Elementary particle physics -the standard theory j. iliopoulos and t.n. tomaras - Instantly access t

Page 1


https://ebookmass.com/product/elementary-particle-physics-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Elementary Particle Physics John Iliopoulos

https://ebookmass.com/product/elementary-particle-physics-johniliopoulos/

ebookmass.com

Concepts of elementary particle physics First Edition Peskin

https://ebookmass.com/product/concepts-of-elementary-particle-physicsfirst-edition-peskin/

ebookmass.com

Concepts of Elementary Particle Physics Michael E. Peskin

https://ebookmass.com/product/concepts-of-elementary-particle-physicsmichael-e-peskin/

ebookmass.com

Beating in Time (Last Chance Beach Romance) M.J. Schiller

https://ebookmass.com/product/beating-in-time-last-chance-beachromance-m-j-schiller/

ebookmass.com

Health systems science Second Edition. Edition Jeffrey M. Borkan (Editor)

https://ebookmass.com/product/health-systems-science-second-editionedition-jeffrey-m-borkan-editor/

ebookmass.com

Technical Communication Today 6th Edition – Ebook PDF Version

https://ebookmass.com/product/technical-communication-today-6thedition-ebook-pdf-version/

ebookmass.com

Fire Protection Systems 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/fire-protection-systems-2nd-editionebook-pdf/

ebookmass.com

World Protests: A Study Of Key Protest Issues In The 21st Century 1st Edition Isabel Ortiz

https://ebookmass.com/product/world-protests-a-study-of-key-protestissues-in-the-21st-century-1st-edition-isabel-ortiz/

ebookmass.com

The Long Hangover: Putin's New Russia and the Ghosts of the Past Shaun Walker

https://ebookmass.com/product/the-long-hangover-putins-new-russia-andthe-ghosts-of-the-past-shaun-walker/

ebookmass.com

(eTextbook PDF) for Invertebrates 3rd Edition by Richard

https://ebookmass.com/product/etextbook-pdf-for-invertebrates-3rdedition-by-richard-c-brusca/

ebookmass.com

ElementaryParticlePhysics

ElementaryParticlePhysics

TheStandardTheory

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©JohnIliopoulosandTheodoreN.Tomaras2021

Themoralrightsoftheauthor[s]havebeenasserted Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2021936417

ISBN978–0–19–284420–0(hbk.)

ISBN978–0–19–284421–7(pbk.)

DOI:10.1093/oso/9780192844200.001.0001

Printedandboundby

CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

ToAlexander,AvraandJiarui

5.6TheLorentzandPoincaréGroups

5.6.1TheLorentzgroup

5.6.2ThePoincarégroup

5.7TheSpaceofPhysicalStates

5.7.1Introduction

5.7.2Particlestates

5.7.3TheFockspace

5.7.4Actionofinternalsymmetrytransformationson F

5.7.5ActionofPoincarétransformationson F

5.8Problems

6ParticlePhysicsPhenomenology

6.3 β-DecayandtheNeutrino

6.41932:TheFirstTableofElementaryParticles

6.4.1Everythingissimple

6.4.2Conservationlaws–baryonandleptonnumber

6.4.3Thefourfundamentalinteractions

6.5HeisenbergandtheSymmetriesofNuclearForces

6.6FermiandtheWeakInteractions

6.7TheMuonandthePion

6.8FromCosmicRaystoParticleAccelerators

6.8.1Introduction

6.8.2Electrostaticaccelerators

6.8.3Linearaccelerators

6.8.4Cyclotrons

6.8.5Colliders

6.9TheDetectors

6.9.1Introduction

6.9.2Bubblechambers

6.9.3Counters

6.10NewElementaryParticlesandNewQuantumNumbers

6.10.1Unstableparticles

6.10.2Resonances

6.10.3 SU (2) asaclassificationgroupforhadrons

6.10.4Strangeparticles

6.11TheEightfoldWayandtheQuarks

6.11.1From SU (2) to SU (3)

6.11.2Thearrivalofthequarks

6.11.3Thebreakingof SU (3)

6.11.4Colour

6.12ThePresentTableofElementaryParticles

6.13Problems

7RelativisticWaveEquations

7.1Introduction

7.2TheKlein–GordonEquation

7.2.1TheGreen’sfunctions

7.2.2Generalisations

7.3TheDiracEquation

7.3.1Introduction

7.3.2WeylandMajoranaequations

7.3.3TheDiracequation

7.3.4The γ matrices

7.3.5Theconjugateequation

7.3.6Thestandardrepresentation

7.3.7Lagrangian,HamiltonianandGreenfunctions

7.3.8Theplanewavesolutions

7.4RelativisticEquationsforVectorFields

7.4.1TheMaxwellfield

7.4.2Massivespin-1field

7.4.3Planewavesolutions

7.5Problems

8TowardsaRelativisticQuantumMechanics

8.1Introduction

8.2TheKlein–GordonEquation

8.3TheDiracEquation

8.3.1Introduction

8.3.2Theconservedcurrent

8.3.3Thecouplingwiththeelectromagneticfield

8.3.4Thenon-relativisticlimitoftheDiracequation

8.3.5Negativeenergysolutions

8.3.6Chargeconjugation

8.3.7 CPT symmetry

8.3.8Chirality

8.3.9Hydrogenoidsystems

8.4Problems

9FromClassicaltoQuantumMechanics

9.1Introduction

9.2.1TheFeynmanpostulate

9.2.2Recoveringquantummechanics

9.3Problems

10FromClassicaltoQuantum Fields.FreeFields

10.2TheKlein–GordonField

11InteractingFields

CPT theorem

CPT andtheSpin-Statistics

11.5.1TheconfigurationspaceFeynmanrules

12ScatteringinQuantumFieldTheory

12.1TheAsymptoticTheory

12.1.1Theasymptoticstates

12.1.2Theasymptoticfields

12.2TheReductionFormula

12.3TheFeynmanRulesfortheScatteringAmplitude

12.5.1TheelectronComptonscattering

12.5.2Theelectron–positronannihilationintoamuonpair

12.5.3Thechargedpiondecayrate

13GaugeInteractions

13.1TheAbelianCase

13.2Non-AbelianGaugeInvarianceandYang–MillsTheories

17.3.1Tree-level(O(α2))electronCoulombscattering

17.3.3Infrareddivergenceofthephotonemissionamplitude

17.3.4The O(α3) measuredcrosssectionisinfraredfinite

17.5.1TheFaddeev-Kulishdressedelectronstates

17.5.2Coulombscatteringofadressedelectron

V

18.6.1Muondecay

18.6.2Otherpurelyleptonicweakprocesses

18.7Semi-LeptonicInteractions

18.7.1Strangenessconservingsemi-leptonicweak interactions

18.7.2Strangenessviolatingsemi-leptonicweakinteractions

19AGaugeTheoryfortheWeakandElectromagnetic Interactions

20.1.2Gargamelleandtheneutralcurrents

20.1.3Veryhighenergyneutrinobeams

20.2.1Introduction

20.2.2Experimentalevidenceforneutrinooscillations

20.2.3Theneutrinomassmatrix

20.2.4Neutrinolessdouble β decay

21.4.1Quantumchromodynamicsinperturbationtheory

21.4.2Quantumchromodynamicsandhadronicphysics

22TheStandardModelandExperiment

22.2.1Experimentaldiscoveryofcharmedparticles

22.2.2Stochasticcoolingandthediscoveryof W ± and Z

22.2.3Thediscoveryoftheheavyquarksandofthe Brout–Englert–Higgsboson

22.3HadronSpectroscopy

22.4TheCabibbo–Kobayashi–MaskawaMatrixand

Introduction

Thequestionofthemicroscopiccompositionofmatterhaspreoccupiednatural philosopherssinceatleastasfarbackasthe5thcenturyBC.The atomichypothesis, i.e.theexistenceof“elementary”constituents,isattributedtoDemocritusofAbdera (c.460–c.370BC).Determiningthenatureoftheseconstituentsandunderstanding theinteractionsamongthemisthesubjectofabranchoffundamentalphysicscalled thephysicsofelementaryparticles.Itisthesubjectofthisbook.Inthepastfew decadesthisfieldhasgonethrougha“phasetransition”.Atfirstsightthecriticaltime wassomewherebetweenthelate1960sandtheearly1970swhenthetheory,which becameknownas theStandardModel,wasfullyformulated.However,thisisonly partofthestoryandtheterm“phasetransition”maybemisleading.Ittookseveral decadesofintenseeffortbyexperimentalistsandtheorists,bothbeforeandafterthe “criticalpoint”,forthevariousingredientsofthisModeltobediscoveredandfor itsmainpredictionstobecomputedtheoreticallyandverifiedexperimentally.The agreementhasbeenimpressivetotheextentthatweshouldnomoretalkabout the StandardModel,butrather theStandardTheory.

Thistransitionhasbroughtprofoundchangesinourwayofthinkingandunderstandingthenatureofthefundamentalforces.Thechangesaresubtleandacasual observermaymissthem.SuperficiallytheStandardModelisnotfundamentallydifferentfromothermodelsthatpeoplehaveconsideredformanyyears.Theyareall basedonrelativisticquantummechanicsor,asitisusuallycalled,quantumfieldtheory.Thishasbeenthelanguageofelementaryparticlephysicssincetheearly1930s, whenEnricoFermiintroducedthenotionofaquantumfieldassociatedwithevery elementaryparticle.ThemainnewelementbroughtbytheStandardModelconcerns thenatureoftheinteractionsbetweenthesevariousquantumfields.Intheolddays theinteractionswerechosenonpurelyphenomenologicalgrounds,likethevariouspotentialfunctions V (x) usedinnon-relativisticquantummechanics.Thenewvision broughtbytheStandardModelisbasedongeometry:theinteractionsarerequired tosatisfyacertaingeometricalprinciple.Inthephysicists’jargonthisprincipleis called gaugeinvariance;inmathematicsitisabranchofdifferentialgeometry.This “geometrisation”ofphysicsisthemainlegacyoftheStandardModel.1

Itisthepurposeofthisbooktopresentandexplainthismodernviewpointto areadershipofwell-motivatedundergraduatestudents.Itisourimpressionthat,althoughtheStandardModeliswellestablishedinelementaryparticlephysicsandis

1

widelyused,itsunderlyingprinciplesarenoteasilyfoundinbooksthatundergraduatestudentsusuallyread.Ourambitionistoshowthatthistheoryismorethan anefficientwaytocomputescatteringamplitudesatlowestorderintheperturbation expansion.Thesubjectswecoverandthewaywechoosetopresentthemaredictated bythisgoal.Webelievethatitistimetointroduceundergraduatestudentstothese newconceptsandmethods.Andwemeanphysicsconcepts.Mathematicswillbeintroducedonlywhenitisabsolutelyneeded.Theemphasiswillbeonthetheoretical aspects,andthischoiceispartlyduetoourowncompetenceandpartlytolimitations ofspace.Agoodexpositionofexperimentaltechniqueswouldtakeasecondvolume.

Theplanofthebookisasfollows:WestartwithapresentationofDirac’stheoryof spontaneousemissioninatomicphysics.Thismakesitpossibletointroduceconcepts suchasthequantisedradiationfield,canonicalcommutationrelations,creationand annihilationoperators,gaugeinvarianceandgaugefixing,butalsotransitionprobabilitiesandFermi’sgoldenrule,andalltheseinaconcreteandwell-definedphysical context.IndeedtheproblemwewerefacingwasthatpresentingtheStandardModel requiredlengthychaptersofpureformalismbeforerealphysicsquestionscouldbe addressed.

Inthefollowingtwochapterswerecallsomeresultsfromclassicalfieldtheoryand weintroducethescatteringformalisminnon-relativisticquantummechanics.Chapter 5 presentsanelementaryintroductiontothetheoryofLiegroupsandLiealgebras, includingLorentzandPoincaré.Thestudentwhohasattendedacourseongroup theorymaygoveryfastthroughit.

Chapter6constitutestheintroductiontothephysicsofelementaryparticles.It isphenomenologicalandfollows,toacertainextent,thehistoricalevolutionofthe fieldduringthetwentiethcentury.Historyisnotourprimarygoal,butwebelieve thatithelpsinunderstandingthebirthanddevelopmentofnewideas.Thefollowing twochapterspresent,inasystematicway,theclassicalrelativisticwaveequationsfor fieldsoflowspinandtheattemptstousetheminordertobuildarelativisticoneparticlequantummechanics.Wederivethewellknownresultthatalltheseattempts pointunambiguouslytoasystemwithaninfinitenumberofdegreesoffreedom,i.e. toquantumfieldtheory.

Goingfromaclassicalfieldtheorytoitsquantumdescendantistheobjectof Chapters 9–12.WedecidedtodoitusingFeynman’spathintegralmethod.Several reasonsmadeuschoosethisapproach,althoughitissomewhatunorthodoxforan undergraduatetextbook.First,webelievethatthesumoverhistories,withitsrelationstostochasticprocesses,offersamoreprofoundvisionofthequantumworld. Second,itisbyfarthemostpracticalwaytoobtainthequantumtheoryofanonlinearconstrainedsystem,suchasaYang–Millstheory.Third,andveryimportant, itofferstheonlyquantisationmethodthatisnotrestrictedtotheperturbationexpansion.Thepathintegralformulationdoesnotassumethatthecouplingisweak.In fact,appropriatelytruncatedonaspace-timelattice,itbecomessuitablefornumerical simulationsinthestrongcouplingregime.Non-perturbativeresultsfromlatticesimulationshavealreadyreachedaremarkableprecision,andtheiragreementwiththe observedhadronicspectrumisimpressive.Furthermore,inthecomingyears,withthe continuingriseincomputingpower,theimportanceofthesecalculationsispredicted toincreaseaccordingly.

Asystematicintroductiontogaugeinvarianttheoriesandthephenomenonof spontaneoussymmetrybreakingarethesubjectsofChapters 13 and 14.Wewant toemphasisetheconceptualstepinvolvedintheintroductionofgaugeinvarianttheories.Whatwephysicistscall“gaugefields”arenotlikeanyotherfield.Thecorrect mathematicaldescriptionisgivenbydifferentialgeometry,butwepresentasimplifiedversionbasedonaformulationonaspace-timelattice.Latticefieldtheoryispoor man’sdifferentialgeometry.

AbookonparticlephysicstodaycannotbelimitedtothecalculationoftreelevelFeynmandiagrams.Theprecisionoftheexperimentsissuchthatameaningful comparisonrequiresustotakeintoaccounttheeffectsofhigherorders.Thiscannot bedoneconsistentlywithoutsomenotionsfromthetheoryofrenormalisationandthe renormalisationgroup.TheycanbefoundinChapter 15.Asimpletreatmentofthe infrareddivergencesassociatedwithmasslessparticlesisgiveninChapter 17

Chapters 16 to 21 presenttheStandardModel.Theycontainaone-loopcalculation oftheelectrongyromagneticratioinquantumelectrodynamics,thephenomenology oftheweakinteractions,the SU (2) × U (1) electroweakgaugetheoryandquantumchromodynamics.Adiscussionofneutrinophysics,withthepoorlyunderstood phenomenonofneutrinooscillations,canbefoundinChapter 20

WeendwithChapter 22,whichoffersapanoramaofthecomparisonoftheStandardModeltheoreticalpredictionswithexperimentalmeasurements,includingthe mostrecentresults.WhentheLargeHadronCollider(LHC)startedoperatingin2008 wewereallexpectingnewphysicstobearoundthecorner.Today,morethanadecade later,wemustadmitthatnocornerhasbeenfound.Thereasonswhywestillbelieve thattheremustbephysicsbeyondtheStandardModelarebrieflyexposedinthelast chapter.Finally,inanappendixweexplainthenotationweareusingandpresenta collectionofsomeusefulformulae.

Oneofus(J.I.)hasrecentlyco-authoredabookonquantumfieldtheory.2 Although thescopeandlevelofthispresentbookaredifferent,thereissomeoverlapinchapters thatarecommontoboth.

2“FromClassicaltoQuantumFields”,byLaurentBaulieu,J.I.andRolandSénéor,Oxford UniversityPress2017.

QuantisationoftheElectromagnetic FieldandSpontaneous PhotonEmission

2.1 Introduction

Thefirstgreatsuccessofquantummechanicswastheaccuratedescriptionofatomic spectra.However,thisverysuccessalsoshoweditslimitations.Indeed,bysolvingthe Schrödingerequation,wefindtheeigenstatesoftheHamiltonianwhichcorrespondto thestationarystates.Itfollowsthatalllevelsshoulddescribestablestatesoftheatom. Ontheotherhand,weknowexperimentally,thatonlythegroundstateisstable.All excitedstatesdecaybytheemissionofoneormorequantaofradiation–photons. Hereweshallanalysethesimplestcase

A(n) → A(0) + γ (2.1) inwhichthetransitiontothegroundstateisasingle-stepprocessaccompaniedby theemissionofonephoton. A(n) representstheatominthe n-thexcitedstateand A(0) thesameatominthegroundstate.Thephenomenonisknownas spontaneous emissionofradiation,anditisnotdescribedbytheSchrödingerequation.Itwasthe needtocomputetherateofsuchdecaysthatpromptedDiracin1927todevelopand usethequantumdescriptionoftheelectromagneticfield.

Inquantummechanicsthetimeevolutionofaphysicalsystemisgivenbythe operator U (t,t0)=e iH(t t0),where H istheHamiltonian.So,wemustfirstfindthe Hamiltonianwhich,whenappliedtothestate A(n),canyieldtheatominitsground state and aphoton.Inotherwords,thisHamiltonianshouldhavetermswithnon-zero matrixelementsbetweenstatescontainingdifferentnumbersofparticles.Sincethis willturnouttobeacentralthemeinoureffortstodescribethephenomenaweobserve inparticlephysicsexperiments,itwillbeuseful,asawarm-upexercise,tostartwith thisproblemofatomicphysics.Itwillallowustointroduce,inawell-definedphysical context,severalconceptsthatwillbeessentiallater.

2.2 ThePrincipleofCanonicalQuantisation

InthefollowingweshallfollowDiracandbuildupaformalism,whichwillmakeit possibleforparticlestobecreated,orabsorbed,asaresultoftheinteraction.This formalismwillturnouttobethatofaquantisedfieldtheoryandwewillstudyfirst thequantumtheoryoftheelectromagneticfield.

Letusstartwithabriefreminderoftheprincipleofcanonicalquantisation.Itis basedontheknowledgeofthephysicalsystemattheclassicallevel.Letusconsider,as anexample,asystemwithonedegreeoffreedom.Inclassicalmechanicsitisdescribed byageneralisedcoordinate q(t) anditscanonicalconjugatemomentum p(t).Thesocalled“canonicalquantisation”ofthissystemisgiven,bydefinition,bytheprescription accordingtowhich q and p arepromotedtooperators,actinginacertainHilbertspace, andsatisfyingtheequaltimecommutationrule1

wherewehaveusedthenotation ˆ A todenotetheoperatorcorrespondingtotheclassicalquantity A 2 Werecovertheclassicaltheoryinthelimit h → 0,inwhichthe operatorsbecomecommutingvariables.

Thisprescriptiontopassfromaclassicaltoaquantumsystemgeneraliseseasily to n degreesoffreedom.Thecommutationrelation(2.2)becomes

Aspecialcaseofasystemgivenby(2.3)consistsof α =1, 2,...,s degreesoffreedom livingoneachsiteofaspacelatticewith N pointsandlatticespacing a.Inthatcase theindex I isnaturallydenotedas I = {i,α} with i =1, 2,...,N labellingthelattice pointsand n = sN .For s =1,inparticular,theindices i and j denoteboththelattice pointsandthevariableateachpoint.Wehavestudiedsuchsystemsinstatistical mechanicswhereweoftenconsideredthelimit N →∞.Wecanalsoconsideran appropriatedoublelimit N →∞ and a → 0,inwhich i becomesthelabel x ofpoints ofthespatialcontinuumand qI (t) → qx,α(t),whichweshallwriteconvenientlyas qα(t, x).Wethusobtainasystemwith s continuousinfinitiesofdegreesoffreedom.In classicalphysicssuchasystemiscalleda classicalfield andthebestknownexample istheelectromagneticfield.

Iftheclassicaltheoryiswelldefinedandthecanonicalvariables qα(t, x) and pβ (t, x) correctlyidentified,thequantisationofsuchasystemis,inprinciple,straightforward: Thecommutationrelation(2.3)isreplacedby

withtheremainingequaltimecommutatorsoftwo q’s,aswellasoftwo p’sequalto zero.Wenoticethattheright-handsideoftherelations(2.4)isproportionaltothe Dirac δ-function,whichisnota“function”intheusualsenseoftheword.Inparticular, thesquare,oranypowerofit,cannotbedefined.Inmathematics,suchgeneralised functionsarecalled distributions.Itfollowsthattheoperators ˆ q and ˆ p mustalsobe

1Intheusualformulationofnon-relativisticquantummechanics,theso-called Schrödingerrepresentation,states |Ψ(t)⟩ dependontime,andevolveaccordingto |Ψ(t)⟩ = U(t, 0) |Ψ(0)⟩ = exp( iHt) |Ψ(0)⟩,whileobservables A withoutexplicittimedependencearerepresentedbytimeindependentoperators AS .Inthecommutationrelation(2.2)weusedthe Heisenbergrepresentation,inwhichthestatesarefixed |Ψ(0)⟩ = U 1(t, 0) |Ψ(t)⟩ andtheobservables AH (t)= U 1(t, 0)AS U(t, 0) aretime-dependent.At t =0 thetwocoincide: AH (0)= AS

2Inordertosimplifytheformulaewewilloftendropthe“hat”ifthereisnodangerofconfusion.

6 2QuantisationoftheElectromagneticFieldandSpontaneousPhotonEmission

representedbydistributions,andweexpecttheirpowerstobeilldefined.Wesay that ˆ q and ˆ p arenot operatorvaluedfunctions ofthespacepoint,butbecomeinstead operatorvalueddistributions.Thisleadstosomemathematicaldifficulties,whichare commontoallquantumfieldtheoriesandwhichareonlypartiallymastered.Weshall comebacktothispointquiteofteninthisbook.

Aspromised,wenextapplythisprogrammetotheelectromagneticfieldandobtain thequantumdescendantofMaxwell’stheory.Itwillbeourfirstexampleofaquantum fieldtheoryandtheonlyonewhichhasawellknownclassicallimit.

2.3 TheQuantumTheoryofRadiation

2.3.1 Maxwell’stheoryasaclassicalfieldtheory

ThesimplestversionofMaxwell’sequationstakestheform3

where E(t, x) and B(t, x) aretheelectricandmagneticfields,respectively,while ρ(t, x) and j(t, x) aretheexternalelectricchargeandcurrentdensities.Consistencyof(2.5), (2.6),requiresthat ρ and j satisfythecontinuitycondition: ∂ρ/∂t+∇·j =0.According toourrecipe,ifwewanttodescribethissystemasaclassicalfieldtheory,wemustfirst identifyasetofindependentvariables qα(t, x).Thesecannotbethesixcomponents of E(t, x) and B(t, x) becausetheyareconstrainedbythefirsttwoequations(2.5). Weshouldsolvetheseconstraintsandeliminatetheredundantvariables.

ItseemsthatafirststepinthisdirectionwastakenbyGaussin1835,longbefore Maxwellwrotehisequations.Itconsistsofintroducingthevectorandscalarpotentials A(t, x) and ϕ(t, x).Itwillbeconvenienttouseacompactrelativisticnotationinwhich x =(t, x) andintroducethefour-vectors jµ(x)=(ρ, j) and Aµ(x)=(ϕ, A).Wethen constructthetwo-indexantisymmetrictensor

Sincethederivativeoperator ∂/∂xµ willappearveryoften,weintroduceashort-hand notationforit: ∂/∂xµ = ∂µ.Similarly, ∂/∂xµ = ∂µ.Theelectricandmagneticfields aregivenintermsof Fµν by

3Weusethesymbol ∧ todenotethevectorproductoftwothree-dimensionalvectors: (a ∧ b)i = ϵijkaj bk

2.3TheQuantumTheoryofRadiation 7

where ϵijk(= ϵijk) isthethree-indexcompletelyantisymmetrictensor,equalto +1 if {ijk} formanevenpermutationof{123}.4 Itisnoweasytocheckthatthetwo inhomogeneousequations(2.6)combineto

whilethetwohomogeneousones(2.5)areautomaticallysatisfied.Theequation(2.9) followsfromavariationalprincipleappliedtotheaction

Canwechoosethefourcomponentsof Aµ asindependentdynamicalvariables? Theanswerisno,becausetheLagrangian(2.10)doesnotcontainthetimederivative of A0;inotherwords,thecanonicalconjugatemomentumof A0 wouldbeidentically zero.WeknowthatthisproblemisrelatedtothefactthattheLagrangiandensity in(2.10)isinvariantunderthetransformation Aµ(x) → Aµ(x)+ ∂µθ(x) with θ(x) anarbitraryfunctionof x.Inclassicalelectrodynamicswecallthisinvariance“gauge invariance”andwecanusethefreedomofchoosingaparticularfunction θ toreducethe numberofindependentvariables.InChapter 13 wewillstudythisprobleminamore generalcontext,butherewejustrecallthat,experimentally,anelectromagneticwave inemptyspacehasonlytransversedegreesofpolarisation.Therefore,wecanimpose thetransversalitycondition ∇ A(x)=0 (theso-called“Coulombgaugecondition”) underwhichthezerocomponentofthevectorpotentialsatisfies5

where ∆ istheLaplacian.ThisimpliestheCoulomblaw(hencethenameofthis condition)

whichshowsthat A0 isentirelygivenbytheexternalsourceanditisnotanindependentdynamicaldegreeoffreedom.6 Weareleftwiththespatialcomponents,which areconstrainedbytheCoulombcondition.Thesimplestwaytosolveitandobtainan unconstrainedsystemistotakethethree-dimensionalFouriertransform

intermsofwhichtheconstraintbecomes

4Inthisformula,raisingandloweringtheindicesofthree-dimensionalvectorsisperformedusing theMinkowskimetric,asweexplaininAppendix A

5AnotherchoiceistheLorentzcovariantgaugeconditionoftheform ∂µAµ(x)=0,theso-called “Lorenzgaugecondition”,firstintroducedbytheDaneLudvigLorenzin1867.

6Unlessnotedotherwise,wewillassumethatboththesourcesandthedynamicalfieldsvanishat infinity.

whichsuggeststochooseanorthonormalsystemofunitvectors ϵ(3)(k)= k/|k| and ϵ(λ)(k), λ =1, 2,satisfying

i.e. ϵ(3)(k) isparalleltothewavevectorandtheothertwoaretransversetoit.Becauseofthegaugecondition,inthisframethevectorpotentialhasonlytransverse components

inagreementwiththeexperimentalfactthattheelectromagneticwavesinemptyspace aretransverse.

Letussummarise:Formulatingthetheoryintermsofthevectorpotential Aµ, andmakingfulluseofitsgaugeinvariance,allowedustoshowthat,outofthesix componentsof E and B,onlytwoarereallyindependent,asexpectedfromtheknown propertiesofelectromagneticradiation.Thisresult,which,asweshallprovelater, followsfromgeneralinvarianceprinciplesofthetheory,madeitpossibletoformulate electromagnetismasadynamicalsystem.Foreach {k,λ}, A(λ)(t, k) isanindependent variable.TheassociatedcanonicalmomentumcanbecomputedfromtheLagrangian (2.10).Wefind

wherewehaveusedthestandardnotationofmechanicsinwhich“dot”meansderivativewithrespecttotime.

Intheabsenceofexternalsources,thevectorpotential A(x) intheCoulombgauge satisfiesthewaveequation

If A(k) isthefour-dimensionalFouriertransformof A(x),thewaveequation(2.18) becomesanalgebraicequation: k2A(k)=0,whichimpliesthat A(k)= F(k2) δ(k2) with F(k2) arbitraryfunctionsof k2,providedtheyareregularat k2 =0

Thegeneralsolutionof(2.18)canbeexpandedinplanewaves,i.e.functions oftheform e ik x with k · x = k0t k · x,andwiththefourvector kµ satisfying k2 ≡ k2 0 k2 =0.Itwillbeconvenienttointroducethenotation

dΩm(k)= d3k (2π)32Ek = d4k (2π)4 (2π)δ(k2 m 2)θ(k0) ,Ek = k2 + m2 (2.19)

whichistheLorentzinvariantmeasureonthepositiveenergybranchofthemass hyperboloidgivenby k2 = m2.Wethuswrite

where dΩ0(k) isthevaluefor m =0 oftheexpression(2.19).Itfollowsthatthe integrationin(2.20)isovertheboundaryofthepositiveenergy k2 =0 cone.

Wecaninvert(2.20)toexpressthecoefficientfunctions a(λ)(k) as

InProblem 2.1 weaskthereadertoverifythattheenergy H andmomentum P of thefieldintermsofthecoefficientfunctionsare

2.3.2 Quantumtheoryofthefreeelectromagneticfield–photons

Wearenowreadytoapplyourgeneralquantisationprescriptionandobtainthecorrespondingquantumtheory.Thecanonicalvariables(2.17)arepromotedtooperators satisfyingthecanonicalcommutationrelations(2.4).7 [A(λ)(t, k), ˙ A (λ′)† (t, k’

A(λ)(t, k), A(λ′)(t, k’)]=0 , [ ˙ A (λ

where † denotestheHermitianadjointoftheoperator.Thepresenceofthefactor (2π)3 isduetoourconventionontheFouriertransform.Here,andthroughoutthisbook, wehaveadoptedthesystemofunitsweintroduceinAppendix A inwhich c =¯h =1. Physicalunitswillberestoredonlywhenitisnecessary. Therelations(2.23)implyfortheoperatorscorrespondingtothecoefficientsofthe planewaveexpansion(2.20)thecommutationrelations

a(λ)(k),a(λ′)†(k′)]= δλλ

Theserelationsarestillformalbecausewehavenotyetdefinedthespaceinwhich theseoperatorsact.Inordertodoitweremarkthat,foreveryfixedvalueof {k,λ}, theoperators a(λ)(k) and a(λ)†(k),appropriatelyrescaled,satisfythecommutation relationsofannihilationandcreationoperatorsforaharmonicoscillatorwithfrequency Ek = |k|.Inotherwords,wecaninterprettheelectromagneticfieldinthevacuum asadoubly(oneforeachvalueof λ)continuousinfinitesetofindependentharmonic

7Weomitthesymbol ∧ ontheoperators.

2QuantisationoftheElectromagneticFieldandSpontaneousPhotonEmission oscillators.Followingtheexampleoftheharmonicoscillator,wedefinethespaceof statesasfollows:

1.Firstweassumetheexistenceofastatewhichisannihilatedbyallannihilation operators a(λ)(k),forbothvaluesof λ andall k.Weassumethisstatetobeunique andnormalisedtoone.Wedenoteitby |0 andwecallit thevacuumstate.

2.Startingfromthisstatewebuildexcitedstatesbyapplyingthecreationoperators onit.Forexample,thefirstexcitedstatesaregivenby

Usingthecommutationrelations(2.24)andtheequation(2.25),whichdefinedthe vacuumstate,wefind

Ofcourse,weexpectthestate |k,λ ,sinceitisastatewithfixedmomentum,to correspondtoawavefunctiondescribedbyaplanewaveand,therefore,tobenonnormalisable.Thisisthemeaningofthe δ functiononther.h.s.ofequation(2.27).As wedidinquantummechanics,wecanbuildnormalisablestatesusingwavepackets.

Givenafunction Φ(k) satisfying

wedefinethewavepacket

whichisnormalisedtoone.

Intheterminologyoftheharmonicoscillator, |k,λ isthestateofoneexcitation oftype {k,λ}.Weseethat,foreachvalueof λ,thespaceoftheone-excitationstates isourfamiliarHilbertspaceofsquare-integrablecomplex-valuedfunctions,whichwe denoteby H1 8

Inasimilarwaywebuild“multi-excitation”statesbyactingonthevacuumwith productsofcreationoperators |k1,λ1; k2,λ2; ... ; kn,λn = a(λn)†

Again,foreachsetofvalues {λi,i =1,...,n},wedenoteby Hn,λ theHilbertspace ofstatesinthedirectproductof H1 withitself n times.Theentirespaceofstatesis

8Moreprecisely,thespaceweuseinquantummechanicsisaray-space.Let |ψ⟩ beavectorin H1 normalisedto1 ⟨ψ|ψ⟩ =1 and C ∈ C C =0.Aunitrayassociatedto |ψ⟩ isthesetofallvectorsof theform C |ψ⟩.Inquantummechanicswehavelearnedthatallvectorsinthissetrepresentthesame physicalstatebecausethewavefunctions Ψ(x) and CΨ(x) areidentified.

thedirectsumofall Hn’s,forall n andallsets {λ}.Wecallthisspace theFockspace ofstates

where,fornotationalsimplicity,wehavedefined H0 astheone-dimensionalspace spannedbythevacuumstate,i.e.theray-spaceofcomplexnumbers.

ThephysicalmeaningofthestatesintheFockspacebecomesmoretransparentif weexpresstheHamiltonianandthemomentumoperatorsofthesystemintermsof a and a†,toobtainthequantumversionsoftherelations(2.22).Itiseasytoseethat, sincecreationandannihilationoperatorsdonotcommute,weend-upwith

Wenextuse(2.32)and(2.33)tocomputetheenergyandmomentumofeachstate in F.Butherewefaceasubtleproblem:Letusstartwiththeenergyofthevacuum state.Asusual,itisgivenbytheexpectationvalueoftheHamiltonian 0| H |0 .Using thecommutationrelations(2.24),weobtain

Thetroublecomesfromthecommutatorwhich,formally,isproportionalto δ3(0) andis,therefore,meaningless.Itiseasytounderstandtheoriginofthisproblem,both physicallyandmathematically.Firstwiththephysics:Werecallthattheenergyof asingleharmonicoscillatorwithfrequency ω isexpressedas H = ω(a†a +1/2) and itsmeanvalueinthegroundstateisjust ω/2, thezero-pointenergy oftheharmonic oscillator.Itisaquantummechanicalphenomenonand,assuch,inphysicalunits itisproportionalto h.Wehavenotedalreadythatthequantumelectromagnetic fieldintheabsenceofsourcesisequivalenttoaninfinitesetofharmonicoscillators satisfyingtherelativisticdispersionlaw ω = |k|.So,itisnotsurprisingthattheground stateenergyisinfinite;itistheinfinitesumofthezero-pointenergies.Nowwiththe mathematics:Adivergentexpressionoftenresultsfromamathematicalmistake;some quantityisilldefined.Indeed,inwritingtheLagrangiandensity,ortheHamiltonian, oftheclassicalelectromagneticfield,weusedexpressionssuchasthoseinequation (2.10),whichcontainthesquareofthefield Fµν (x).Thisisfinefortheclassicaltheory. Inthequantumtheory,however,wehavenotedalreadythatthefieldvariablesare distributions,andtheirsquare,oranyhigherpower,isnotwelldefined.Atthisstage theproblemisanuisanceratherthanacatastrophe.Sinceweunderstanditsoriginwe

Turn static files into dynamic content formats.

Create a flipbook