 /s

= 35 × 108 (µm)2 /s

dn dx = 105 0 0.5 = 2 × 105 µm 4

Jn = qDn dn(x) dx

= 1.6 × 10 19 × 35 × 108 × 2 × 105

= 112 × 10 6 A/µm2

= 112 µA/µm2

For In = 1mA = Jn × A

⇒ A = 1mA Jn = 103 µA 112 µA/(µm)2 9 µm2

Ex:1.30 UsingEq.(1.44), Dn μn = Dp μp = VT

Dn = μn VT = 1350 × 25.9 × 10 3

∼ = 35cm2 /s

Dp = μp VT = 480 × 25.9 × 10 3

∼ = 12.4cm2 /s

Ex:1.31 Equation(1.49)

W = 2 s q 1 NA + 1 ND V0

= 2 s q NA + ND NA ND V0

W 2 = 2 s q NA + ND NA ND V0

V0 = 1 2 q s NA ND NA + ND W 2

Ex:1.32 Ina p+ n diode NA ND

Equation(1.49) W = 2 s q 1 NA + 1 ND V0

Wecanneglecttheterm 1 NA ascomparedto 1 ND , thus

W 2 s qND · V0

Equation(1.50) xn = W NA NA + ND W NA NA

= W

Equation(1.51), xp = W ND NA + ND since NA ND W ND NA = W NA ND

Equation(1.52), QJ = Aq NA ND NA + ND W Aq NA ND NA W = AqND W

Equation(1.53), QJ = A 2 s q NA ND NA + ND V0

A 2 s q NA ND NA V0 since NA ND

= A 2 s qND V0

Ex:1.33 InExample1.10, NA = 1018 /cm3 and ND = 1016 /cm3

Inthe n-regionofthis pn junction

nn = ND = 1016 /cm3

pn = n2 i nn = (1.5 × 1010 )2 1016 = 2.25 × 104 /cm3

Asonecanseefromaboveequation,toincrease minority-carrierconcentration (pn ) byafactorof 2,onemustlower ND (= nn )byafactorof2.

Ex:1.34

Equation(1.64) IS = Aqn2 i Dp Lp ND + Dn Ln NA since Dp Lp and Dn Ln haveapproximately

similarvalues,if NA ND ,thentheterm Dn Ln NA

canbeneglectedascomparedto Dp Lp ND

∴ IS ∼ = Aqn2 i Dp Lp ND

Ex:1.35 IS = Aqn2 i Dp Lp ND + Dn Ln NA

= 10 4 × 1.6 × 10 19 × (1.5 × 1010 )2 × ⎛ ⎜ ⎜ ⎝ 10 5 × 10 4 × 1016 2 + 18 10 × 10 4 × 1018

= 1.46 × 10 14 A

I = IS (e V /V T 1) IS e V /V T = 1.45 × 10 14 e 0.605/(25.9×10 3 )

= 0.2mA

Ex:1.36 W = 2 s q 1 NA + 1 ND (V0 VF )

= 2 × 1.04 × 10 12 1.6 × 10 19 1 1018 + 1 1016 (0.814 0.605)

= 1.66 × 10 5 cm = 0.166 µm

Ex:1.37 W = 2 s q 1 NA + 1 ND (V0 + VR ) = 2 × 1.04 × 10 12 1.6 × 10 19 1 1018 + 1 1016 (0.814 + 2)

= 6.08 × 10 5 cm = 0.608 µm

UsingEq.(1.52),

QJ = Aq NA ND NA + ND W

= 10 4 × 1.6 × 10 19 1018 × 1016 1018 + 1016 × 6.08 × 10 5 cm

= 9.63pC

Reversecurrent I = IS = Aqn2 i Dp Lp ND + Dn Ln NA

= 10 14 × 1.6 × 10 19 × (1.5 × 1010 )2 × 10 5 × 10 4 × 1016 + 18 10 × 10 4 × 1018

= 7.3 × 10 15 A

Ex:1.38 Equation(1.69),

Cj0 = A s q 2 NA ND NA + ND 1 V0

= 10 4 1.04 × 10 12 × 1.6 × 10 19 2 1018 × 1016 1018 + 1016 1 0.814

= 3.2pF

Equation(1.70),

Cj = Cj0 1 + VR V0 = 3.2 × 10 12 1 + 2 0.814

= 1.72pF

Ex:1.39 Cd = dQ dV = d dV (τ T I )

= d dV [τ T × IS (e V /V T 1)]

= τ T IS d dV (e V /V T 1)

= τ T IS 1 VT e V /V T

= τ T VT × IS e V /V T

∼ = τ T VT I

Ex:1.40 Equation(1.73),

τ p = L2 p Dp = (5 × 10 4 )2 10 = 25ns

Equation(3.57),

Cd = τ T VT I

InExample1.6, NA = 1018 /cm3 , ND = 1016 /cm3

Assuming NA ND ,

τ T τ p = 25ns

∴ Cd = 25 × 10 9 25.9 × 10 3 0.1 × 10 3

= 96.5pF

SolutionstoEnd-of-ChapterProblems

1.1 (a) V = IR = 5mA × 1k = 5V

P = I 2 R = (5mA)2 × 1k = 25mW

(b) R = V /I = 5V/1mA = 5k

P = VI = 5V × 1mA = 5mW

(c) I = P/V = 100mW/10V = 10mA

R = V /I = 10V/10mA = 1k

(d) V = P/I = 1mW/0.1mA = 10V

R = V /I = 10V/0.1mA = 100k

(e) P = I 2 R ⇒ I = P/R

I = 1000mW/1k = 31.6mA

V = IR = 31.6mA × 1k = 31.6V

Note: V,mA,k ,andmWconstitutea consistentsetofunits.

1.2 (a) I = V R = 5V 1k = 5mA

(b) R = V I = 5V 1mA = 5k

(c) V = IR = 0.1mA × 10k = 1V

(d) I = V R = 1V 100 = 0.01A = 10mA

Note: Volts,milliamps,andkilohmsconstitutea consistentsetofunits.

1.3 (a) P = I 2 R = (20 × 10 3 )2 × 1 × 103 = 0.4W

Thus, R shouldhavea 1 2 -Wrating.

(b) P = I 2 R = (40 × 10 3 )2 × 1 × 103 = 1.6W

Thus,theresistorshouldhavea2-Wrating.

(c) P = I 2 R = (1 × 10 3 )2 × 100 × 103 = 0.1W

Thus,theresistorshouldhavea 1 8 -Wrating.

(d) P = I 2 R = (4 × 10 3 )2 × 10 × 103 = 0.16W

Thus,theresistorshouldhavea 1 4 -Wrating.

(e) P = V 2 /R = 202 /(1 × 103 ) = 0.4W

Thus,theresistorshouldhavea 1 2 -Wrating.

(f) P = V 2 /R = 112 /(1 × 103 ) = 0.121W

Thus,aratingof 1 8 Wshouldtheoretically suffice,though 1 4 Wwouldbeprudenttoallow forinevitabletolerancesandmeasurementerrors.

1.4 Seefigureonnextpage,whichshowshowto realizetherequiredresistancevalues.

1.5 Shuntingthe10k byaresistorofvalueof R resultsinthecombinationhavingaresistance

Req ,

Req = 10R R + 10

Thus,fora1%reduction,

R R + 10 = 0.99 ⇒ R = 990k

Fora5%reduction,

R R + 10 = 0.95 ⇒ R = 190k

Fora10%reduction,

R R + 10 = 0.90 ⇒ R = 90k

Fora50%reduction,

R

R + 10 = 0.50 ⇒ R = 10k

Shuntingthe10k by (a)1M resultsin

Req = 10 × 1000 1000 + 10 = 10 1.01 = 9.9k a1%reduction;

(b)100k resultsin

Req = 10 × 100 100 + 10 = 10 1.1 = 9.09k

a9.1%reduction;

(c)10k resultsin

Req = 10 10 + 10 = 5k

a50%reduction.

1.6 Usevoltagedividertofind VO VO = 5 2 2 + 3 = 2V

Equivalentoutputresistance RO is RO = (2k 3k ) = 1.2k

ThisfigurebelongstoProblem 1.4 Allresistorsare5k

Theextremevaluesof VO for ±5%tolerance resistorare

VOmin = 5 2(1 0.05) 2(1 0.05) + 3(1 + 0.05) = 1.88V

VOmax = 5 2(1 + 0.05) 2(1 + 0.05) + 3(1 0.05) = 2.12V

Theextremevaluesof RO for ±5%tolerance resistorsare1.2 × 1.05 = 1.26k and 1.2 × 0.95 = 1.14k

1.7 VO = VDD R2 R1 + R2 Tofind RO ,weshort-circuit VDD andlookback intonodeX,

10 // 10 // 10 3.33 k

Voltagegenerated:

+3V[twoways:(a)and(c)with(c)havinglower outputresistance]

+4.5V(b)

+6V[twoways:(a)and(d)with(d)havinga loweroutputresistance]

Tomake RO = 3.33,weaddaseriesresistanceof approximately200 ,asshownbelow,

Toincrease VO to10.00V,weshuntthe10-k resistorbyaresistor R whosevalueissuchthat 10 R = 2 × 4.7.

1.11 Connectaresistor R inparallelwith RL

Tomake IL = I /4(andthusthecurrentthrough R,3 I /4), R shouldbesuchthat

6 I /4 = 3 IR/4

⇒ R = 2k

4

1.12 Theparallelcombinationoftheresistorsis

R where 1 R = N i=1 1/Ri

Thevoltageacrossthemis

V = I × R = I N i=1 1/Ri

Thus,thecurrentinresistor Rk is

Ik = V /Rk = I /Rk N i=1 1/Ri

Tomakethecurrentthrough R equalto0.2 I ,we shunt R byaresistance R1 havingavaluesuch thatthecurrentthroughitwillbe0.8 I ;thus

0.2 IR = 0.8 IR1 ⇒ R1 = R 4

Theinputresistanceofthedivider, Rin ,is

Rin = R R1 = R R 4 = 1 5 R

Nowif R1 is10%toohigh,thatis,if

R1 = 1.1 R 4

theproblemcanbesolvedintwoways:

(a)Connectaresistor R2 across R1 ofvaluesuch that R2 R1 = R/4,thus

R2 (1.1R/4)

R2 + (1.1R/4) = R 4

+ 1.1R 4 ⇒ R2 = 11R 4 = 2.75R

R

=

(b)Connectaresistorinserieswiththeload resistor R soastoraisetheresistanceoftheload branchby10%,therebyrestoringthecurrent divisionratiotoitsdesiredvalue.Theadded seriesresistancemustbe10%of R (i.e.,0.1R). 0.1R 1.1R 4 Rin R 0.8 I 0.2 I I

Rin = 1.1R 1.1R 4 = 1.1R 5 thatis,10%higherthanincase(a).

1.14 For RL = 10k ,whensignalsource generates0 0.5mA,avoltageof0 2Vmay appearacrossthesource

Tolimit v s ≤ 1V,thenetresistancehastobe ≤ 2k .Toachievethiswehavetoshunt RL with aresistorRsothat (R RL ) ≤ 2k

R RL ≤ 2k

RRL R + RL ≤ 2k

For RL = 10k

R ≤ 2.5k

Theresultingcircuitneedsonlyoneadditional resistanceof2k inparallelwith RL sothat

v s ≤ 1V.Thecircuitisacurrentdivider,andthe currentthrough RL isnow0–0.1mA.

0 0.5 mA is vs RL

1.15 (a)Betweenterminals1and2:

(b)Sameprocedureisusedfor(b)toobtain

(c)Betweenterminals1and3,theopen-circuit voltageis1.5V.Whenweshortcircuitthe voltagesource,weseethattheThévenin resistancewillbezero.Theequivalentcircuitis then

Now,whenaresistanceof3k isconnected betweennode4andground, Sedra,Smith,Carusone,GaudetMicroelectronicCircuits,8thInternationalEdition©OxfordUniversityPress2021

I = 0.77 12.31 + 3 = 0.05mA 1.17

V

1

3 I2 I1 I3 V

(a)Nodeequationatthecommonmodeyields

I3 = I1 + I2

Usingthefactthatthesumofthevoltagedrops across R1 and R3 equals10V,wewrite

10 = I1 R1 + I3 R3

= 10 I1 + (I1 + I2 ) × 2

= 12 I1 + 2 I2

Thatis,

12 I1 + 2 I2 = 10 (1)

Similarly,thevoltagedropsacross R2 and R3 add upto5V,thus

5 = I2 R2 + I3 R3

= 5 I2 + (I1 + I2 ) × 2

whichyields

2 I1 + 7 I2 = 5 (2)

Equations(1)and(2)canbesolvedtogetherby multiplyingEq.(2)by6:

12 I1 + 42 I2 = 30 (3)

Now,subtractingEq.(1)fromEq.(3)yields

40 I2 = 20

⇒ I2 = 0.5mA

SubstitutinginEq.(2)gives

2 I1 = 5 7 × 0.5mA

⇒ I1 = 0.75mA

I3 = I1 + I2

= 0.75 + 0.5 = 1.25mA

V = I3 R3

= 1.25 × 2 = 2.5V

Tosummarize:

I1 = 0.75mA I2 = 0.5mA

I3 = 1.25mA V = 2.5V

(b)Anodeequationatthecommonnodecanbe writtenintermsof V as 10 V R1 + 5 V R2 = V R3

Thus, 10 V 10 + 5 V 5 = V 2

⇒ 0.8V = 2

⇒ V = 2.5V

Now, I1 , I2 ,and I3 canbeeasilyfoundas I1 = 10 V 10 = 10 2.5 10 = 0.75mA I2 = 5 V 5 = 5 2.5 5 = 0.5mA I3 = V R3 = 2.5 2 = 1.25mA

Method(b)ismuchpreferred,beingfaster,more insightful,andlesspronetoerrors.Ingeneral, oneattemptstoidentifythelowestpossible numberofvariablesandwritethecorresponding minimumnumberofequations.

1.18 FindtheThéveninequivalentofthecircuit totheleftofnode1.

Betweennode1andground, RTh = (1k 1.2k ) = 0.545k

VTh = 10 × 1.2 1 + 1.2 = 5.45V

FindtheThéveninequivalentofthecircuittothe rightofnode2.

Betweennode2andground, RTh = 9.1k 11k = 4.98k

VTh = 10 × 11 11 + 9.1 = 5.47V

Theresultingsimplifiedcircuitis

5 0.545 k 4.98 k

V 5.47 V

I5 = 5.47 5.45 4.98 + 2 + 0.545 = 2.66 µA

V5 = 2.66 µA × 2k = 5.32mV

1.19 WefirstfindtheThéveninequivalentofthe sourcetotherightof v O .

V = 4 × 1 = 4V

Then,wemayredrawthecircuitinFig.P1.19as shownbelow 5 V 4 V 3 k1 k vo

Then,thevoltageat v O isfoundfromasimple voltagedivision.

v O = 4 + (5 4) × 1 3 + 1 = 4.25V

1.20 RefertoFig.P1.20.Usingthevoltage dividerruleattheinputside,weobtain

v π v s = rπ rπ + Rs (1)

Attheoutputside,wefind v o bymultiplyingthe current gm v π bytheparallelequivalentof ro and RL ,

v o =−gm v π (ro RL )(2)

Finally, v o /v s canbeobtainedbycombiningEqs. (1)and(2)as

v o v s =− rπ rπ + Rs gm (ro RL )

1.21 (a) T = 10 4 ms = 10 7 s

f = 1 T = 107 Hz

ω = 2π f = 6.28 × 107 rad/s

(b) f = 1GHz = 109 Hz

T = 1 f = 10 9 s

ω = 2π f = 6.28 × 109 rad/s

(c) ω = 6.28 × 102 rad/s

f = ω 2π = 102 Hz

T = 1 f = 10 2 s

(d) T = 10s

f = 1 T = 10 1 Hz

ω = 2π f = 6.28 × 10 1 rad/s

(e) f = 60Hz

T = 1 f = 1.67 × 10 2 s

ω = 2π f = 3.77 × 102 rad/s

(f) ω = 1krad/s = 103 rad/s

f = ω 2π = 1.59 × 102 Hz

T = 1 f = 6.28 × 10 3 s

(g) f = 1900MHz = 1.9 × 109 Hz

T = 1 f = 5.26 × 10 10 s

ω = 2π f = 1.194 × 1010 rad/s

1.22 (a) Z = R + 1 jω C = 103 + 1 j2π × 10 × 103 × 10 × 10 9

= (1 j1.59) k

(b) Y = 1 R + jω C

= 1 104 + j2π × 10 × 103 × 0.01 × 10 6

= 10 4 (1 + j6.28)

Z = 1 Y = 104 1 + j6.28

= 104 (1 j6.28) 1 + 6.282

= (247.3 j1553)

(c) Y = 1 R + jω C = 1 100 × 103 + j2π × 10 × 103 × 100 × 10 12

= 10 5 (1 + j0.628)

Z = 105 1 + j0.628

= (71.72 j45.04) k

(d) Z = R + jω L

= 100 + j2π × 10 × 103 × 10 × 10 3

= 100 + j6.28 × 100

= (100 + j628), 1.23 (a) Z = 1k atallfrequencies

(b) Z = 1 /jω C =− j 1 2π f × 10 × 10 9

At f = 60Hz, Z =− j265k

At f = 100kHz, Z =− j159

At f = 1GHz, Z =− j0.016

(c) Z = 1 /jω C =− j 1 2π f × 10 × 10 12

At f = 60Hz, Z =− j0.265G

At f = 100kHz, Z =− j0.16M

At f = 1GHz, Z =− j15.9

(d) Z = jω L = j2π fL = j2π f × 10 × 10 3

At f = 60Hz, Z = j3.77

At f = 100kHz, Z = j6.28k

At f = 1GHz, Z = j62.8M

(e) Z = jω L = j2π fL = j2π f (1 × 10 6 )

f = 60Hz, Z = j0.377m

f = 100kHz, Z = j0.628

f = 1GHz, Z = j6.28k

1.24 Y = 1 jω L + jω C = 1 ω 2 LC jω L

⇒ Z = 1 Y = jω L 1 ω 2 LC

Thefrequencyatwhich |Z | =∞ isfoundletting thedenominatorequalzero:

1 ω 2 LC = 0 ⇒ ω = 1 √LC

Atfrequenciesjustbelowthis, ∠Z =+90◦ . Atfrequenciesjustabovethis, ∠Z =−90◦

Sincetheimpedanceisinfiniteatthisfrequency, thecurrentdrawnfromanidealvoltagesourceis zero.

1.25 is Rs Rs vs Thévenin equivalent Norton equivalent

v oc = v s isc = is v s = is Rs

Thus, Rs = v oc isc (a) v s = v oc = 1V is = isc = 0.1mA

Rs = v oc isc = 1V 0.1mA = 10k (b) v s = v oc = 0.1V is = isc = 1 µA

Rs = v oc isc = 0.1V 1 µA = 0.1M = 100k

v o

vs vo

v s = RL RL + Rs

v o = v s 1 + Rs RL

Thus, v s 1 + Rs 100 = 40 (1) and v s 1 + Rs 10 = 10 (2)

DividingEq.(1)byEq.(2)gives

1 + (Rs /10)

1 + (Rs /100) = 4

⇒ RS = 50k

SubstitutinginEq.(2)gives

v s = 60mV

TheNortoncurrent is canbefoundas

is = v s Rs = 60mV 50k = 1.2 µA

1.27 Thenominalvaluesof VL and IL are givenby

VL = RL RS + RL VS IL = VS RS + RL

Aftera10%increasein RL ,thenewvalueswillbe

VL = 1.1RL RS + 1.1RL VS

IL = VS RS + 1.1RL

(a)Thenominalvaluesare

VL = 200 5 + 200 × 1 = 0.976V

IL = 1 5 + 200 = 4.88µA

Aftera10%increasein RL ,thenewvalueswillbe

VL = 1.1 × 200 5 + 1.1 × 200 = 0.978V

IL = 1 5 + 1.1 × 200 = 4.44µA

Thesevaluesrepresenta0.2%and9%change, respectively.Sincetheloadvoltageremains relativelymoreconstantthantheloadcurrent,a Théveninsourceismoreappropriatehere.

(b)Thenominalvaluesare

VL = 50 5 + 50 × 1 = 0.909V

IL = 1 5 + 50 = 18.18mA

Aftera10%increasein RL ,thenewvalueswillbe

VL = 1.1 × 50 5 + 1.1 × 50 = 0.917V

IL = 1 5 + 1.1 × 50 = 16.67mA

Thesevaluesrepresenta1%and8%change, respectively.Sincetheloadvoltageremains relativelymoreconstantthantheloadcurrent,a Théveninsourceismoreappropriatehere.

(c)Thenominalvaluesare

VL = 0.1 2 + 0.1 × 1 = 47.6mV

IL = 1 2 + 0.1 = 0.476mA

Aftera10%increasein RL ,thenewvalueswillbe

VL = 1.1 × 0.1 2 + 1.1 × 0.1 = 52.1mV

IL = 1 2 + 1.1 × 0.1 = 0.474mA

Thesevaluesrepresenta9%and0.4%change, respectively.Sincetheloadcurrentremains relativelymoreconstantthantheloadvoltage,a Nortonsourceismoreappropriatehere.The Nortonequivalentcurrentsourceis

IS = VS RS = 1 2 = 0.5mA

(d)Thenominalvaluesare

VL = 16 150 + 16 × 1 = 96.4mV

IL = 1

150 + 16 = 6.02mA

Aftera10%increasein RL ,thenewvalueswillbe

VL = 1.1 × 16

150 + 1.1 × 16 = 105mV

IL = 1

150 + 1.1 × 16 = 5.97mA

Thesevaluesrepresenta9%and1%change, respectively.Sincetheloadcurrentremains relativelymoreconstantthantheloadvoltage,a Nortonsourceismoreappropriatehere.The Nortonequivalentcurrentsourceis

= VS RS = 1 150 = 6.67mA

v 2 S R2 L (RL + RS )2 × 1 RL

v 2 S RL (RL + RS )2

Sincewearetoldthatthepowerdeliveredtoa 16 speakerloadis75%ofthepowerdelivered toa32 speakerload, PL (RL = 16 ) = 0.75 × PL (RL = 32 ) 16 (RS + 32)2 = 0.75 × 32 (RS + 32)2 √16 RS + 32 = √24 RS + 32

(√24 = √16)RS = √16 × 32 √24 × 16 0.9RS = 49.6

Open-circuit (io 0) voltage 0 Rs vs vs vo is io Slope Rs Short-circuit (vo 0) current 1.31 Rs RL RL is vs vo vo Rs io io

RL representstheinputresistanceoftheprocessor

For v o = 0.95v s 0.95 = RL RL + Rs ⇒ RL = 19Rs For io = 0.95is 0.95 = Rs Rs + RL ⇒ RL = RS /19 1.32

Case ω (rad/s) f (Hz) T (s)

a 3.14 × 1010 5 × 109 0.2 × 10 9

b 2 × 109 3.18 × 108 3.14 × 10 9

c 6.28 × 1010 1 × 1010 1 × 10 10

d 3.77 × 102 60 1.67 × 10 2

e 6.28 × 104 1 × 104 1 × 10 4

f 6.28 × 105 1 × 105 1 × 10 5

1.29 Theobservedoutputvoltageis1mV/ ◦ C, whichisonehalfthevoltagespecifiedbythe sensor,presumablyunderopen-circuitconditions: thatis,withoutaloadconnected.Itfollowsthat thatsensorinternalresistancemustbeequalto RL ,thatis,5k 1.30 vs vo Rs Rs io is vo io v o = v s io Rs

1.33 (a) v = 10sin(2π × 103 t ),V

(b) v = 120√2sin(2π × 60),V

(c) v = 0.1sin(2000t ),V

(d) v = 0.1sin(2π × 103 t ),V

1.34 Comparingthegivenwaveformtothat describedbyEq.(1.2),weobservethatthegiven waveformhasanamplitudeof0.5V(1V peak-to-peak)anditslevelisshiftedupby0.5V (thefirsttermintheequation).Thusthe waveformlooksasfollows:

1.37 Thermsvalueofasymmetricalsquare wavewithpeakamplitude ˆ V issimply ˆ V .Taking theroot-mean-squareofthefirst5sinusoidal termsinEq.(1.2)givesanrmsvalueof, 4

= 0.980 ˆ V whichis2%lowerthanthermsvalueofthe squarewave.

1.38 Iftheamplitudeofthesquarewaveis Vsq , thenthepowerdeliveredbythesquarewavetoa resistance R willbe V 2 sq /R .Ifthispoweristobe equaltothatdeliveredbyasinewaveofpeak amplitude V ,then

Averagevalue = 0.5V

Peak-to-peakvalue = 1V

Lowestvalue = 0V

Highestvalue = 1V

Period T = 1 f0 = 2π ω0 = 10 3 s

Frequency f = 1 I = 1kHz

1.35 (a) Vpeak = 117 × √2 = 165V

(b) Vrms = 33.9/√2 = 24V

(c) Vpeak = 220 × √2 = 311V

(d) Vpeak = 220 × √2 = 311kV

1.36 Thetwoharmonicshavetheratio 126/98 = 9/7.Thus,thesearethe7thand9th harmonics.FromEq.(1.2),wenotethatthe amplitudesofthesetwoharmonicswillhavethe ratio7to9,whichisconfirmedbythe measurementreported.Thusthefundamentalwill haveafrequencyof98/7,or14kHz,andpeak amplitudeof63 × 7 = 441mV.Thermsvalueof thefundamentalwillbe441/√2 = 312mV.To findthepeak-to-peakamplitudeofthesquare wave,wenotethat4V/π = 441mV.Thus,

Peak-to-peakamplitude

= 2V = 441 × π 2 = 693mV

Period T = 1 f = 1 14 × 103 = 71.4 µs

Thus, Vsq = ˆ V /√2.Thisresultisindependentof frequency. 1.39 Decimal Binary 0 0

1.40 (a)For N bitstherewillbe2N possible levels,from0to VFS .Thustherewillbe(2N 1) discretestepsfrom0to VFS withthestepsize givenby

Stepsize = VFS 2N 1

Thisistheanalogchangecorrespondingtoa changeintheLSB.Itisthevalueofthe resolutionoftheADC.

(b)Themaximumerrorinconversionoccurs whentheanalogsignalvalueisatthemiddleofa step.Thusthemaximumerroris

1 2 × stepsize = 1 2 VFS 2N 1

Thisisknownasthequantizationerror.

(c) 5V 2N 1 ≤ 2mV

2N 1 ≥ 2500

2N ≥ 2501 ⇒ N = 12, For N = 12,

Resolution = 5 212 1 = 1.2mV

=

=

Notethattherearetwopossiblerepresentations ofzero:0000and1000.Fora0.5-Vstepsize, analogsignalsintherange ±3.5Vcanbe represented.

Input Steps Code

+5 0101

0101

6 1110

1.42 (a)When bi = 1,the ithswitchisin position1andacurrent(Vref /2i R)flowstothe output.Thus iO willbethesumofallthecurrents correspondingto“1”bits,thatis,

iO = Vref R b1 21 + b2 22 +···+ bN 2N

(b) bN istheLSB

b1 istheMSB

(c) iOmax = 10V 10k 1 21 + 1 22 + 1 23 + 1 24 + 1 25 + 1 26 + 1 27 + 1 28

= 0.99609375mA

CorrespondingtotheLSBchangingfrom0to1 theoutputchangesby (10/10) × 1/28 = 3.91 µA.

1.43 Therewillbe44,100samplespersecond witheachsamplerepresentedby16bits.Thusthe throughputorspeedwillbe44,100 × 16 = 7.056 × 105 bitspersecond.

1.44 Eachpixelrequires8 + 8 + 8 = 24bitsto representit.Wewillapproximateamegapixelas 106 pixels,andaGbitas109 bits.Thus,each imagerequires24 × 10 × 106 = 2.4 × 108 bits. Thenumberofsuchimagesthatfitin16Gbitsof memoryis

2.4 × 108 16 × 109 = 66.7 = 66

1.45 (a) Av = v O v I = 10V 100mV = 100V/V

or20log100 = 40dB

Ai = iO iI = v O /RL iI = 10V/100 100 µA = 0.1A 100 µA

= 1000A/A

or20log1000 = 60dB

Ap = v O iO v I iI = v O v I × iO iI = 100 × 1000

= 105 W/W

or10log105 = 50dB

(b) Av = v O v I = 1V 10 µV = 1 × 105 V/V

or20log1 × 105 = 100dB

Ai = iO iI = v O /RL iI = 1V/10k 100nA

= 0.1mA 100nA = 0.1 × 10 3 100 × 10 9 = 1000A/A

or20log Ai = 60dB

Ap = v O iO v I iI = v O v I × iO iI

= 1 × 105 × 1000

= 1 × 108 W/W

or10log AP = 80dB

(c) Av = v O v i = 5V 1V = 5V/V

or20log5 = 14dB

Ai = iO iI = v O /RL iI = 5V/10 1mA = 0.5A 1mA = 500A/A

or20log500 = 54dB

Ap = v O iO v I iI = v O v I × iO iI

= 5 × 500 = 2500W/W

or10log Ap = 34dB

1.46 For ±5Vsupplies:

Thelargestundistortedsine-waveoutputisof 4-Vpeakamplitudeor4/√2 = 2.8Vrms .Input neededis14mVrms .

For ±10-Vsupplies,thelargestundistorted sine-waveoutputisof9-Vpeakamplitudeor 6.4Vrms .Inputneededis32mVrms

For ±15-Vsupplies,thelargestundistorted sine-waveoutputisof14-Vpeakamplitudeor

9.9Vrms .Theinputneededis9.9V/200 = 49.5mVrms

Av = v o v i = 2.2 0.2 = 11V/V

or20log11=20.8dB

Ai = io ii = 2.2V/100 1mA = 22mA 1mA = 22A/A

or20log Ai = 26.8dB

Ap = po pi = (2.2/√2)2 /100 0.2 √2 × 10 3 √2

= 242W/W

or10log AP = 23.8dB

Supplypower = 2 × 3V ×20mA = 120mW

Outputpower = v 2 orms RL = (2.2/√2)2 100 = 24.2mW

Inputpower = 24.2 242 = 0.1mW(negligible)

Amplifierdissipation Supplypower Output power

= 120 24.2 = 95.8mW

Amplifierefficiency = Outputpower supplypower × 100 = 24.2 120 × 100 = 20.2%

1.48 v o = Av o v i RL RL + Ro = Av o v s Ri Ri + Rs RL RL + Ro vi vi vs Ri Rs RL Av ovi Ro

Thus,

v o v s = Av o Ri Ri + Rs RL RL + Ro

(a) Av o = 100, Ri = 10Rs , RL = 10Ro :

v o v s = 100 × 10Rs 10Rs + Rs × 10Ro 10Ro + Ro = 82.6V/Vor20log82.6 = 38.3dB

(b) Av o = 100, Ri = Rs , RL = Ro :

v o v s = 100 × 1 2 × 1 2 = 25V/Vor20log25 = 28dB

(c) Av o = 100V/V, Ri = Rs /10, RL = Ro /10:

v o v s = 100 Rs /10 (Rs /10) + Rs Ro /10 (Ro /10) + Ro = 0.826V/Vor20log0.826 =−1.7dB

1.49 (a)

v o v s = v i v s × v o v i

ThisfigurebelongstoProblem 1.49.

= 1 5 + 1 × 100 × 100 200 + 100 = 5.56V/V

Muchoftheamplifier’s100V/Vgainislostin thesourceresistanceandamplifier’soutput resistance.Ifthesourcewereconnecteddirectly totheload,thegainwouldbe

v o v s = 0.1 5 + 0.1 = 0.0196V/V

Thisisafactorof284× smallerthanthegain withtheamplifierinplace!

(b)

Theequivalentcurrentamplifierhasadependent currentsourcewithavalueof 100V/V 200 × ii = 100V/V 200 × 1000 × v i = 500 × ii

Thus, io is = ii is × io ii = 5 5 + 1 × 500 × 200 200 + 100 = 277.8A/A

Usingthevoltageamplifiermodel,thecurrent gaincanbefoundasfollows, io is = ii is × v i ii × io v i = 5 5 + 1 × 1000 × 100V/V 200 + 100 = 277.8A/A

1.50 InExample1.3,whenthefirstandthe secondstagesareinterchanged,thecircuitlooks likethefigureabove,and

v i1 v s = 100k 100k + 100k = 0.5V/V

io

Figure1
Figure2

ThisfigurebelongstoProblem 1.50

Av 1 = v i2 v i1 = 100 × 1M 1M + 1k = 99.9V/V

Av 2 = v i3 v i2 = 10 × 10k 10k + 1k = 9.09V/V

Av 3 = v L v i3 = 1 × 100 100 + 10 = 0.909V/V

Totalgain = Av = v L v i1 = Av 1 × Av 2 × Av 3

= 99.9 × 9.09 × 0.909 = 825.5V/V

Thevoltagegainfromsourcetoloadis

v L v s = v L v i1 × v i1 v S = Av v i1 v S

= 825.5 × 0.5

= 412.7V/V

Theoverallvoltagehasreducedappreciably.This isbecausetheinputresistanceofthefirststage, Rin ,iscomparabletothesourceresistance Rs .In Example1.3theinputresistanceofthefirststage ismuchlargerthanthesourceresistance.

1.51 Theequivalentcircuitattheoutputsideofa currentamplifierloadedwitharesistance RL is shown.Since

io = (Ais ii ) Ro Ro + RL wecanwrite

1 = (Ais ii ) Ro Ro + 1 (1) and

0.5 = (Ais ii ) Ro Ro + 12 (2)

DividingEq.(1)byEq.(2),wehave RL Ro Aisii io

2 = Ro + 12 Ro + 1 ⇒ Ro = 10k

Ais ii = 1 × 10 + 1 10 = 1.1mA

1.52

Thecurrentgainis

io ii = Rm Ro + RL

= 5000 10 + 1000

= 4.95A/A = 13.9dB

Thevoltagegainis

v o v s = ii v s × io ii × v o io

= 1 Rs + Ri × io ii × RL

= 1 1000 + 100 × 4.95 × 1000

= 4.90V/V = 13.8dB

Thepowergainis

v o io

v s ii = 4.95 × 4.90

= 24.3W/W = 27.7dB

1.53

Gm = 60mA/V

Ro = 20k

RL = 1k

v i = v s Ri Rs + Ri

= v s 2 1 + 2 = 2 3 v s

v o = Gm v i (RL Ro )

= 60 20 × 1 20 + 1 v i

= 60 20 21 × 2 3 v s

Overallvoltagegain ≡ v o v s = 38.1V/V

ThisfigurebelongstoProblem 1.52

10 k vs vi

o ii Ri 5-mV peak

Av ovi 1 k

1.54 vi vo 100 500 1 M 100vi

20log Av o = 40dB ⇒ Av o = 100V/V

Av = v o v i

= 100 × 500 500 + 100 = 83.3V/V

or20log83.3 = 38.4dB

Ap = v 2 o /500 v 2 i /1M = A2 v × 104 = 1.39 × 107 W/W

or10log (1.39 × 107 ) = 71.4dB.

Forapeakoutputsine-wavecurrentof20mA, thepeakoutputvoltagewillbe20mA × 500 = 10V.Correspondingly v i willbeasinewave withapeakvalueof10V/Av = 10/83.3,oran rmsvalueof10/(83.3 × √2) = 0.085V. Correspondingoutputpower = (10/√2)2 /500 = 0.1W

1.55 vi 200 k 1 M 1 V vo 20 100 1 vi

v o = 1V ×

× 1 ×

= 1 1.2 × 100 120 = 0.69V

Voltagegain = v o v s = 0.69V/Vor 3.2dB

Currentgain = v o /100 v s /1.2M = 0.69 × 1.2 × 104 = 8280A/Aor78.4dB

Powergain = v 2 o /100 v 2 s /1.2M = 5713W/W

or10log5713 = 37.6dB (Thistakesintoaccountthepowerdissipatedin theinternalresistanceofthesource.)

1.56 (a)CaseS-A-B-L(seefigureonnextpage):

v o v s = v o v ib × v ib v ia × v ia v s = 10 × 100 100 + 1000 × 100 × 10 10 + 10 × 100 100 + 100

v o v s = 22.7V/VandgainindB20log22.7 = 27.1dB

(b)CaseS-B-A-L(seefigureonnextpage):

v o v s = v o v ia v ia v ib v ib v s = 100 × 100 100 + 10K × 10 × 100K 100K + 1K × 10K

10K + 100K

v o v s = 0.89V/VandgainindBis20log0.89 = 1dB.Obviously,caseaispreferredbecauseit provideshighervoltagegain.

1.57 Eachofstages#1,2,..., (n 1) canbe representedbytheequivalentcircuit:

v o v s = v i1 v s × v i2 v i1 × v i3 v i2 ×···× v in v i(n 1) × v o v in where

Thisfigurebelongsto 1.56,part(a).

Thisfigurebelongsto 1.56,part(b).

v i1

v s = 10k 10k + 10k = 0.5V/V

v o v in = 10 × 200 1k + 200 = 1.67V/V

v i2 v i1 = v i3 v i2 =···= v in v i(n 1) = 10 × 10k 10k + 10k = 9.09V/V

Thus,

v o v s = 0.5 × (9.09)n 1 × 1.67 = 0.833 × (9.09)n 1

For v s = 5mVand v o = 3V,thegain v o v s must be ≥ 600,thus

0.833 × (9.09)n 1 ≥ 600

⇒ n = 4

Thusfouramplifierstagesareneeded,resultingin

v o v s = 0.833 × (9.09)3 = 625.7V/V andcorrespondingly

v o = 625.7 × 5mV = 3.13V

Thisfigurebelongsto 1.57.

1.58 Deliver0.5Wtoa100- load. Sourceis30mVrmswith0.5-M source resistance.Choosefromthesethreeamplifier types:

Chooseordertoeliminateloadingoninputand output:

A,first,tominimizeloadingon0.5-M source

B,second,toboostgain

C ,third,tominimizeloadingat100- output.

Wefirstattemptacascadeofthethreestagesin theorder A, B, C (seefigureabove),andobtain

v i1 v s = 1M 1M + 0.5M = 1 1.5

Turn static files into dynamic content formats.

Create a flipbook