Instant ebooks textbook Statistical mechanics: theory and molecular simulation 2nd edition mark e. t

Page 1


https://ebookmass.com/product/statistical-mechanics-theoryand-molecular-simulation-2nd-edition-mark-e-tuckerman/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Molecular kinetics in condensed phases: theory, simulation, and analysis First Edition Elber

https://ebookmass.com/product/molecular-kinetics-in-condensed-phasestheory-simulation-and-analysis-first-edition-elber/

ebookmass.com

Statistical mechanics : entropy, order parameters, and complexity 2nd Edition Sethna

https://ebookmass.com/product/statistical-mechanics-entropy-orderparameters-and-complexity-2nd-edition-sethna/

ebookmass.com

Molecular Dynamics Simulation 1st Edition Kun Zhou

https://ebookmass.com/product/molecular-dynamics-simulation-1stedition-kun-zhou/

ebookmass.com

The Kissing Part (Happy Endings in Clover Park, Book 1) Kylie Gilmore

https://ebookmass.com/product/the-kissing-part-happy-endings-inclover-park-book-1-kylie-gilmore/

ebookmass.com

Once Upon a Mail Order Bride Linda Broday

https://ebookmass.com/product/once-upon-a-mail-order-bride-lindabroday-2/

ebookmass.com

Cortical Evolution in Primates: What Primates Are, What Primates Were, and Why the Cortex Changed Steven P. Wise

https://ebookmass.com/product/cortical-evolution-in-primates-whatprimates-are-what-primates-were-and-why-the-cortex-changed-steven-pwise/

ebookmass.com

(eBook PDF) Social Inequality: Forms, Causes, and Consequences 10th Edition

https://ebookmass.com/product/ebook-pdf-social-inequality-formscauses-and-consequences-10th-edition/

ebookmass.com

A King So Savage (The Savage Duet Book 1) April Moran

https://ebookmass.com/product/a-king-so-savage-the-savage-duetbook-1-april-moran/

ebookmass.com

Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NOx with NH3 Wenpo Shan & Yunbo Yu & Yan Zhang & Guangzhi He & Yue Peng & Junhua Li & Hong He

https://ebookmass.com/product/theory-and-practice-of-metal-oxidecatalyst-design-for-the-selective-catalytic-reduction-of-nox-withnh3-wenpo-shan-yunbo-yu-yan-zhang-guangzhi-he-yue-peng-junhua-li-honghe/ ebookmass.com

https://ebookmass.com/product/aids-to-the-examination-of-theperipheral-nervous-system-michael-obrien/

ebookmass.com

StatisticalMechanics:TheoryandMolecular Simulation

StatisticalMechanics: TheoryandMolecular Simulation

SECONDEDITION

DepartmentofChemistryandCourantInstituteofMathematicalSciences

NewYorkUniversity

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©MarkE.Tuckerman2023

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2010

SecondEditionpublishedin2023

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2023930434

ISBN978–0–19–882556–2

DOI:10.1093/oso/9780198825562.001.0001

Printedandboundby

CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

ToJocelynandallmygroupmembers,past,present,andyettojoin

Preface

Thefieldofstatisticalmechanicsisevolvingwithstunningrapidity.Practitionersare activelydevelopingtheoreticalandcomputationaltoolsforsolving complexproblems andthosetoolsarebeingdeployedinincreasinglynovelapplicationstorealsystems ofphysical,chemical,biological,andengineeringimport.Thefirsteditionofthisbook providedasolidfoundationinthetheoreticalunderpinningsandcomputationaltechnologiesthatallowtheclassicalandquantumstatisticalmechanicsofparticlestobe formallyunderstoodandpracticallyimplemented.Thesecoreconceptswillforever remaincentraltothefieldandindispensablelearningforanyonewishingtoenterit. However,theinterveningten-plusyearshavewitnessedadvancesofsuchsignificance thatIfeltaneweditionofthebookwasneededtoincorporatethesedevelopmentsinto thebook’sframework.Theseincorporationsandrevisionscaused thebook’slengthto swellbyover150additionalpages.

Inthelastdecade,theapplicationofmodelsandmethodsfromthesubareaof artificialintelligenceknownas machinelearning hastransformedthelandscapeof computationalstatisticalmechanics.Large-scalecomputersimulationsinstatistical mechanicsoftengenerateoutputdatasetsofsuchenormityand heterogeneitythat theycouldberegardedas“bigdata”withina“chemical”scope(broadlyspeaking). Thesedatasetsoftenrepresentmultiplesystemscontainingheterogeneousenvironmentsevolvingunderavarietyofexternalconditions.Thetechniquesofmachine learningallowthesedatasetstobeminedforhiddenpatterns,patternsthatcanbe furtherleveragedtoconstructsimplifiedmodelsofthedata.Owing totheirlowcomputationaloverhead,thesemodelscanbeemployedinsubsequent simulationsthat reachlongerlengthandtimescales,revealmeaningfulreactioncoordinatesforspecificprocesses,andevendriverare-eventsimulationsleadingtohighlyfeaturedfreeenergyhypersurfaces.Becausemachinelearninghasbecomesuchanimpactfultool instatisticalmechanics,asubstantialnewchapter(Chapter17) hasbeenaddedthat introducesbasicmachinelearningconceptsandmodeltypes,includingkernel-ridge methods,support-vectormachines,neuralnetworks,weighted-neighbormodels,and data-clusteringalgorithms,anddemonstratestheapplicationofthesemodels,inboth regressionandclassificationmodes,instatisticalmechanicalsimulationproblems. Otherimportantdevelopmentshaveshapedthesecondeditionsignificantly.The discussionsofcollectivevariablesandfree-energybasedrare-eventsamplingtechniques inChapter8havebeenoverhauledtocapturetheimpressiveinnovationsinthesemethodsandtohighlighthownoveltechniquessuchaswell-temperedmetadynamicsand drivenadiabaticfree-energydynamicsareconnectedandcanbesynergisticallycombined,bothwitheachotherandwithsimplermethodslikeumbrellasampling.The treatmentofFeynmanpathintegralsinChapter12hasbeenenhancedtoclarifythe meaningofimaginarytime,toincludemethodsforsimulatingsystemsof N identical

viii Preface

bosonsandfermionsviapathintegralsandtoincorporateaneleganttechniquefor reducingthecomputationaloverheadofpathintegralsimulations.Thediscussionof approachesforapproximatingquantumtimecorrelationfunctions inChapter14has beenaugmentedtoincludeaformallyexactopen-chainformulation. Functionalsalso makeamoreprominentappearanceinthesecondedition,beingused toconstructa classicalentropymaximizationprincipleinChapters4through6toderiveensemble distributions,andanadditionalappendixonthecalculusoffunctionshasalsobeen provided.ProofsoftheHendersonTheoremonradialdistribution functionsandthe PotentialDistributionTheoremonexcesschemicalpotentialscanbefoundinthese chaptersaswell.Resonancesinmultipletime-scaleintegrationaredealtwithinmuch greaterdepthinChapters4and15andalgorithmsforcircumventingthesenumericalartifactsandallowingverylargetimestepsinmoleculardynamicssimulations arepresented.Otheraddedmaterialincludesanexpandeddiscussionofnumerical integratorsfordeterministicandstochasticthermostatsinmoleculardynamics,more exactlysolvablemodelsandnumericalapplications,resonance-freemultipletime-scale algorithms,andmoreend-of-chapterexercises.Theoverallstructureofthebookhas notbeenchangedfromthefirstedition:equilibriumclassicalstatisticalmechanics precedesequilibriumquantumstatisticalmechanics,andbothprecedediscussionsof classicalandquantumtime-dependentstatisticalmechanics.Stochasticdynamics,discretemodels,andmachinelearningmakeupthefinalthreechaptersofthebook.Asin theoriginaledition,computationalmethodsarepresentedside-by-sidewiththetheoreticaldevelopments,and,totheextentpossible,mathematical complexitygradually increaseswithineachchapter.

AsIdidinthefirstedition,Iwishtoclosethisprefacewithalistofacknowledgments.Iam,asever,trulygratefultoalloftheteachers,mentors,colleagues,and coworkersacknowledgedinthefirstedition’spreface,whichwillimmediatelyfollow.In addition,contentforthesecondeditionwouldnothavebeenpossiblewithouthighly fruitfulcollaborationswithBenedictLeimkuhler,CharllesAbreu,JuttaRogal,Ondrej Marsalek,SerdalKirmizialtin,andJosephCendagorta.ImustalsoexpressmycontinuedthankstotheNationalScienceFoundation,theU.S.DepartmentofEnergy,and theArmyResearchOfficefortheongoingsupportIhavereceivedfromtheseagencies. Finally,Iowe,onceagain,atremendousdebtofgratitudetomywife JocelynLeka wholentmeherconsiderabletalentsasasubstantiveeditor.Aswith thefirstedition, herskillswereemployedonlyforthetextualpartsofthebook;any mathematical errorsremainmineandminealone.

M.E.T. NewYork December,2022

Statisticalmechanicsisatheoreticalframeworkthataimstopredicttheobservable staticanddynamicpropertiesofamany-bodysystemstartingfromitsmicroscopic constituentsandtheirinteractions.Itsscopeisasbroadasthesetof“many-body” systemsislarge:aslongasthereexistsarulegoverningthebehaviorofthefundamentalobjectsthatcomprisethesystem,themachineryofstatisticalmechanics canbeapplied.Consequently,statisticalmechanicshasfoundapplicationsoutsideof physics,chemistry,andengineering,includingbiology,socialsciences,economics,and appliedmathematics.Becauseitseekstoestablishabridgebetween themicroscopic andmacroscopicrealms,statisticalmechanicsoftenprovidesameansofrationalizing observedpropertiesofasystemintermsofthedetailed“modesof motion”ofitsbasic constituents.Anexamplefromphysicalchemistryisthesurprisinglyhighdiffusion constantofanexcessprotoninbulkwater,whichisasinglemeasurablenumber. However,thissinglenumberbeliesastrikinglycomplexdanceofhydrogenbondrearrangementsandchemicalreactionsthatmustoccuratthelevelofindividualor smallclustersofwatermoleculesinorderforthispropertytoemerge.Inthephysical sciences,thetechnologyofmolecularsimulation,whereinasystem’s microscopicinteractionrulesareimplementednumericallyonacomputer,allowsuch “mechanisms” tobeextractedand,throughthemachineryofstatisticalmechanics,predictionsof macroscopicobservablestobegenerated.Inshort,molecularsimulationisthecomputationalrealizationofstatisticalmechanics.Thegoalofthisbook,therefore,isto synthesizethesetwoaspectsofstatisticalmechanics:theunderlyingtheoryofthe subject,inbothitsclassicalandquantumdevelopments,andthepracticalnumerical techniquesbywhichthetheoryisappliedtosolverealisticproblems.

Thisbookisaimedprimarilyatgraduatestudentsinchemistryorcomputational biologyandgraduateoradvancedundergraduatestudentsinphysicsorengineering. Thesestudentsareincreasinglyfindingthemselvesengagedinresearchactivitiesthat crosstraditionaldisciplinarylines.Successfuloutcomesforsuch projectsoftenhinge ontheirabilitytotranslatecomplexphenomenaintosimplemodelsanddevelopapproachesforsolvingthesemodels.Becauseofitsbroadscope,statisticalmechanics playsafundamentalroleinthistypeofworkandisanimportantpart ofastudent’s toolbox.

ThetheoreticalpartofthebookisanextensiveelaborationoflecturenotesIdevelopedforagraduate-levelcourseinstatisticalmechanicsIgiveat NewYorkUniversity. Thesecoursesareprincipallyattendedbygraduateandadvanced undergraduatestudentswhoareplanningtoengageinresearchintheoreticalandexperimentalphysical chemistryandcomputationalbiology.Themostdifficultquestionfacedbyanyone wishingtodesignalecturecourseorabookonstatisticalmechanics iswhattoincludeandwhattoomit.Becausestatisticalmechanicsisanactivefieldofresearch,it comprisesatremendousbodyofknowledge,anditissimplyimpossibletotreatthe entiretyofthesubjectinasingleopus.Forthisreason,manybookswiththewords “statisticalmechanics”intheirtitlescandifferconsiderably.Here, Ihaveattempted tobringtogethertopicsthatreflectwhatIseeasthemodernlandscapeofstatisticalmechanics.Thereaderwillnoticefromaquickscanofthetableofcontentsthat

x Preface

thetopicsselectedarerarelyfoundtogetherinindividualtextbooksonthesubject; thesetopicsincludeisobaricensembles,pathintegrals,classicalandquantumtimedependentstatisticalmechanics,thegeneralizedLangevinequation,theIsingmodel, andcriticalphenomena.(TheclosestsuchbookIhavefoundisalso oneofmyfavorites, DavidChandler’s IntroductiontoModernStatisticalMechanics.)

Thecomputationalpartofthebookjoinssynergisticallywiththetheoreticalpart andisdesignedtogivethereaderasolidgroundinginthemethodology employedto solveproblemsinstatisticalmechanics.Itisintendedneitherasasimulationrecipe booknorascientificprogrammer’sguide.Rather,itaimstoshowhow thedevelopmentofcomputationalalgorithmsderivesfromtheunderlyingtheorywiththehope ofenablingreaderstounderstandthemethodology-orientedliteratureanddevelop newtechniquesoftheirown.ThefocusisonthemoleculardynamicsandMonte Carlotechniquesandthemanynovelextensionsofthesemethods thathaveenhanced theirapplicabilityto,forexample,largebiomolecularsystems,complexmaterials, andquantumphenomena.Mostofthetechniquesdescribedarewidelyavailablein molecularsimulationsoftwarepackagesandareroutinelyemployedin computational investigations.Aswiththetheoreticalcomponent,itwasnecessarytoselectamongthe numerousimportantmethodologicaldevelopmentsthathaveappearedsincemolecularsimulationwasfirstintroduced.Unfortunately,severalimportanttopicshadtobe omittedduetospaceconstraints,includingconfiguration-biasMonteCarlo,thereferencepotentialspatialwarpingalgorithm,andsemi-classicalmethodsforquantum timecorrelationfunctions.ThisomissionwasnotmadebecauseIview thesemethods aslessimportantthanthoseIincluded.Rather,Iconsiderthesetobeverypowerful buthighlyadvancedmethodsthat,individually,mighthaveanarrowertargetaudience.Infact,thesetopicswereslatedtoappearinachapteroftheirown.However, asthebookevolved,Ifoundthatnearly700pageswereneededto laythefoundation Isought.

Inorganizingthebook,Ihavemadeseveralstrategicdecisions.First,thebookis structuredsuchthatconceptsarefirstintroducedwithintheframeworkofclassical mechanicsfollowedbytheirquantummechanicalcounterparts.Thisliescloserperhaps toaphysicist’sperspectivethan,forexample,thatofachemist,butIfindittobea particularlynaturalone.Moreover,givenhowwidespreadcomputationalstudiesbased onclassicalmechanicshavebecomecomparedtoanalogousquantuminvestigations (whichhaveconsiderablyhighercomputationaloverhead),thisprogressionseemsto bebothlogicalandpractical.Second,thetechnicaldevelopmentwithineachchapter isgraduated,withthelevelofmathematicaldetailgenerallyincreasingfromchapter starttochapterend.Thus,themathematicallymostcomplextopicsarereserved forthefinalsectionsofeachchapter.Iassumethatreadershaveanunderstandingof calculus(throughcalculusofseveralvariables),linearalgebra,andordinarydifferential equations.Thisstructurehopefullyallowsreaderstomaximizewhat theytakeaway fromeachchapterwhilerenderingiteasiertofindastoppingpointwithineachchapter. Inshort,thebookisstructuredsuchthatevenapartialreading ofachapterallows thereadertogainabasicunderstandingofthesubject.Itshould benotedthatI attemptedtoadheretothisgraduatedstructureonlyasageneralprotocol.WhereI feltthatbreakingthisprogressionmadelogicalsense,Ihaveforewarnedthereader

Preface xi aboutthemathematicalargumentstofollow,andthefinalresultis generallygivenat theoutset.Readerswishingtoskipthemathematicaldetailscando sowithoutloss ofcontinuity.

ThethirddecisionIhavemadeistointegratetheoryandcomputationalmethods withineachchapter.Thus,forexample,thetheoryoftheclassicalmicrocanonical ensembleispresentedtogetherwithadetailedintroductiontothemoleculardynamics methodandhowthelatterisusedtogenerateaclassicalmicrocanonicaldistribution. TheotherclassicalensemblesarepresentedinasimilarfashionasistheFeynman pathintegralformulationofquantumstatisticalmechanics.Theintegrationoftheory andmethodologyservestoemphasizetheviewpointthatunderstandingonehelpsin understandingtheother.

Throughoutthebook,manyofthecomputationalmethodspresentedareaccompaniedbysimplenumericalexamplesthatdemonstratetheirperformance.Theseexamplesrangefromlow-dimensional“toy”problemsthatcanbeeasily codedupbythe reader(someoftheexercisesineachchapteraskpreciselythis)toatomicandmolecularliquids,aqueoussolutions,modelpolymers,biomolecules,andmaterials.Notevery methodpresentedisaccompaniedbyanumericalexample,andingeneralIhavetried nottooverwhelmthereaderwithaplethoraofapplicationsrequiring detailedexplanationsoftheunderlyingphysics,asthisisnottheprimaryaimofthe book.Once thebasicsofthemethodologyareunderstood,readerswishingto exploreapplications particulartotheirinterestsinmoredepthcansubsequentlyrefer totheliterature.

Awordortwoshouldbesaidabouttheproblemsetsattheendofeachchapter. Mathandsciencearenotspectatorsports,andtheonlywaytolearnthematerialis tosolveproblems.Someoftheproblemsinthebookrequirethereadertothinkconceptuallywhileothersaremoremathematical,challengingthereader toworkthrough variousderivations.Therearealsoproblemsthataskthereadertoanalyzeproposed computationalalgorithmsbyinvestigatingtheircapabilities.Forreaderswithsome programmingbackground,thereareexercisesthatinvolvecoding upamethodfora simpleexampleinordertoexplorethemethod’sperformanceonthat example,and insomecases,reproduceafigurefromthetext.Thesecodingexercisesareincluded becauseonecanonlytrulyunderstandamethodbyprogrammingitupandtrying itoutonasimpleproblemforwhichlongrunscanbeperformedandmanydifferent parameterchoicescanbestudied.However,Imustemphasizethatevenifamethod workswellonasimpleproblem,itisnotguaranteedtoworkwellforrealisticsystems. Readersshouldnot,therefore,na¨ıvelyextrapolatetheperformanceofanymethodthey tryonatoysystemtohigh-dimensionalcomplexproblems.Finally,ineachproblem set,someproblemsareprecededbyanasterisk(∗).Theseareproblemsofamorechallengingnaturethatrequiredeeperthinkingoramorein-depthmathematicalanalysis. Alloftheproblemsaredesignedtostrengthenunderstandingofthebasicideas.

Letmeclosethisprefacebyacknowledgingmyteachers,mentors, colleagues,and coworkerswithoutwhomthisbookwouldnothavebeenpossible.Itookmyfirst statisticalmechanicscourseswithY.R.ShenattheUniversityofCaliforniaBerkeley andA.M.M.PruiskenatColumbiaUniversity.Later,IauditedthecourseteamtaughtbyJamesL.SkinnerandBruceJ.Berne,alsoatColumbia.Iwasalsoprivileged tohavebeenmentoredbyBruceBerneasagraduatestudent,by MicheleParrinello

duringapostdoctoralappointmentattheIBMForschungslaboratoriuminR¨uschlikon, Switzerland,andbyMichaelL.KleinwhileIwasaNationalScienceFoundation postdoctoralfellowattheUniversityofPennsylvania.Underthementorshipofthese extraordinaryindividuals,Ilearnedanddevelopedmanyofthecomputationalmethods thatarediscussedinthebook.ImustalsoexpressmythankstotheNationalScience Foundationfortheircontinuedsupportofmyresearchoverthepastdecade.Manyof thedevelopmentspresentedhereweremadepossiblethroughthe grantsIreceivedfrom them.IamdeeplygratefultotheAlexandervonHumboldtFoundationforaFriedrich WilhelmBesselResearchAwardthatfundedanextendedstayinGermanywhereIwas abletoworkonideasthatinfluencedmanypartsofthebook.Iamequallygrateful tomyGermanhostandfriendDominikMarxforhissupportduringthis stay,for manyusefuldiscussions,andformanyfruitfulcollaborationsthathavehelpedshape thebook’scontent.Ialsowishtoacknowledgemylong-timecollaboratorandfriend GlennMartynaforhishelpincraftingthebookinitsinitialstagesandforhiscritical readingofthefirstfewchapters.Ihavealsoreceivedmanyhelpfulsuggestionsfrom BruceBerne,GiovanniCiccotti,Hae-SooOh,MichaelShirts,andDubravkoSabo.I amindebtedtotheexcellentstudentsandpostdocswithwhomIhaveworkedoverthe yearsfortheirinvaluablecontributionstoseveralofthetechniquespresentedherein andforalltheyhavetaughtme.Iwouldalsoliketoacknowledgemyformerstudent KirynHaslingerHoffmanforherworkontheillustrationsusedintheearlychapters. Finally,IoweatremendousdebtofgratitudetomywifeJocelynLeka,whosefinely honedskillsasaneditorwerebroughttobearoncraftingthewordingusedthroughout thebook.Editingmetookupmanyhoursofhertime.Herskillswererestrictedto thetextualpartsofthebook;shewasnotchargedwiththeoneroustaskofediting theequations.Consequently,anyerrorsinthelatteraremineand minealone.

M.E.T. NewYork July,2010

1Classicalmechanics

1.3Phasespace:visualizingclassicalmotion5

1.4Lagrangianformulationofclassicalmechanics:Ageneral frameworkforNewton’slaws 10 1.5Legendretransforms 17

1.6GeneralizedmomentaandtheHamiltonianformulationof classicalmechanics 18

1.7Asimpleclassicalpolymermodel

1.8Theactionintegral

2Theoreticalfoundationsofclassicalstatisticalmechanics

2.4Phase-spacevolumesandLiouville’stheorem65

2.5TheensembledistributionfunctionandtheLiouvilleequation67

3Themicrocanonicalensembleandintroductiontomolecular dynamics 77 3.1Briefoverview 77

3.2Basicthermodynamics,Boltzmann’srelation,andthe partitionfunctionofthemicrocanonicalensemble78

3.3Theclassicalvirialtheorem

3.4Conditionsforthermalequilibrium

3.6Theharmonicoscillatorandharmonicbaths95

3.7Introductiontomoleculardynamics

3.8Integratingtheequationsofmotion:Finitedifferencemethods101

3.9Systemssubjecttoholonomicconstraints106

3.10Theclassicaltimeevolutionoperatorandnumericalintegrators110

3.11Multipletime-scaleintegration 116

xiv Contents

3.12Symplecticintegrationforquaternions122

3.13Exactlyconservedtime-stepdependentHamiltonians124

3.14Illustrativeexamplesofmoleculardynamicscalculations127

3.15Problems 134

4Thecanonicalensemble 139

4.1Introduction:Adifferentsetofexperimentalconditions139

4.2Thermodynamicsofthecanonicalensemble140

4.3Thecanonicalphase-spacedistributionandpartitionfunction141

4.4Canonicalensembleviaentropymaximization146

4.5Energyfluctuationsinthecanonicalensemble148

4.6Simpleexamplesinthecanonicalensemble150

4.7Structureandthermodynamicsinrealgasesandliquidsfrom spatialdistributionfunctions 159

4.8PerturbationtheoryandthevanderWaalsequation176

4.9Moleculardynamicsinthecanonicalensemble:Hamiltonian formulationinanextendedphasespace186

4.10Classicalnon-Hamiltonianstatisticalmechanics191

4.11Nos´e-Hooverchains 198

4.12IntegratingtheNos´e-Hooverchainequations203

4.13Theisokineticensemble:Avariantofthecanonicalensemble210

4.14IsokineticNos´e-Hooverchains:Achievingverylargetimesteps214

4.15Applyingcanonicalmoleculardynamics:Liquidstructure218

4.16Problems 220

5Theisobaricensembles 231

5.1Whyconstantpressure?

5.2Thermodynamicsofisobaricensembles232

5.3Isobaricphase-spacedistributionsandpartitionfunctions233

5.4Isothermal-isobaricensembleviaentropymaximization239

5.5Pressureandworkvirialtheorems 240

5.6Anidealgasintheisothermal-isobaricensemble242

5.7Extendingtheisothermal-isobaricensemble:Anisotropiccell fluctuations 243

5.8Derivationofthepressuretensorestimatorfromthecanonical partitionfunction 247

5.9Moleculardynamicsintheisoenthalpic-isobaricensemble251

5.10Moleculardynamicsintheisothermal-isobaricensembleI: Isotropicvolumefluctuations 254

5.11Moleculardynamicsintheisothermal-isobaricensembleII: Anisotropiccellfluctuations 258

5.12Atomicandmolecularvirials 261

5.13IntegratingtheMartyna-Tobias-Kleinequationsofmotion263

5.14Theisothermal-isobaricensemblewithconstraints: TheROLLalgorithm

5.15Problems

6Thegrandcanonicalensemble

6.1Introduction:Theneedforyetanotherensemble281

6.2Euler’stheorem

6.3Thermodynamicsofthegrandcanonicalensemble283

6.4Grandcanonicalphasespaceandthepartitionfunction284

6.5Grandcanonicalensembleviaentropymaximization290

6.6Illustrationofthegrandcanonicalensemble:Theidealgas291

6.7Particlenumberfluctuationsinthegrandcanonicalensemble293

6.8Potentialdistributiontheorem

6.9Moleculardynamicsinthegrandcanonicalensemble297

7.1IntroductiontotheMonteCarlomethod303

7.2TheCentralLimittheorem

7.4HybridMonteCarlo

7.5ReplicaexchangeMonteCarlo

7.6Wang-Landausampling

7.7Transitionpathsamplingandthetransitionpathensemble328

7.8Problems

8.1Free-energyperturbationtheory

8.2Adiabaticswitchingandthermodynamicintegration342

8.3Adiabaticfree-energydynamics

8.4Jarzynski’sequalityandnonequilibriummethods350

8.5Theproblemofrareevents

8.6Collectivevariables

8.7Thebluemoonensembleapproach

8.8Umbrellasamplingandweightedhistogrammethods370

8.9Wang-Landausampling

8.10Drivenadiabaticfree-energydynamics374

8.11Metadynamics

8.12Thecommittordistributionandthehistogramtest390

8.13Problems

9.1Introduction:Wavesandparticles

9.2Reviewofthefundamentalpostulatesofquantummechanics399 9.3Simpleexamples

9.4Identicalparticlesinquantummechanics:Spinstatistics419

9.5Problems

10Quantumensemblesandthedensitymatrix

10.1Thedifficultyofmany-bodyquantummechanics430 10.2Theensembledensitymatrix

xvi Contents

10.3Timeevolutionofthedensitymatrix434

11Quantumidealgases:Fermi-DiracandBose-Einsteinstatistics

11.1Complexitywithoutinteractions

11.2Generalformulationofthequantum-mechanicalidealgas446

11.3Anidealgasofdistinguishablequantumparticles450

11.4Generalformulationforfermionsandbosons451

11.5Theidealfermiongas

11.6Theidealbosongas

12TheFeynmanpathintegral 486

12.1Quantummechanicsasasumoverpaths486

12.2Derivationofpathintegralsforthecanonicaldensitymatrix andthetimeevolutionoperator 490

12.3Thermodynamicsandexpectationvaluesfrompathintegrals497

12.4Thecontinuouslimit:Functionalintegrals502

12.5Howtothinkaboutimaginarytimepropagation511

12.6Many-bodypathintegrals 513

12.7Quantumfree-energyprofiles 522

12.8Numericalevaluationofpathintegrals524 12.9Problems 554

13Classicaltime-dependentstatisticalmechanics 560

13.1Ensemblesofdrivensystems 560

13.2Drivensystemsandlinearresponsetheory562

13.3Applyinglinearresponsetheory:Green-Kuborelationsfortransportcoefficients 569

13.4Calculatingtimecorrelationfunctionsfrommoleculardynamics579

13.5Thenonequilibriummoleculardynamicsapproach583 13.6Problems 594

14Quantumtime-dependentstatisticalmechanics 599

14.1Time-dependentsystemsinquantummechanics599

14.2Time-dependentperturbationtheoryinquantummechanics603

14.3Timecorrelationfunctionsandfrequencyspectra613

14.4Examplesoffrequencyspectra 617

14.5Quantumlinearresponsetheory 620

14.6Approximationstoquantumtimecorrelationfunctions626 14.7Problems 641

15TheLangevinandgeneralizedLangevinequations 646

15.1Thegeneralmodelofasystemplusabath646

15.2DerivationofthegeneralizedLangevinequation649

15.3Analyticallysolvableexamples 656

15.4Vibrationaldephasingandenergyrelaxationinsimplefluids664

15.5MoleculardynamicswiththeLangevinequation667

15.6Designingmemorykernelsforspecifictasks676

15.7Samplingstochastictransitionpaths680

15.8Mori-Zwanzigtheory

16.1Phasetransitionsandcriticalpoints695

16.2Thecriticalexponents α, β, γ,and δ

16.3MagneticsystemsandtheIsingmodel698

16.7Isingmodelintwodimensions

16.8Spincorrelationsandtheircriticalexponents719

16.9Introductiontotherenormalizationgroup720

16.10Fixedpointsoftherenormalizationgroupequationsin greaterthanonedimension

16.11Generallinearizedrenormalizationgrouptheory729

16.12Understandinguniversalityfromthelinearized

17.1Machinelearninginstatisticalmechanics:Whatandwhy?740

17.2Threekeyprobabilitydistributions741

17.3Simplelinearregressionasacasestudy743

17.4Kernelmethods

17.9Intrinsicdimensionofadatamanifold784

Classicalmechanics

1.1Introduction

Thefirstpartofthisbookisdevotedtothesubjectofclassicalstatisticalmechanics,whichisfoundeduponthefundamentallawsofclassicalmechanicsasoriginally statedbyNewton.Althoughthelawsofclassicalmechanicswerefirstpostulatedto studythemotionofplanets,starsandotherlarge-scaleobjects,theyturnouttobe asurprisinglygoodapproximationatthemolecularlevel(wherethetruebehavioris correctlydescribedbythelawsofquantummechanics).Indeed,anentirecomputationalmethodology,knownas moleculardynamics,isbasedontheapplicabilityofthe lawsofclassicalmechanicstomicroscopicsystems.Moleculardynamicshasbeenremarkablysuccessfulinitsabilitytopredictmacroscopicthermodynamicanddynamic observablesforawidevarietyofsystemsusingtherulesofclassicalstatisticalmechanicstobediscussedinthenextchapter.Manyoftheseapplicationsaddressimportant problemsinbiology,suchasproteinandnucleicacidfolding,inmaterials science,such assurfacecatalysisandfunctionalization,inthestructureanddynamicsofglassesand theirmelts,andinnanotechnology,suchasthebehaviorofself-assembledmonolayers andtheformationofmoleculardevices.Throughoutthebook,wewillbediscussing bothmodelandrealisticexamplesofsuchapplications.

Inthischapter,wewillbeginwithadiscussionofNewton’slawsofmotionand builduptothemoreelegantLagrangianandHamiltonianformulationsofclassical mechanics,bothofwhichplayfundamentalrolesinstatisticalmechanics.Theorigin oftheseformulationsfromtheactionprinciplewillbediscussed.The chapterwill concludewithafirstlookatsystemsthatdonotfitintotheHamiltonian/Lagrangian frameworkandtheapplicationofsuchsystemsinthedescriptionof certainphysical situations.

1.2Newton’slawsofmotion

In1687,theEnglishphysicistandmathematicianSirIsaacNewtonpublishedthe PhilosophiaeNaturalisPrincipiaMathematica,whereinthreesimpleandelegantlaws governingthemotionofinteractingobjectsaregiven.Thesemaybestatedbrieflyas follows:

1.Intheabsenceofexternalforces,abodywilleitherbeatrest orexecutemotion alongastraightlinewithaconstantvelocity v

2.Theactionofanexternalforce F onabodyproducesanacceleration a equalto theforcedividedbythemass m ofthebody:

3.IfbodyAexertsaforceonbodyB,thenbodyBexertsanequal andopposite forceonbodyA.Thatis,if FAB istheforcebodyAexertsonbodyB,thenthe force FBA exertedbybodyBonbodyAsatisfies

Ingeneral,twoobjectscanexertattractiveorrepulsiveforces oneachother,depending ontheirrelativespatiallocation,andtheprecisedependenceoftheforceontherelative locationoftheobjectsisspecifiedbyaparticular forcelaw. 1

AlthoughNewton’sinterestslargelyfocusedonthemotionofcelestialbodiesinteractingviagravitationalforces,mostatomsaremassiveenoughthattheirmotion canbetreatedreasonablyaccuratelywithinaclassicalframework.Hence,thelaws ofclassicalmechanicscanbeapproximatelyappliedatthemolecularlevel.Naturally, therearenumerousinstancesinwhichtheclassicalapproximationbreaksdown,and aproperquantummechanicaltreatmentisneeded.Forthepresent,however,wewill assumetheapproximatevalidityofclassicalmechanicsatthemolecularleveland proceedtoapplyNewton’slawsasstatedabove.

ThemotionofanobjectcanbedescribedquantitativelybyspecifyingtheCartesianpositionvector r(t)oftheobjectinspaceatanytime t.Thisistantamountto specifyingthreefunctionsoftime,thecomponentsof r(t),

Recognizingthatthevelocity v(t)oftheobjectisthefirsttimederivativeofthe position, v(t)=dr/dt,andthattheacceleration a(t)isthefirsttimederivativeofthe velocity, a(t)=dv/dt,theaccelerationiseasilyseentobethesecondderivativeof position, a(t)=d2r/dt2.Therefore,Newton’ssecondlaw, F = ma,canbeexpressed asasecond-orderdifferentialequation

d2r

t2 = F.

(Weshallhenceforthemploytheoverdotnotationfordifferentiationwithrespectto time.Thus, r =dr/dt and r =d2r/dt2.)Sinceeqn.(1.2.4)isasecond-orderequation, itisnecessarytospecifytwoinitialconditions,thesebeingtheinitial position r(0) andinitialvelocity v(0).Thesolutionofeqn.(1.2.4)subjecttotheseinitialconditions uniquelyspecifiesthemotionoftheobjectforalltime.

Theforce F thatactsonanobjectiscapableofdoing work ontheobject.Inorder toseehowworkiscomputed,considerFig.1.1,whichshowsaforce F actingona

1Throughoutthebook,vectorquantitieswillbedesignatedusingboldfacetype.Thus,inthree spatialdimensions,avector u hasthreecomponents ux, uy,and uz,andwewillrepresentthevector astheorderedtriple u =(ux,uy,uz).Thevectormagnitude u = |u| = u2 x + u2 y + u2 z willbe denotedusingnormaltype.

Fig.1.1 Exampleofmechanicalwork.HeredW = F dl = F cos θdl systemalongaparticularpath.TheworkdW performedalongashortsegmentdl of thepathisdefinedtobe

ThetotalworkdoneontheobjectbytheforcebetweenpointsAandBalongthe pathisobtainedbyintegratingoverthepathfromAtoB:

Ingeneral,theworkdoneonanobjectbyaforcedependsonthepathtakenbetweenA andB.Forcertaintypesofforces,called conservativeforces,theworkisindependent ofthepathandonlydependsontheendpointsofthepath.Weshall describeshortly howconservativeforcesaredefined.

Notethatthedefinitionofworkdependsoncontext.Equation(1.2.6)specifiesthe workdone by aforce F.Ifthisforceisanintrinsicpartofthesystem,thenwereferto thistypeofworkasworkdone bythesystem.Ifwewishtocalculatetheworkdone against suchaforcebysomeexternalagent,thenthisworkwouldbethe negative of thatobtainedusingeqn.(1.2.6),andwerefertothisasworkdone onthesystem.An exampleistheforceexertedbytheEarth’sgravitationalfieldonan objectofmass m. IfthemassfallsundertheEarth’sgravitationalpullthroughadistance h,wecanthink oftheobjectandthegravitationalforceasdefiningthemechanicalsystem.Inthis case,thesystemdoeswork,andeqn.(1.2.6)wouldyieldapositivevalue.Conversely, ifweappliedeqn.(1.2.6)totheoppositeproblemofraisingtheobject toaheight h, itwouldyieldanegativeresult.Thisissimplytellingussomeexternalagentmust dowork on thesystemagainsttheforceofgravityinordertoraiseittoaheight h. Generally,itisobviouswhatsigntoimparttowork,yetthedistinction betweenwork doneonandbyasystemwillbecomeimportantinourdiscussionsofthermodynamics andclassicalstatisticalmechanicsinChapters2through6.

GiventheformofNewton’ssecondlawineqn.(1.2.4),itcanbeeasilyshownthat, inaflatorEuclideanspace,Newton’sfirstlawisredundant.AccordingtoNewton’s firstlaw,anobjectinitiallyataposition r(0)movingwithconstantvelocity v will movealongastraightlinedescribedby

r(t)= r(0)+ vt.

(1.2.7)

Thisisanexampleofa trajectory,thatis,aspecificationoftheobject’spositionasa functionoftimeandinitialconditions.Ifnoforceactsontheobject,then,according toNewton’ssecondlaw,itspositionwillbethesolutionof

Thestraightlinemotionofeqn.(1.2.7)is,infact,theuniquesolutionofeqn.(1.2.8) foranobjectwhoseinitialpositionis r(0)andwhoseinitial(andconstant)velocityis v.Thus,Newton’ssecondlawembodiesNewton’sfirstlaw.

Statisticalmechanicsisconcernedwiththebehavioroflargenumbersofobjects thatcanbeviewedasthefundamentalconstituentsofaparticularmicroscopicmodel ofthesystem,whethertheyareindividualatomsormolecules,orevengroupsofatoms inamacromolecule(forexample,theaminoacidsinaprotein).Weshall, henceforth, refertotheseconstituentsas“particles”(or,insomecases,“pseudoparticles”).The classicalbehaviorofasystemof N particlesinthreedimensionsisgivenbythegeneralizationofNewton’ssecondlawtothesystem.Inordertodevelopthegeneralform ofNewton’ssecondlaw,notethatparticle i,i ∈ [1,N ], willexperienceaforce Fi due toalloftheotherparticlesinthesystemandpossiblytheexternal environmentorexternalagentsaswell.Denotingthepositionvectorsofthe N particlesas r1,..., rN ,the forces Fi aregenerallyfunctionsofthesepositions,andiffrictionalforces arepresent, Fi couldalsobeafunctionoftheparticle’svelocity ri.Wedenotethisfunctional dependenceas Fi = Fi(r1,..., rN , ri).Forexample,iftheforce Fi dependsonlyon individualcontributionsfromeveryotherparticleinthesystem,we saythattheforces are pairwiseadditive.Inthiscase,theforce Fi canbeexpressedas

Thefirsttermineqn.(1.2.9)describesforcesthatareintrinsictothesystemandare partofthedefinitionofthemechanicalsystem,whilethesecondtermdescribesforces thatareentirelyexternaltothesystem.Forageneral N -particlesystem,Newton’s secondlawforparticle i takestheform

iri = Fi(r1,...,

Theseequations,referredtoasthe equationsofmotion ofthesystem,mustbesolved subjecttoasetofinitialpositions, {r1(0),..., rN (0)},andvelocities, {r1(0),..., rN (0)} Inanyrealisticsystem,theinterparticleforcesarehighlynonlinear functionsofthe N particlepositionssothateqns.(1.2.10)possessenormousdynamicalcomplexity,and obtainingananalyticalsolutionishopeless.Moreover,evenifanaccuratenumerical solutioncouldbeobtained,formacroscopicmatter,where N ∼ 1023,thecomputationalresourcesrequiredtocalculateandstorethesolutionsfor eachandeveryparticle atalargenumberofdiscretetimepointswouldexceedbymanyordersofmagnitude allthosepresentlyavailable,makingsuchataskequallyuntenable.Giventheseconsiderations,howcanweeverexpecttocalculatephysicallyobservablepropertiesof realisticsystemsstartingfromamicroscopicdescriptionifthefundamentalequations governingthebehaviorofthesystemcannotbesolved?

Therulesofstatisticalmechanicsprovidethenecessaryconnectionbetweenthe microscopiclawsandmacroscopicobservables.Theserules,however,cannotcircumventthecomplexityofthesystem.Therefore,severalapproachescanbeconsidered fordealingwiththiscomplexity:Ahighlysimplifiedmodelforasystemthatlends

Phasespace 5

itselftoananalyticalsolutioncouldbeintroduced.Althoughoftenoflimitedutility,importantphysicalinsightscansometimesbeextractedfroma clevermodel,and itisusuallypossibletostudythebehaviorofthemodelasexternalconditionsare varied,suchasthenumberofparticles,containingvolume,appliedpressure,andso forth.Alternatively,onecanconsiderasystem,notof1023 particles,butofamuch smallernumber,perhaps102–109 particles,dependingonthenatureofthesystem, andsolvetheequationsofmotionnumericallysubjecttoinitialconditionsandthe boundaryconditionsofacontainingvolume.Fortunately,manymacroscopicpropertiesarewell-convergedwithrespecttosystemsizeforsuchsmallnumbersofparticles! Therulesofstatisticalmechanicsarethenusedtoanalyzethenumericaltrajectories thusgenerated.Thisistheessenceofthetechniqueknownas moleculardynamics.Althoughthemoleculardynamicsapproachisverypowerful,asignificantdisadvantage exists:inordertostudythedependenceonexternalconditions, aseparatecalculation mustbeperformedforeverychoiceoftheseconditions,henceaverylargenumberof calculationsisneeded,forexample,inordertomapoutaphasediagram.Inaddition,the“exact”forcesbetweenparticlescannotbedetermined and,hence,models fortheseforcesmustbeintroduced.Usually,themoreaccurate themodel,themore computationallyintensivethenumericalcalculation,andthemorelimitedthescope ofthecalculationwithrespecttotimeandlengthscalesandthepropertiesthatcan bestudied.Often,timeandlengthscalescanbebridgedbycombining modelsofdifferentaccuracy,includingevencontinuummodelscommonlyusedinengineering,to describedifferentaspectsofalarge,complexsystem,anddevising clevernumerical solversfortheresultingequationsofmotion.Numericalcalculations(typicallyreferred toas simulations)havebecomeanintegralpartofmoderntheoreticalresearch, and sincemanyofthesecalculationsrelyonthelawsofclassicalmechanics,itisimportantthatthissubjectbecoveredinsomedetailbeforeadvancing toadiscussionof therulesofstatisticalmechanics.Theremainderofthischapterwill,therefore,be devotedtointroducingtheconceptsfromclassicalmechanicsthatwillbeneededfor oursubsequentdiscussionofstatisticalmechanics.

1.3Phasespace:visualizingclassicalmotion

Newton’sequationsspecifythecompletesetofparticlepositions {r1(t),..., rN (t)} and, bydifferentiation,theparticlevelocities {v1(t),..., vN (t)} atanytime t,giventhat thepositionsandvelocitiesareknownatoneparticularinstantintime.Forreasons thatwillbeclearshortly,itisoftenpreferabletoworkwiththeparticlemomenta, {p1(t),..., pN (t)},which,inCartesiancoordinates,arerelatedtothevelocitiesby

Notethat,intermsofmomenta,Newton’ssecondlawcanbewritten as

Therefore,theclassicaldynamicsofan N -particlesystemcanbeexpressedbyspecifyingthefullsetof6N functions, {r1(t),..., rN (t), p1(t),..., pN (t)}.Equivalently,atany

Classicalmechanics

instant t intime,alloftheinformationaboutthesystemisspecifiedby6N numbers (or2dN in d dimensions).These6N numbersconstitutethe microscopicstate ofthe systemattime t.Thatthese6N numbersaresufficienttocharacterizethesystem followsentirelyfromthefactthattheyareallthatisneededtoseedeqns.(1.2.10), fromwhichthecompletetimeevolutionofthesystemcanbedetermined.

Suppose,atsomeinstantintime,thepositionsandmomentaofthesystemare {r1,..., rN , p1,..., pN }.These6N numberscanberegardedasanordered6N -tupleor asinglepointina6N -dimensionalspacecalled phasespace.Althoughthegeometry ofthisspacecan,undercertaincircumstances,benontrivial,inits simplestform,a phasespaceisaCartesianspacethatcanbeconstructedfrom6N mutuallyorthogonal axes.Weshalldenoteageneralpointinthephasespaceas

alsoknownasthe phase-spacevector.(AswewillseeinChapter2,phasespacesplay acentralroleinclassicalstatisticalmechanics.)Solvingeqns.(1.2.10)generatesaset offunctions

whichdescribeaparametricpathor trajectory inthephasespace.Therefore,classical motioncanbedescribedbythemotionofapointalongatrajectoryin phasespace. Althoughphase-spacetrajectoriescanonlybevisualizedforaone-particlesystemin onespatialdimension,itis,nevertheless,instructivetostudyseveralsuchexamples.

Consider,first,afreeparticlewithcoordinate x andmomentum p,describedby theone-dimensionalanalogofeqn.(1.2.7), i.e., x(t)= x(0)+(p/m)t,where p isthe particle’s(constant)momentum.Aplotof p vs. x issimplyastraighthorizontalline startingat x(0)andextendinginthedirectionofincreasing x if p> 0ordecreasing x if p< 0.ThisisillustratedinFig.1.2.Thelineishorizontalbecause p isconstantfor all x valuesvisitedonthetrajectory.

Fig.1.2 Phasespaceofaone-dimensionalfreeparticle.

Phasespace 7

Anotherimportantexampleofaphase-spacetrajectoryisthatofasimpleHarmonicoscillator,forwhichtheforcelawisgivenbyHooke’slaw, F (x)= kx,where k isaconstantknownasthe forceconstant.Inthiscase,Newton’ssecondlawtakes theform m ¨ x = kx.

(1.3.5)

Foragiveninitialcondition, x(0)and p(0),thesolutionofeqn.(1.3.5)is x(t)= x(0)cos ωt + p(0) mω sin ωt, (1.3.6)

where ω = k/m isthenaturalfrequencyoftheoscillator.Equation(1.3.6)canbe verifiedbysubstitutionintoeqn.(1.3.5).Differentiatingoncewithrespecttotimeand multiplyingbythemassgivesanexpressionforthemomentum p(t)= p(0)cos ωt mωx(0)sin ωt. (1.3.7)

Notethat p(t)and x(t)arerelatedby (p(t))2 2m + 1 2 mω 2(x(t))2 = C, (1.3.8)

where C isaconstantdeterminedbytheinitialconditionaccordingto

(1.3.9)

(Thisrelationisknownasthe conservationofenergy,whichwewilldiscussingreater detailinthenextfewsections.)Fromeqn.(1.3.8),itcanbeseenthatthephase-space plot, p vs. x,specifiedby p2/2m + mω2x2/2= C isanellipsewithaxes(2mC)1/2 and (2C/mω2)1/2 asshowninFig.1.3.Theanalysisalsoindicatesthatdifferentinitial

Fig.1.3 Phasespaceoftheone-dimensionalharmonicoscillator.

Turn static files into dynamic content formats.

Create a flipbook