Electrical properties of materials 10th edition solymar - Explore the complete ebook content with th

Page 1


https://ebookmass.com/product/electrical-properties-ofmaterials-10th-edition-solymar/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Electrical Properties of Materials (10th Edition) L. Solymar

https://ebookmass.com/product/electrical-properties-of-materials-10thedition-l-solymar/

ebookmass.com

Optical properties of materials and their applications

Second Edition Singh

https://ebookmass.com/product/optical-properties-of-materials-andtheir-applications-second-edition-singh/

ebookmass.com

eTextbook 978-0134319650 Mechanics of Materials (10th Edition)

https://ebookmass.com/product/etextbook-978-0134319650-mechanics-ofmaterials-10th-edition/

ebookmass.com

The Baker and the Bookmaker: Most Imprudent Matches - Book Two Ally Hudson

https://ebookmass.com/product/the-baker-and-the-bookmaker-mostimprudent-matches-book-two-ally-hudson/

ebookmass.com

Recycling For Dummies 1st Edition Sarah Winkler

https://ebookmass.com/product/recycling-for-dummies-1st-edition-sarahwinkler/

ebookmass.com

Our Wives Under The Sea Julia Armfield

https://ebookmass.com/product/our-wives-under-the-sea-juliaarmfield-2/

ebookmass.com

Principles of Economics, 10e 10th Edition N. Gregory Mankiw

https://ebookmass.com/product/principles-of-economics-10e-10thedition-n-gregory-mankiw/

ebookmass.com

Two Tribes Fearne Hill

https://ebookmass.com/product/two-tribes-fearne-hill-3/

ebookmass.com

eTextbook 978-0205912964 Persuasion: Social Influence and Compliance Gaining, 5e by Robert H Gass

https://ebookmass.com/product/etextbook-978-0205912964-persuasionsocial-influence-and-compliance-gaining-5e-by-robert-h-gass/

ebookmass.com

Shanghai Secrets Sulari Gentill

https://ebookmass.com/product/shanghai-secrets-sulari-gentill-2/

ebookmass.com

Electrical properties ofmaterials

TENTHEDITION

L.Solymar

DepartmentofElectricalandElectronicEngineering ImperialCollege,London

D.Walsh

DepartmentofEngineeringScience UniversityofOxford

R.R.A.Syms

DepartmentofElectricalandElectronicEngineering ImperialCollege,London

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©OxfordUniversityPress,1970,1979,1984,1988,1993,1998,2004,2010,2014,2019

Themoralrightsoftheauthorshavebeenasserted

Firstedition1970

Secondedition1979

Thirdedition1984

Fourthedition1988

Fifthedition1993

Sixthedition1998

Seventhedition2004

Eightedition2010

Ninthedition2014

Tenthedition2019

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2018938575

ISBN978–0–19–882994–2(hbk.)

ISBN978–0–19–882995–9(pbk.)

DOI:10.1093/oso/9780198829942.001.0001

PrintedinGreatBritainby Bell&BainLtd.,Glasgow

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Prefacetothetenthedition

DrWalshmadeimmensecontributionsbothtothesubjectandtoallprevious editionsofthisbook.Weareverysadtoreporthispassingawayattheageof 92.Inpreparingthiseditionwehavemissedhiswideknowledgeandsharpwit.

Truetopreviouseditionswehavetriedtobringthebookuptodate incorporatingmanyofthelatestresults.Wehaveaddednewmaterialto graphene,buildinginthethirddimension,spintronics,lightemittingdiodes, lasers,superconductivity,addednewsectionsonopto-acousticinteraction, positronemissiontomography,Josephsonjunction-basedquantumcomputers, widebandgapsemiconductors,andonsometopicsinmagnetism,likethe magnetoelectriceffect,magnetoreception,andbiferroics.

Tofurthersupportourcontentionthatthemostimportantbuildingblockof theelectricpropertiesofmaterialsisbandtheory,wehaveaddedafourthapproach(tightbindingmodel)tothethreewehavealreadyhad(Kronig–Penney, Ziman,andFeynmanmodels).

Inconclusion,wewishtothankourwivesfortheirpatiencewhilewewere writingthepresentedition.

Dataonspecificmaterialsintext

Errorsusinginadequatedataaremuch lessthanusingnodataatall

CharlesBabbage

Table1.1 Thresholdwavelengthsforalkalimetals11

Table1.2 Electricalandthermalconductivitiesmeasuredat 293K 21

Figure4.5 Theperiodictableoftheelements63

Figure4.6 Anewversionoftheperiodictableofthe elements 64

Table4.1 Theelectronicconfigurationsoftheelements62

Table5.1 Mohshardnessscale(modified)72

Table6.1 Fermilevelsofmetals87

Table6.2 Workfunctionsofmetals91

Figure6.10 Field-ionmicrographofatungstentip96

Table8.1 Energylevelsofdonor(groupV)andacceptor (groupIII)impuritiesinGeandSi 132

Figure8.7 ElectronandholemobilitiesinGeandSiasa functionofimpurityconcentration 138

Figure8.8 ElectronandholemobilitiesinGaAsasa functionofimpurityconcentration 140

Table8.2 Sizeofatomsintetrahedralbonds141

Table8.3 SemiconductorpropertiesI.Energygapand structure 143

Table8.4 SemiconductorpropertiesII.Currentcarriers148

Figure8.18 (a)Generalarrangementofanoptical transmissionmeasurementandtheresultfor (b)GaAsand(c)Si 152

Table9.1 Minimumfeaturesize218

Exercise9.6 SpecificdopingdatainGeandSi223

Table10.1 Dielectricconstantandrefractiveindexofsome non-polar,weaklypolar,polar,and semiconductingmaterials 232

Table10.2 Frequenciesofmaximumreflection( fr )and minimumtransmission( ft )foranumberofalkali halides

238

Table10.3 Piezoelectricceramics243

Table10.4 Pyroelectriccoefficientsforvariousmaterials247

Exercise10.5 Dielectriclossinthoria256

Figure11.9 Hysteresisloopsof(a)Supermalloyand (b)Alnico5and9

Table11.1 Majorfamiliesofsoftmagneticmaterialswith typicalproperties

Figure11.12 Hysteresiscurvesofsomerare-earthmagnetsin thesecondquadrant

269

271

273

Table11.2 Hardmagneticmaterials273

Exercise11.6 MagneticsusceptibilityofNiatvarying temperature 295

Figure12.15 Relationshipbetweenenergygapandlattice spacingforsomemixedIII–Vsemiconductors

318

Table12.1 Compoundsforlaserdiodes319

Table13.1 MaterialsforcolourLEDs344

Table13.2 Propertiesofelectro-opticmaterials347

Table13.3 Propertiesofsomematerialsusedfor acousto-opticinteraction

Table14.1 Thecriticaltemperatureandcriticalmagnetic fieldofanumberofsuperconductingelementsin thebulkform,atambientpressure

Figure14.9 Temperaturedependenceofthespecificheatof tinnearthecriticaltemperature(afterKeesom andKok,1932)

Figure14.13 Thetemperaturevariationoftheenergygap (relatedtotheenergygapat T =0)asafunction of T /Tc

Table14.2 Thecriticaltemperatureandcriticalmagnetic field(at T =4.2K)ofthemoreimportanthard superconductors

Figure14.21 Themaximumcriticaltemperatureagainsttime fortraditionalandoxidesuperconductors

Table14.3 Approximatecriticaltemperatures(K)ofa selectionofhigh-Tc copperbased superconductors

Figure14.24 Criticalcurrentdensitiesasafunctionof magneticfieldat77K(---)andat4.2K(—)for BSCCO,Nb–Ti,andNb3 Sn

FigureA1.4 Thebenzeneseries,showingopticalabsorption progressingfromtheuvtothevisible

353

377

AppendixIII Physicalconstants442

Introduction

TillnowmanhasbeenupagainstNature; fromnowonhewillbeupagainsthisownnature.

DennisGabor Inventingthefuture

Itisagoodthingforanuneducatedmantoreadbooksofquotations.

W.S.Churchill Rovingcommissioninmyearlylife (1930)

Ifquantummechanicshasn’tprofoundlyshocked you,youhaven’tunderstoodityet.

AttributedtoNielsBohr

Engineeringusedtobeadown-to-earthprofession.TheRomanengineers,who providedcivilizedEuropewithbridgesandroads,didajobcomprehensibleto all.Andthisisstilltrueinmostbranchesofengineeringtoday.Bridge-building hasbecomeasophisticatedscience,themathematicsofoptimumstructures isformidable;nevertheless,thebasicrelationshipsarenotfarremovedfrom commonsense.Aheavierloadismorelikelytocauseabridgetocollapse,and theuseofsteelinsteadofwoodwillimprovetheload-carryingcapacity.

Solid-stateelectronicdevicesareinadifferentcategory.Inordertounderstandtheirbehaviour,youneedtodelveintoquantummechanics.Isquantum mechanicsfarremovedfromcommonsense?Yes,forthetimebeing,itis.We liveinaclassicalworld.Thephenomenawemeeteverydayareclassicalphenomena.Thefinedetailsrepresentedbyquantummechanicsareaveragedout; wehavenofirst-handexperienceofthelawsofquantummechanics;wecan onlyinfertheexistenceofcertainrelationshipsfromthefinaloutcome.Willit alwaysbethisway?Notnecessarily.Therearequantumphenomenaknownto existonamacroscopicscaleas,forexample,superconductivity,anditisquite likelythatcertainbiologicalprocesseswillbefoundtorepresentmacroscopic quantumphenomena.So,aten-year-oldmightbeabletogiveasummaryofthe lawsofquantummechanics—halfacenturyhence.∗ Forthetimebeingthere ∗ Wewroteexactlythesameinthefirst editionofthisbookin1970.Apparently,aneasyappreciationofquantum mechanicsisalwayshalfacenturyahead ofus. isnoeasywaytoquantummechanics;noshortcutsandnobroadhighways. Wejusthavetostrugglethrough.Ibelieveitwillbeworththeeffort.Itwill beyourfirstopportunitytoglancebehindthescenes,topiercethesurfaceand findthegrandioselogicofahiddenworld.

Shouldengineersbeinterestedatallinhiddenmysteries?Isn’tthattheduty andprivilegeofthephysicists?Idonotthinkso.Ifyouwanttoinventnew electronicdevices,youmustbeabletounderstandtheoperationoftheexistingones.Andperhapsyouneedtomorethanmerelyunderstandthephysical mechanism.Youneedtogrowfamiliarwiththeworldofatomsandelectrons, tofeelathomeamongthem,toappreciatetheirhabitsandcharacters.

Weshallnotbeabletogoverydeeplyintothesubject.Timeisshort,and fewofyouwillhavethemathematicalapparatusforthefrontalassault.So weshallapproachthesubjectincarefullyplannedsteps.First,weshalltry todeduceasmuchinformationaspossibleonthebasisoftheclassicalpicture.Then,weshalltalkaboutanumberofphenomenathatareclearlyin

contrastwithclassicalideasandintroducequantummechanics,startingwith Schrödinger’sequation.Youwillbecomeacquaintedwiththepropertiesofindividualatomsandwhathappenswhentheyconglomerateandtaketheformof asolid.Youwillhearaboutconductors,insulators,semiconductors,p–njunctions,transistors,lasers,superconductors,andanumberofrelatedsolid-state devices.Sometimesthestatementwillbepurelyqualitativebutinmostcases weshalltrytogivetheessentialquantitativerelationships.

Theselectureswillnotmakeyouanexpertinquantummechanicsnorwill theyenableyoutodesignacomputerthesizeofamatchbox.Theywillgive younomorethanageneralidea.

Ifyouelecttospecializeinsolid-statedevicesyouwill,nodoubt,delve moredeeplyintotheintricaciesofthetheoryandintothedetailsofthetechnology.Ifyoushouldworkinarelatedsubjectthen,presumably,youwillkeep aliveyourinterest,andyoumayoccasionallyfinditusefultobeabletothink inquantum-mechanicalterms.Ifyourbranchofengineeringhasnothingtodo withquantummechanics,wouldyoubeabletoclaimintenyears’timethatyou profitedfromthiscourse?Ihopetheanswertothisquestionis yes.Ibelievethat onceyouhavebeenexposed(howeversuperficially)toquantum-mechanical reasoning,itwillleavepermanentmarksonyou.Itwillinfluenceyourideas onthenatureofphysicallaws,ontheultimateaccuracyofmeasurements,and, ingeneral,willsharpenyourcriticalfaculties.

Theelectronasaparticle 1

AndIlaughtoseethemwhirlandflee, Likeaswarmofgoldenbees. Shelley

1.1Introduction

Inthepopularmindtheelectronlivesassomethingverysmallthathassomethingtodowithelectricity.Studyingelectromagnetismdoesnotchangethe pictureappreciably.Youlearnthattheelectroncanberegardedasanegative pointchargeanditdulyobeysthelawsofmechanicsandelectromagnetism.It isaparticlethatcanbeacceleratedordeceleratedbutcannotbetakentobits. Isthispicturelikelytobenefitanengineer?Yes,ifithelpshimtoproducea device.Isita correct picture?Well,anengineerisnotconcernedwiththetruth, thatislefttophilosophersandtheologians;theprimeconcernofanengineer istheutilityofthefinalproduct.Ifthisphysicalpicturemakespossiblethe birthofthevacuumtube,wemustdeemituseful;butifitfailstoaccountfor thepropertiesofthetransistorthenwemustregarditsappealaslessalluring. Thereisnodoubt,however,thatwecangoquitefarbyregardingtheelectron asaparticleeveninasolid—thesubjectofourstudy.

Whatdoesasolidlooklike?Itconsistsofatoms.Thisideaoriginatedafew thousandyearsagoinGreece,∗ ∗ From‘

’=indivisible. andhashadsomeupsanddownsinhistory, buttodayitstruthisuniversallyaccepted.Nowifmatterconsistsofatoms,they mustbesomehowpileduponeachother.Thesciencethatisconcernedwiththe spatialarrangementofatomsiscalledcrystallography.Itisasciencegreatly reveredbycrystallographers;engineersarerespectful,butlackenthusiasm. Thisisbecausetheneedtovisualizestructuresinthreedimensionsaddsto thehardenoughtaskofthinkingaboutwhattheelectronwilldonext.Forthis chapter,letusassumethatallmaterialscrystallizeinthesimplecubicstructure ofFig.1.1,withthelatticeionsfixed(itisasolid)andsomeelectronsarefree towanderbetweenthem.ThiswillshortlyenableustoexplainOhm’slaw,the Halleffect,andseveralotherimportantphenomena.Butifyouaresceptical aboutoversimplification,lookforwardtoFig.5.3toseehowtheelemental semiconductorscrystallizeinthediamondstructure,orgetagreatershock withFig.5.4whichshowsaformofcarbonthatwasdiscoveredinmeteorites buthasonlyrecentlybeenfabricatedinlaboratories.

Letusspecifyourmodelalittlemoreclosely.Ifwepostulatetheexistence ofacertainnumberofelectronscapableofconductingelectricity,wemust alsosaythatacorrespondingamountofpositivechargeexistsinthesolid.It mustlookelectricallyneutraltotheoutsideworld.Second,inanalogywith ourpictureofgases,wemayassumethattheelectronsbouncearoundinthe

Fig.1.1

Atomscrystallizinginacubical lattice.

∗ Weshallseelaterthatthisisnotsofor metalsbutitisnearlytrueforconduction electronsinsemiconductors.

interatomicspaces,collidingoccasionallywithlatticeatoms.Wemayevengo furtherwiththisanalogyandclaimthatinequilibriumtheelectronsfollowthe samestatisticaldistributionasgasmolecules(thatis,theMaxwell–Boltzmann distribution)whichdependsstronglyonthetemperatureofthesystem.The averagekineticenergyofeachdegreeoffreedomisthen 1 2 kB T where T is absolutetemperatureand kB isBoltzmann’sconstant.Sowemaysaythatthe meanthermalvelocityofelectronsisgivenbytheformula∗

because vth isthethermalvelocity,and m is themassoftheelectron.

particlesmovinginthreedimensionshavethreedegreesoffreedom. Weshallnowcalculatesomeobservablequantitiesonthebasisofthis simplestmodelandseehowtheresultscomparewithexperiment.Thesuccess ofthissimplemodelissomewhatsurprising,butweshallseeasweproceed thatviewingasolid,oratleastametal,asafixedlatticeofpositiveionsheld togetherbyajelly-likemassofelectronsapproximateswelltothemodernview oftheelectronicstructureofsolids.Somebooksdiscussmechanicalproperties intermsofdislocationsthatcanmoveandspread;thesolidisthenpicturedasa fixeddistributionofnegativechargeinwhichthelatticeionscanmove.These viewsarealmostidentical;onlytheexternalstimuliaredifferent.

1.2Theeffectofanelectricfield—conductivityandOhm’slaw

Supposeapotentialdifference U isappliedbetweenthetwoendsofasolid length L.Thenanelectricfield

ispresentateverypointinthesolid,causinganacceleration

† See,forexample,W.Shockley, Electronsandholesinsemiconductors,D. vanNostrand,NewYork,1950,pp. 191–5.

Thus,theelectrons,inadditiontotheirrandomvelocities,willacquireavelocityinthedirectionoftheelectricfield.Wemayassumethatthisdirected velocityiscompletelylostaftereachcollision,becauseanelectronismuch lighterthanalatticeatom.Thus,onlythepartofthisvelocitythatispickedup inbetweencollisionscounts.Ifwewrite τ fortheaveragetimebetweentwo collisions,thefinalvelocityoftheelectronwillbe aτ andtheaveragevelocity

Thisissimpleenoughbutnotquitecorrect.Weshouldnotusethe average timebetweencollisionstocalculatetheaveragevelocitybuttheactualtimes andthentaketheaverage.Thecorrectderivationisfairlylengthy,butallit givesisafactorof2.†

Numericalfactorslike2or3or π aregenerallynot worthworryingaboutinsimplemodels,butjusttoagreewiththeformulae generallyquotedintheliterature,weshallincorporatethatfactor2,anduse vaverage = aτ .(1.5)

Theeffectofanelectricfield—conductivityandOhm’slaw3

Theaveragetimebetweencollisions, τ ,hasmanyothernames;forexample, meanfreetime,relaxationtime,andcollisiontime.Similarly,theaverage velocityisoftenreferredtoasthemeanvelocityordriftvelocity.Weshall callthem‘collisiontime’and‘driftvelocity’,denotingthelatterby vD Therelationshipbetweendriftvelocityandelectricfieldmaybeobtained fromeqns(1.3)and(1.5),yielding

wheretheproportionalityconstantinparenthesesiscalledthe‘mobility’(μe ). Thisistheonlynameithas,anditisquitealogicalone.

Assumingnowthatallelectronsdriftwiththeirdriftvelocity,thetotalnumberofelectronscrossingaplaneofunitareapersecondmaybeobtained bymultiplyingthedriftvelocitybythedensityofelectrons, Ne .Multiplying furtherbythechargeontheelectronweobtaintheelectriccurrentdensity

Thehigherthemobility,themore mobiletheelectrons.

Wecanderivesimilarlytherelationshipbetweencurrentdensityandelectric fieldfromeqns(1.6)and(1.7)intheform

Noticethatitisonlythedriftvelocity,createdbytheelectricfield,that comesintotheexpression.Therandomvelocitiesdonotcontributetothe electriccurrentbecausetheyaverageouttozero.∗ ∗ Theygiverise,however,to electrical noise inaconductor.Itsvalueisusuallymuchsmallerthanthesignalswe areconcernedwithsoweshallnotworry aboutit,althoughsomeofthemostinterestingengineeringproblemsarisejust whensignalandnoisearecomparable. seeSection1.8onnoise.

ThisisalinearrelationshipwhichyoumayrecognizeasOhm’slaw

where σ istheelectricalconductivity.Whenfirstlearningaboutelectricityyou lookedupon σ asabulkconstant;nowyoucanseewhatitcomprisesof.We canwriteitintheform Inmetals,incidentally,themobilitiesarequitelow,abouttwoordersofmagnitudebelowthoseof semiconductors;sotheirhighconductivityisduetothehighdensity ofelectrons.

Thatis,wemayregardconductivityastheproductoftwofactors,chargedensity(Ne e)andmobility.Thus,wemayhavehighconductivitiesbecausethere arelotsofelectronsaroundorbecausetheycanacquirehighdriftvelocities, byhavinghighmobilities.

Ohm’slawfurtherimpliesthat σ isaconstant,whichmeansthat τ must beindependentofelectricfield.† † Itseemsreasonableatthisstagetoassumethatthechargeandmassofthe electronandthenumberofelectrons presentwillbeindependentoftheelectricfield.

Fromourmodelsofaritismorereasonable toassumethat l ,thedistancebetweencollisions(usuallycalledthemeanfree path)intheregularlyspacedlattice,ratherthan τ ,isindependentofelectric field.But l mustberelatedto τ bytherelationship,

Inatypicalmetal μe =5 × 10–3 m2 V–1 s–1 ,whichgivesa driftvelocity vD of5 × 10–3 ms–1 foranelectricfieldof1Vm–1 .

∗ Thisislesstrueforsemiconductorsas theyviolateOhm’slawathighelectric fields.

Since vD varieswithelectricfield, τ mustalsovarywiththefieldunless vth vD .(1.12)

AsOhm’slawisaccuratelytrueformostmetals,thisinequalityshouldhold.

Thethermalvelocityatroomtemperatureaccordingtoeqn(1.1)(which actuallygivestoolowavalueformetals)is

th = 3kB T m 1/2 ~ = 105 ms–1 .(1.13)

Thus,therewillbeaconstantrelationshipbetweencurrentandelectricfield accuratetoabout1partin108 . ∗

Thisimportantconsiderationcanbeemphasizedinanotherway.Letusdraw thegraph(Fig.1.2)ofthedistributionofparticlesinvelocityspace,thatiswith rectilinearaxesrepresentingvelocitiesinthreedimensions, vx , vy , vz .Withno electricfieldpresent,thedistributionissphericallysymmetricabouttheorigin. Thesurfaceofasphereofradius vth representsallelectronsmovinginall possibledirectionswiththatr.m.s.speed.Whenafieldisappliedalongthe x-axis(say),thedistributionisminutelyperturbed(theelectronsacquiresome additionalvelocityinthedirectionofthe x-axis)sothatitscentreshiftsfrom (0,0,0)toabout(vth /108 ,0,0).

Takingcopper,afieldof1Vm–1 causesacurrentdensityof108 Am–2 .Itis quiteremarkablethatacurrentdensityofthismagnitudecanbeachievedwith analmostnegligibleperturbationoftheelectronvelocitydistribution.

1.3Thehydrodynamicmodelofelectronflow

Fig.1.2

Distributionsofelectronsinvelocity space.

ζ mayberegardedhereasameasureoftheviscosityofthemedium.

Byconsideringtheflowofachargedfluid,asophisticatedmodelmaybedeveloped.Weshalluseitonlyinitscrudestform,whichdoesnotgivemuchof aphysicalpicturebutleadsquicklytothedesiredresult.

Theequationofmotionforanelectronis

Ifwenowassumethattheelectronmovesinaviscousmedium,thenthe forcestryingtochangethemomentumwillberesisted.Wemayaccountfor thisbyaddinga‘momentum-destroying’term,proportionalto v.Takingthe proportionalityconstantas ζ eqn(1.14)modifiesto

Inthelimit,whenviscositydominates,thetermdv/dt becomesnegligible, resultingintheequation

whichgivesforthevelocityoftheelectron

Itmaybeclearlyseenthatbytaking ζ =1/τ eqn(1.17)agreeswith eqn(1.6);hencewemayregardthetwomodelsasequivalentand,inanygiven case,usewhicheverismoreconvenient.

1.4TheHalleffect

Letusnowinvestigatethecurrentflowinarectangularpieceofmaterial,as showninFig.1.3.Weapplyavoltagesothattheright-handsideispositive. Current,byconvention,flowsfromthepositivesidetothenegativeside,that isinthedirectionofthenegative z-axis.Butelectrons,remember,flowina directionoppositetoconventionalcurrent,thatisfromlefttoright.Having sortedthisoutletusnowapplyamagneticfieldinthepositive y-direction.The forceonanelectronduetothismagneticfieldis e(v × B).(1.18)

Togettheresultantvector,werotatevector v intovector B.Thisisaclockwiserotation,givingavectorinthenegative x-direction.Butthechargeofthe electron, e,isnegative;sotheforcewillpointinthepositive x-direction;the electronsaredeflectedupwards.Theycannotmovefartherthanthetopendof theslab,andtheywillaccumulatethere.

Butifthematerialwaselectrically neutralbefore,andsomeelectronshavemovedupwards,thensomepositive ionsatthebottomwillbedeprivedoftheircompensatingnegativecharge. Henceanelectricfieldwilldevelopbetweenthepositivebottomlayerandthe negativetoplayer.Thus,afterawhile,theupwardmotionoftheelectronswill bepreventedbythisinternalelectricfield.Thishappenswhen

Equilibriumisestablishedwhen theforceduetothetransverse electricfieldjustcancelstheforce duetothemagneticfield.

Expressedintermsofcurrentdensity, RH iscalledthe Hallcoefficient.

Inthisexperiment EH , J ,and B aremeasurable;thus RH ,andwithitthedensity ofelectrons,maybedetermined.

Fig.1.3

SchematicrepresentationofthemeasurementoftheHalleffect.

Thecorrespondingelectricfieldin asemiconductorisconsiderably higherbecauseofthehighermobilities.

Whatcanwesayaboutthedirectionof EH ?Well,wehavetakenmeticulouscaretofindthecorrectdirection.Oncethepolarityoftheappliedvoltage andthedirectionofthemagneticfieldarechosen,theelectricfieldiswelland trulydefined.Soifweputintoourmeasuringapparatusoneconductorafter theother,themeasuredtransversevoltageshouldalwayshavethesamepolarity.Yes...thelogicseemsunassailable.Unfortunately,theexperimental factsdonotconform.Forsomeconductorsandsemiconductorsthemeasured transversevoltageisinthe other direction.

Howcouldweaccountforthedifferentsign?Onepossiblewayofexplainingthephenomenonistosaythatincertainconductors(andsemiconductors) electricityiscarriedbypositivelychargedparticles.Wheredotheycomefrom? Weshalldiscussthisprobleminmoredetailsometimelater;forthemoment justacceptthatmobilepositiveparticlesmayexistinasolid.Theybearthe unpretentiousname‘holes’.

Toincorporateholesinourmodelisnotatalldifficult.Therearenowtwo speciesofchargecarriersbouncingaround,whichyoumayimagineasamixtureoftwogases.Takegoodcarethatthenetchargedensityiszero,andthe newmodelisready.Itisactuallyquiteagoodmodel.Wheneveryoucome acrossanewphenomenon,trythismodelfirst.Itmightwork.

ReturningtotheHalleffect,youmaynowappreciatethattheexperimental determinationof RH isofconsiderableimportance.Ifonlyonetypeofcarrier ispresent,themeasurementwillgiveusimmediatelythesignandthedensity ofthecarrier.Ifbothcarriersaresimultaneouslypresentitstillgivesuseful informationbutthephysicsisalittlemorecomplicated(seeExercises1.7 and1.8).

Inourpreviousexamplewetookatypicalmetalwhereconductiontakes placebyelectronsonly,andwegotadriftvelocityof5 × 10–3 ms–1 .Fora magneticfieldof1Tthetransverseelectricfieldis

1.5Electromagneticwavesinsolids

Sofarasthepropagationofelectromagneticwavesisconcerned,ourmodel worksverywellindeed.Allweneedtoassumeisthatourholesandelectrons obeytheequationsofmotion,andwhentheymove,theygiverisetofieldsin accordancewithMaxwell’stheoryofelectrodynamics.

Itisperfectlysimpletotakeholesintoaccount,buttheequations,with holesincluded,wouldbeconsiderablylonger,soweshallconfineourattention toelectrons.

Wecouldstartimmediatelywiththeequationofmotionforelectrons,but letusfirstreviewwhatyoualreadyknowaboutwavepropagationinamediumcharacterizedbytheconstantspermeability, μ,dielectricconstant, ,and conductivity, σ (itwillnotbeawasteoftime).

FirstofallweshallneedMaxwell’sequations:

Second,weshallexpressthecurrentdensityintermsoftheelectricfieldas

Itwouldnowbealittlemoreeleganttoperformallthecalculationsinvector form,butthenyouwouldneedtoknowafewvectoridentities,andtensors (quitesimpleones,actually)wouldalsoappear.Ifweusecoordinatesinstead, itwillmakethetreatmentalittlelengthier,butnottooclumsyifweconsider onlytheone-dimensionalcase,whenthereischangeonlyinthe z-direction

Assumingthattheelectricfieldhasonlyacomponentinthe x-direction(see thecoordinatesysteminFig.1.3),then

where ex , ey , ez aretheunitvectors.Itmaybeseenfromthisequationthat themagneticfieldcanhaveonlya y-component.Thus,eqn(1.23)takesthe simpleform

Weneedfurther

which,combinedwitheqn(1.24),bringseqn(1.22)tothescalarform

Thus,wehavetwofairlysimpledifferentialequationstosolve.Weshall attemptthesolutionintheform

Wehaveherecomefacetofacewitha disputethathasragedbetweenphysicists andengineersforages.Forsomeodd reasonthephysicists(aidedandabettedbymathematicians)usethesymbol ifor √–1andtheexponent–i(ω t – kz) todescribeawavetravellinginthe zdirection.Theengineers’notationisjfor √–1andj(ω t – kz)fortheexponent.In thiscoursewehave,ratherreluctantly, acceptedthephysicists’notationssoas nottoconfuseyoufurtherwhenreading booksonquantummechanics.

ω representsfrequency,and k is thewavenumber.

Then,

whichreducesourdifferentialequationstothealgebraicequations

and

Thisisahomogeneousequationsystem.Bytherulesofalgebra,thereisa solution,apartfromthetrivial Ex = By =0,onlyifthedeterminantofthe coefficientsvanishes,thatis

Expandingthedeterminantweget

Essentially, Differentpeoplecallthisequationbydifferentnames.Characteristic,determinantal,anddispersionequationareamongthe namesmorefrequentlyused.We shallcallitthe dispersionequation becausethatnamedescribesbest whatishappeningphysically.

cm c isthevelocityoftheelectromagneticwaveinthemedium.

theequationgivesarelationshipbetweenthefrequency, ω ,and thewavenumber, k ,whichisrelatedtophasevelocityby vP = ω/k .Thus, unless ω and k arelinearlyrelated,thevariousfrequenciespropagatewithdifferentvelocitiesandattheboundaryoftwomediaarerefractedatdifferent angles.Hencethenamedispersion.

Amediumforwhich σ =0and μ and areindependentoffrequencyis nondispersive.Therelationshipbetween k and ω issimply

Solvingeqn(1.36)formally,weget

∗ Thenegativesignisalsopermissible thoughitdoesnotgiverisetoanexponentiallyincreasingwaveaswouldfollow fromeqn(1.39).Itwouldbeveryniceto makeanamplifierbyputtingapieceof lossymaterialinthewayoftheelectromagneticwave.Unfortunately,itviolates theprincipleofconservationofenergy. Withoutsomesourceofenergyatitsdisposalnowavecangrow.Sothewave whichseemstobeexponentiallygrowingisineffectadecayingwavewhich travelsinthedirectionofthenegative z-axis.

Thus,whenever σ = 0,thewavenumberiscomplex.Whatismeantbyacomplexwavenumber?Wecanfindthisouteasilybylookingattheexponentof eqn(1.30).Thespatiallyvaryingpartis exp(ikz)=exp i(kreal +ikimag )z =exp(ikreal z)exp(–kimag z).(1.39)

Hence,iftheimaginarypartof k ispositive,theamplitudeoftheelectromagneticwavedeclinesexponentially.∗

Iftheconductivityislargeenough,thesecondtermisthedominantonein eqn(1.38)andwemaywrite

Soifwewishtoknowhowrapidlyanelectromagneticwavedecaysina goodconductor,wemayfindoutfromthisexpression.Since

theamplitudeoftheelectricfieldvariesas

Thedistance δ atwhichtheamplitudedecaysto1/eofitsvalueatthe surfaceiscalledthe skindepth andmaybeobtainedfromtheequation

Youhaveseenthisformulabefore.Youneeditoftentoworkouttheresistanceofwiresathighfrequencies.Ideriveditsolelytoemphasizethemajor stepsthatarecommontoallthesecalculations.

Wecannowgofurther,andinsteadoftakingtheconstant σ ,weshalllook alittlemorecriticallyatthemechanismofconduction.Weexpressthecurrent densityintermsofvelocitybytheequation

Thisisreallythesamethingaseqn(1.7).Thevelocityoftheelectronisrelated totheelectricandmagneticfieldsbytheequationofmotion

Weare

lookingforlinearizedsolutionsleadingtowaves.Inthatapproximationthequadraticterm v × B canclearlybeneglectedandthetotalderivative canbereplacedbythepartialderivativetoyield

Thesymbol v stillmeanstheaveragevelocityofelectrons,butnow itmaybeafunctionofspaceand time,whereasthenotation vD is generallyrestrictedtod.c.phenomena.

1/τ isintroducedagainasa‘viscous’or‘damping’term.

Assumingagainthattheelectricfieldisinthe x-direction,eqn(1.47)tells usthattheelectronvelocitymustbeinthesamedirection.Usingtherulesset

outineqn(1.32)wegetthefollowingalgebraicequation

Thecurrentdensityisthenalsointhe x-direction:

where σ isdefinedasbefore.Youmaynoticenowthattheonlydifference fromourprevious(J – E )relationshipisafactor(1–iωτ )inthedenominator. Accordingly,thewholederivationleadingtotheexpressionof k ineqn(1.38) remainsvalidif σ isreplacedby σ/(1–iωτ ).Weget

If ωτ 1,wearebackwherewestartedfrom,butwhathappenswhen ωτ 1?Couldthathappenatall?Yes,itcanhappenifthesignalfrequency ishighenoughorthecollisiontimeislongenough.Then,unityisnegligible incomparisonwithiωτ ineqn(1.50),leadingto

Introducingthenewnotation

weget Equation(1.53)suggestsageneralizationoftheconceptofthe dielectricconstant.Wemayintroduceaneffectiverelativedielectric constantbytherelationship

Itmaynowbeseenthat,dependingonfrequency, εeff maybepositiveornegative.

Hence,aslongas ω>ωp ,thewavenumberisreal.Ifitisreal,ithas(bythe rulesofthegame)noimaginarycomponent;sothewaveisnotattenuated.This isquiteunexpected.Byintroducingaslightmodificationintoourmodel,we maycometoradicallydifferentconclusions.Assumingpreviously J = σ E ,we workedoutthatifanyelectronsarepresentatall,thewaveisboundtodecay. Nowwearesayingthatforsufficientlylarge ωτ anelectromagneticwavemay travelacrossourconductorwithoutattenuation.Isthispossible?Itseemsto contradicttheempiricalfactthatradiowavescannotpenetratemetals.True;

butthatisbecauseradiowaveshavenotgothighenoughfrequencies;letus trylightwaves.Cantheypenetrateametal?No,theycannot.Itisanother empiricalfactthatmetalsarenottransparent.Soweshouldtryevenhigher frequencies.Howhigh?Well,thereisnoneedtogoonguessing,wecanwork outthethresholdfrequencyfromeqn(1.52).Takingtheelectrondensityina typicalmetalas6 × 1028 perm3 ,wethenget

where ε0 isthefree-spacepermittivity.

Atthisfrequencyrangeyouareprobablymorefamiliarwiththe wavelengthsofelectromagneticwaves.Convertingtheabovecalculatedfrequencyintowavelength,weget

where c isthevelocityoflight.

Thus,thethresholdwavelengthiswellbelowtheedgeofthevisibleregion(400nm).Itisgratifyingtonotethatourtheoryisinagreementwithour everydayexperience;metalsarenottransparent.

Thereisonemorethingweneedtocheck.Isthecondition ωτ 1satisfied?Foratypicalmetalatroomtemperature,thevalueof τ isusuallyabove 10–14 s,making ωτ oftheorderofhundredsatthethresholdfrequency. Bymakingtransmissionexperimentsthroughathinsheetofmetal,thecriticalwavelengthcanbedetermined.Themeasuredandcalculatedvaluesare comparedinTable1.1.Theagreementisnottoobad,consideringhowsimple ourmodelis.

BeforegoingfurtherIwouldliketosayalittleabouttherelationshipof transmission,reflection,andabsorptiontoeachother.Theconceptsaresimple andonecanalwaysinvoketheprincipleofconservationofenergyifintrouble.

Table1.1 Thresholdwavelengthsforalkali metals

Incident wave

Reflected

Fig.1.4

Incidentelectromagneticwavepartly reflectedandpartlytransmitted. Medium 1

Incident wave

Reflected wave Medium 2

Fig.1.5

Incidentelectromagneticwave reflectedbytheconductor.

Ifthereisasmalleramplitude transmitted,therewillbealarger amplitudereflected.

Letustakethecasewhen ωτ 1; k isgivenbyeqn(1.53),andourconductorfillshalfthespace,asshowninFig.1.4.Whathappenswhenan electromagneticwaveisincidentfromtheleft?

1. ω>ωp .Theelectromagneticwavepropagatesintheconductor. Thereisalsosomereflection,dependingontheamountofmismatch.Energy conservationsays

energyintheincidentwave=energyinthetransmittedwave +energyinthereflectedwave.

Isthereanyabsorption?No,because ωτ 1.

2. ω<ωp .Inthiscase k ispurelyimaginary;theelectromagneticwave decaysexponentially.Isthereanyabsorption?No.Cantheelectromagnetic wavedecaythen?Yes,itcan.Isthisnotincontradictionwithsomethingor other?Thecorrectanswermaybeobtainedbywritingouttheenergybalance. Sincethewavedecaysandtheconductorisinfinitelylong,noenergygoesout attheright-handside.Soeverythingmustgoback.Theelectromagneticwave isreflected,asshowninFig.1.5.Theenergybalanceisenergyintheincident wave=energyinthereflectedwave.

3.LetustakenowthecaseshowninFig.1.6whenourconductorisoffinitedimensioninthe z-direction.Whathappensif ω<ωp ?Thewavehasa chancetogetoutattheotherside,sothereisaflowofenergy,forwardsand backwards,intheconductor.Thewidertheslab,thesmalleristheamplitude ofthewavethatappearsattheothersidebecausetheamplitudedecaysexponentiallyintheconductor.Thereisdecay,butnoabsorption.Theamplitudes ofthereflectedandtransmittedwavesrearrangethemselvesinsuchawayas toconserveenergy.

Ifwechooseafrequencysuchthat ωτ 1,then,ofcourse,dissipative processesdooccurandsomeoftheenergyoftheelectromagneticwaveis

Fig.1.6

Incidentelectromagneticwave transmittedtomedium3.The amplitudeofthewavedecaysin medium2butwithoutanyenergy absorptiontakingplace.

convertedintoheat.Theenergybalanceinthemostgeneralcaseis

energyinthewave=energyinthetransmittedwave +energyinthereflectedwave +energyabsorbed.

Agoodexampleofthephenomenaenumeratedaboveisthereflectionof radiowavesfromtheionosphere.Theionosphereisalayerwhich,asthename suggests,containsions.Therearefreeelectronsandpositivelychargedatoms, soourmodelshouldwork.Inametal,atoms,andelectronsarecloselypacked; intheionosphere,thedensityismuchsmaller,sothatthecriticalfrequency ωp isalsosmaller.ItsvalueisafewhundredMHz.Thus,radiowavesbelow thisfrequencyarereflectedbytheionosphere(thisiswhyshortradiowaves canbeusedforlong-distancecommunication)andthoseabovethisfrequency aretransmittedintospace(andsocanbeusedforspaceorsatellitecommunication).Thewidthoftheionospherealsocomesintoconsideration,butat thewavelengthsused(itisthewidthinwavelengthsthatcounts)itcanwellbe regardedasinfinitelywide.

1.6Wavesinthepresenceofanappliedmagneticfield: cyclotronresonance

Inthepresenceofaconstantmagneticfield,thecharacteristicsofelectromagneticwaveswillbemodified,butthesolutioncanbeobtainedbyexactlythe sametechniqueasbefore.Theelectromagneticeqns(1.22)and(1.23)arestill validforthea.c.quantities;theequationofmotionshould,however,contain theconstantmagneticfield,whichweshalltakeinthepositive z-direction.The appliedmagneticfield, B0 ,maybelarge,hence v × B0 isnotnegligible;itisa first-orderquantity.Thus,thelinearizedequationofmotionforthiscaseis

Inordertosatisfythisvectorequation,weneedboththe vx and vy components.Thatmeansthatthe currentdensity,andthroughthat theelectricandmagneticfields, willalsohaveboth x and y components. m ∂ v ∂ t + v τ = e(E E E + v × B0 ).(1.56)

Writingdownalltheequationsisalittlelengthy,butthesolutionisnot moredifficultinprinciple.Itmayagainbeattemptedintheexponentialform, and ∂/∂ z and ∂/∂ t mayagainbereplacedbyik and–iω ,respectively.Allthe

differentialequationsarethenconvertedintoalgebraicequations,andbymakingthedeterminantofthecoefficientszerowegetthedispersionequation.I shallnotgothroughthedetailedderivationherebecauseitwouldtakeupa greatdealoftime,andtheresultingdispersionequationishardlymorecomplicatedthaneqn(1.50).Allthathappensisthat ω inthe ωτ termisreplaced by ω ± ωc .Thus,thedispersionequationfortransverseelectromagneticwaves inthepresenceofalongitudinald.c.magneticfieldis

Theplusandminussignsgivecircularlypolarizedelectromagneticwaves rotatinginoppositedirections.Toseemoreclearlywhathappens,letussplit theexpressionunderthesquarerootintoitsrealandimaginaryparts.Weget

Thislooksabitcomplicated.Inordertogetasimpleanalyticalexpression,let usconfineourattentiontosemiconductorswhere ωp isnottoolargeandthe appliedmagneticfieldmaybelargeenoughtosatisfytheconditions,

Weintendtoinvestigatenowwhathappenswhen ωc iscloseto ω .The secondandthirdtermsineqn(1.59)arethensmallincomparisonwithunity; sothesquarerootmaybeexpandedtogive

Theattenuationoftheelectromagneticwaveisgivenbytheimaginarypart of k .Itmaybeseenthatithasamaximumwhen ωc = ω .Since ωc iscalled thecyclotron∗ ∗ Afteranacceleratingdevice,the cyclotron,whichworksbyaccelerating particlesinincreasingradiiinafixed magneticfield.

Theroleof ωc τ isreallyanalogous tothatof Q inaresonantcircuit. Forgoodresonanceweneedahigh valueof ωc τ .

frequencythisresonantabsorptionofelectromagneticwaves isknownas cyclotronresonance.Thesharpnessoftheresonancedepends stronglyonthevalueof ωc τ ,asshowninFig.1.7,whereIm k ,normalized toitsvalueat ω/ωc =1,isplottedagainst ω/ωc .Itmaybeseenthatthe resonanceishardlynoticeableat ωc τ =1.

Thecurveshavebeenplottedusingtheapproximateeqn(1.61);neverthelesstheconclusionsareroughlyvalidforanyvalueof ωp .Ifyouwantmore accurateresonancecurves,useeqn(1.59).

Whyistheresuchathingascyclotronresonance?Thecalculationfromthe dispersionequationprovidesthefigures,butifwewantthereasons,weshould lookatthefollowingphysicalpicture.

Fig.1.7

Cyclotronresonancecurvescomputed fromeqn(1.61).Thereismaximum absorptionwhenthefrequencyofthe electromagneticwaveagreeswiththe cyclotronfrequency.

Supposethatatacertainpointinspacethea.c.electricfieldisatright anglestotheconstantmagneticfield, B0 .Theelectronthathappenstobeat thatpointwillexperienceaforceatrightanglesto B0 andwillmovealongthe arcofacircle.Wecanwriteaforceequation.Whenthedirectionofmotionis alongthedirectionof E themagneticandcentrifugalforcesarebothatright anglestoit,thus r istheinstantaneousradiusof curvatureoftheelectron’spath.

Consequently,theelectronwillmovewithanangularvelocity

Theorbitswill not becircles,forsuperimposedonthismotionisanaccelerationvaryingwithtimeinthedirectionoftheelectricfield.Nowifthefrequency oftheelectricfield, ω ,andthecyclotronfrequency, ωc ,areequal,theamplitude oftheoscillationbuildsup.Anelectronthatisacceleratednorthinonehalfcyclewillbereadytogosouthwhentheelectricfieldreverses,andthusits speedwillincreaseagain.

Underresonanceconditions,theelectronwilltake upenergyfromtheelectricfield;andthatiswhatcausestheattenuationofthe wave.Whyisthe ωc τ> 1conditionnecessary?Well, τ isthecollisiontime; τ =1/ωc meansthattheelectroncollideswithalatticeatomaftergoinground oneradian.Clearly,iftheelectronisexposedtotheelectricfieldforaconsiderablyshortertimethanacycle,notmuchabsorptioncantakeplace.Thelimit mightbe ωc τ =1.

Nowwemayagainaskthequestion:whatiscyclotronresonancegoodfor? Therehavebeensuggestionsformakingamplifiersandoscillatorswiththe

Noticethatanyincreasein speed mustcomefromtheelectricfield; theaccelerationproducedbya magneticfieldchangesdirection, notspeed,sincetheforceisalways atrightanglestothedirectionof motion.ThisisthebasisofFouriertransformioncyclotronmass spectrometry(FT–ICR–MS).

Turn static files into dynamic content formats.

Create a flipbook