Download Full Soft matter: concepts, phenomena, and applications wim van saarloos PDF All Chapters

Page 1


https://ebookmass.com/product/soft-matter-conceptsphenomena-and-applications-wim-van-saarloos/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Field Theoretic Simulations in Soft Matter and Quantum Fluids Glenn H. Fredrickson

https://ebookmass.com/product/field-theoretic-simulations-in-softmatter-and-quantum-fluids-glenn-h-fredrickson/

ebookmass.com

Enterprise GIS: Concepts and Applications John Woodard

https://ebookmass.com/product/enterprise-gis-concepts-andapplications-john-woodard/

ebookmass.com

Quantum Mechanics 3rd Edition Nouredine Zettili

https://ebookmass.com/product/quantum-mechanics-3rd-edition-nouredinezettili/

ebookmass.com

Johann Friedrich Herbart: Grandfather of Analytic Philosophy Frederick C. Beiser

https://ebookmass.com/product/johann-friedrich-herbart-grandfather-ofanalytic-philosophy-frederick-c-beiser/

ebookmass.com

A Winter Gift (Madra Village Book 1) Kitt Lynn

https://ebookmass.com/product/a-winter-gift-madra-village-book-1-kittlynn/

ebookmass.com

Colton Brothers 05 Black Range Revenge Melody Groves

https://ebookmass.com/product/colton-brothers-05-black-range-revengemelody-groves/

ebookmass.com

Statistics ALL-IN-ONE By

https://ebookmass.com/product/statistics-all-in-one-by-deborah-jrumsey/

ebookmass.com

Reaper's Reward (The Arcana Pack Chronicles Book 9) Emilia Hartley

https://ebookmass.com/product/reapers-reward-the-arcana-packchronicles-book-9-emilia-hartley/

ebookmass.com

The Boyfriend Comeback: A Rivals to Lovers Standalone Sports Romance (The Boyfriend Zone Book 1) Lauren Blakely

https://ebookmass.com/product/the-boyfriend-comeback-a-rivals-tolovers-standalone-sports-romance-the-boyfriend-zone-book-1-laurenblakely/

ebookmass.com

An Introduction to Medicinal Chemistry 7th Edition Graham

https://ebookmass.com/product/an-introduction-to-medicinalchemistry-7th-edition-graham-l-patrick/

ebookmass.com

Concepts, Phenomena, and Applications

Copyright©2024byPrincetonUniversityPress

PrincetonUniversityPressiscommittedtotheprotectionofcopyrightandtheintellectualpropertyourauthorsentrusttous.Copyrightpromotestheprogressandintegrityofknowledge.Thankyouforsupporting freespeechandtheglobalexchangeofideasbypurchasinganauthorizededitionofthisbook.Ifyouwish toreproduceordistributeanypartofitinanyform,pleaseobtainpermission.

Requestsforpermissiontoreproducematerialfromthiswork shouldbesenttopermissions@press.princeton.edu

PublishedbyPrincetonUniversityPress 41WilliamStreet,Princeton,NewJersey08540 99BanburyRoad,OxfordOX26JX press.princeton.edu

AllRightsReserved

Names:vanSaarloos,Wim,author.|Vitelli,Vincenzo,author.|Zeravcic,Zorana,author.

Title:Softmatter:concepts,phenomena,andapplications/WimvanSaarloos,VincenzoVitelli, ZoranaZeravcic.

Description:Princeton:PrincetonUniversityPress,[2024]|Includesbibliographicalreferencesandindex. Identifiers:LCCN2023030322(print)|LCCN2023030323(ebook)|ISBN9780691191300(acid-freepaper) |ISBN9780691251691(ebook)

Subjects:LCSH:Softcondensedmatter—Textbooks.|BISAC:SCIENCE/Physics/General|SCIENCE/ LifeSciences/Biophysics

Classification:LCCQC173.458.S62.V362023(print)|LCCQC173.458.S62(ebook) |DDC530.4/1—dc23/eng/20231002

LCrecordavailableathttps://lccn.loc.gov/2023030322

LCebookrecordavailableathttps://lccn.loc.gov/2023030323

BritishLibraryCataloging-in-PublicationDataisavailable

Editorial:IngridGnerlichandWhitneyRauenhorst

ProductionEditorial:NatalieBaan

TextandJacketDesign:WandaEspaña

Production:JacquiePoirier

Publicity:WilliamPagdatoon

Copyeditor:BhishamBherwani

Jacketimage:HenrikSorensen/GettyImages

ThisbookhasbeencomposedinPalatino,PazoMath,LatinModern,andnewpxmath

ThisbookhasbeencomposedinLATEX˙

Thepublisherwouldliketoacknowledgetheauthorsofthisvolumeforactingasthecompositorfor thisbook.

PrintedinChina 10987654321

1.1Therelevanceandattractivenessofacontinuumdescriptionoffluids..............

1.2Hydrodynamicsasabalanceequationoffluidelements.....................

1.3.1Thematerialorconvectivederivative............................

1.3.2Separatingoutthevariouscomponentsofflow......................

1.4Oncemore:Reflectionsontheunderlyingpicture.........................

1.5Thedissipativeterms:Onsagerreciprocityrelations........................

1.6ThestresstensorandheatcurrentforaNewtonianfluid.....................

1.6.1Stresstensorandheatcurrent................................

1.6.2Theresultinghydrodynamicequations...........................

1.7.1Theequationforsoundpropagation............................

1.7.2Analysisoftheequationwithdamping...........................

1.8Whencanwetreataflowasincompressible?............................

1.9TheNavier-Stokesequations.....................................

1.10Thedimensionsofphysicalquantities,dimensionlessnumbers,andsimilarity.........

1.11FromsmalltolargeReynoldsnumbers...............................

1.11.1LowReynoldsnumberhydrodynamics...........................

1.11.2IntermediateReynoldsnumbers...............................

1.11.3VerylargeReynoldsnumbers................................

2.8.3Thegeneralforceandtorquebalanceequationsforstaticrods..............

2.8.4Equationsinthesmalldeflectionapproximation......................

2.10.5Thecrossoverlengthscale..................................

2.10.6Jammedpackingsversusdisorderedcrystals........................

2.10.7Towarddesignergranularmatter..............................

3.2LangevinequationforBrownianmotion..............................

3.2.1BasisoftheLangevinequation................................

3.2.2TheLangevinequation....................................

3.2.3Meansquarevariationsofvelocityandposition:Diffusion................

3.2.4TheStokes-Einsteinequationforthediffusioncoefficient.................

3.2.5Cuttingcornersandwhatwelearnfromit.........................

3.3TheFokker-Planckequationfortheprobabilitydistribution...................

3.3.1TheFokker-Planckequation:EquivalencetoaLangevinequation............

3.3.2TheFokker-PlanckequationforthevelocityoftheBrownianparticle..........

3.3.3TheFokker-PlanckequationforthepositionofaBrownianparticlein anexternalpotential.....................................

3.3.4ThediffusionequationanditsGaussiansolution.....................

3.3.5Self-similarityandself-similarsolutions..........................

3.3.6TheKramersproblem:Fluctuation-drivenescapeoverabarrier.............

3.4Themasterequation..........................................

3.5SizemattersfordiffusionanddispersionofBrownianparticles.................

3.5.1Diffusion............................................

3.5.2Dispersionsversusgranularmedia.............................

3.6Probingfluctuationsandtakingadvantageofthemasaprobe..................

3.6.1Measuringforceconstantsofbiomatterexperimentally..................

3.6.2DirectedBrownianmotionofmolecularmotors......................

3.6.3Bendingmodulusorsurfacetensionfromshapefluctuationmeasurements......

3.6.4Thermalfluctuationsinabucklingcolloidalchain.....................

3.7Probingsoftmatterwithscatteringtechniques...........................

3.7.1Essentialsofscatteringexperiments.............................

3.7.2Probingsmallfluctuationsincontinuumsystemswithlaserlightscattering......

3.8Whathavewelearned.........................................

3.9Box3:Calculatingthermalaverages

4.1.1Colloids:Fundamentalstudies................................

4.3.1TheVanderWaalsattraction.................................

4.3.2Depletioninteraction.....................................

4.3.3Inducedattractiveinteractionduetoperturbationsofthesurroundingmedium....

4.4.2Stericstabilizationbygraftingpolymersonthesurface..................

4.5Playingwithcolloidsasmodelsystems...............................

4.5.1Colloidalaggregates.....................................

4.5.2Fromspheres,rods,andplatestocubesandbeyond...................

4.5.3Theuseofcolloidalcrystalstomakeopticalbandgapmaterials.............

4.5.4Colloidalglasses........................................

4.5.5Colloidalmotifsasthebuildingblocksofdesignermatter................

4.5.6Colloidsasactivematter...................................

4.6Non-Newtonianrheologyofcolloidaldispersions.........................

4.6.1Shearthinningandshearthickening............................

4.6.2Atemporaltransitionduetocompetitionbetweenagingandrejuvenation.......

4.7Whathavewelearned.........................................

4.8Problems ................................................

5Polymers

5.1Theever-broadeningfieldofpolymerscience............................

5.2Polymers:Longchainmoleculeswithmanyaccessibleconformations..............

5.3Idealchains,excludedvolumeeffects,andtheFloryargument..................

5.3.2Excludedvolumeinteractionandself-avoidingwalks...................

5.3.3TheFloryargumentfortheexcludedvolumeinteraction.................

5.4.1Thewormlikechainmodelanditspersistencelength...................

5.4.2Chargeeffectsonthepersistencelength...........................

5.4.3Whyexcludedvolumeeffectsaresmall...........................

5.4.4Theforce-extensioncurveoftheWLC............................

5.5.1Thediluteregime.......................................

5.5.2Fromsemi-dilutetoconcentratedsolutions.........................

5.5.3Concentratedsolutions....................................

5.7Flory-Hugginsmean-fieldtheory..................................

5.7.1Flory-Hugginsapproach...................................

5.7.2Flory-Hugginsasamean-fieldtheory............................

5.8.1Biopolymernetworks.....................................

5.8.2Theslackorthermal-fluctuation-inducedcontraction...................

5.8.3Thestress-strainresponseofanetwork...........................

5.8.4Beyondthesimpleapproximation..............................

5.9Reptationandtheviscosityofpolymermelts............................

5.9.1Thepolymerviscosityplaysonlyalimitedroleinseveralrelevantfloweffects.....

5.9.2Reptation............................................

5.10Non-Newtonianrheologyofpolymersolutionsandmelts....................

5.10.1Importanceofpolymerstretchingeffects..........................

5.10.2ThedimensionlessWeissenbergnumber..........................

5.10.3TheOldroyd-BandupperconvectedMaxwellmodelforpolymerrheology......

5.10.4Polymerflowinstabilitiesduetohoopstresses.......................

5.11Whathavewelearned.........................................

5.12Problems

6.1Liquidcrystalsasmesophases....................................

6.1.1Abewilderingvarietyofliquidcrystalphases.......................

6.1.2Molecularliquidcrystalsversuscolloidalliquidcrystalphases.............

6.1.3Thepowerofcoarse-graininginthespiritofLandau...................

6.1.4Thedirectorfield ˆ n ......................................

6.2Landau–deGennesapproachtotheisotropic-nematictransition.................

6.3Frankenergyexpressionforthenematicdirectorfield.......................

6.3.1TheFrankfreeenergy.....................................

6.3.2Splay,twist,andbenddistortions..............................

6.3.3Boundaryconditions.....................................

6.4Analysisofequilibriumsolutions..................................

6.5Switchingthedirectorwithafield:TheFréedericksztransitionandLCDs...........

6.5.1TheFréedericksztransition..................................

6.5.2Liquidcrystaldisplays....................................

6.6Topologicaldefectsinthedirectororientation...........................

6.6.1Defectsinthedirectorfield..................................

6.6.2Visualizationofdefectsinthinsamplesbetweencrossedpolarizers...........

6.6.3Interactionofdefectsintwodimensions..........................

6.7Nematohydrodynamicsbasedonnon-equilibriumthermodynamics..............

6.8Playingwiththemolecularshape..................................

6.9Opportunitiesandchallengesatinterfaceswithotherfields...................

6.9.1Biologicalliquidcrystals...................................

6.9.2Liquidcrystalsindropletsandotherconfinedgeometries................

6.9.3Colloidalliquidcrystalsandbeyond............................

6.9.4Mesophasesoflipidmoleculesrelevanttopharmaceutics,cosmetics, andfood............................................

6.9.5Epithelialcellsdieanddisappearnear +

/

6.10Renormalizationgroupanalysisofthedefectunbindingtransition...............

6.10.1StatisticalmechanicsofagasofCoulombcharges.....................

6.10.2TheideabehindtheRGcalculation:Screening.......................

6.10.3SettinguptheRGcalculation.................................

6.10.4Howtoderivetherenormalizationgroupflowrelations.................

6.10.5Criticalscaling.........................................

7.2Helfrichfreeenergyformembranes.................................

7.3Virusshapesandbucklingtransitionsinsphericalshells.....................

7.4Crumplingofmembranesandsheets................................

7.4.1Acrumplingtransitioninthermalsystems?........................

7.4.2Athermalcrumplingbycompression............................

7.5Asoftmatterrealizationoftheone-dimensionalKPZequation.................

7.6Whathavewelearned.........................................

8PatternFormationoutofEquilibrium

8.1Spontaneouspatternformationresultingfrominstabilities....................

8.2Gearingupforstudyingpatternsinspatiallyextendedsystems.................

8.2.1Thepitchforkbifurcationofdynamicalsystems......................

8.2.2TheSwift-Hohenbergmodelequation...........................

8.2.3Supercriticalversussubcriticaltransitions.........................

8.3Inspiration:Rayleigh-BénardconvectionandTuringpatterns...................

8.3.1TheRayleigh-Bénardinstability...............................

8.3.2Turinginstabilities.......................................

8.4Threetypesoflinearinstabilities...................................

8.5AmplitudeequationsforstationarytypeIinstabilities.......................

8.5.1Inspirationfromasimpleperturbativecalculationfor theSwift-Hohenbergequation................................

8.5.2Amplitudeequationinonedimensionfor

8.5.3Two-dimensionalpatterns..................................

8.6DynamicsjustaboveatypeIIinstability..............................

8.7AmplitudeequationsforoscillatorytypeIinstabilities......................

8.7.1Amplitudeequationsforone-dimensionaltravelingwaves................

8.7.2Dominantstructures:Sourcesandsinks..........................

8.8AmplitudeequationsfortypeIIIinstabilities............................

8.9.1Box4:Summaryofinsightsfromamplitudeequationapproach

9.3.1ActiveBrownianparticles..................................

9.6.1Movingandself-propelledsolids..............................

9.6.2Oddelasticity.........................................

9.6.3Oddelastodynamics.....................................

9.7.1Hydrodynamicsofself-spinningparticles.........................

9.7.2Oddviscosity.........................................

9.8Nonreciprocalphasetransitions...................................

9.8.1Chiralphasesinnonreciprocalactivematter........................

9.8.2Nonreciprocalpatternformation:Acasestudy......................

9.8.3Exceptionalpointsandparity-breakingbifurcations....................

9.9.2Activemattereffectsduringmorphogenesis........................

9.9.3Tissuemechanicsandvertexmodels............................

I.11991NobelPrizecitationforP.-G.deGennes.............................

I.2Arangeofsoftmatterbehaviorobtainedbymodifyingacolloidalparticle............

I.3TheoriginaldrawingofPerrinshowingBrownianmotion.....................

I.4IllustrationofanexperimentinwhichonepullsonDNAwithanopticaltrap..........

I.5Afractalaggregategrowninapetridish...............................

I.6Illustrationofshearthinningandshearthickeningbehaviorofcolloidaldispersions......

I.7Cornstarch:Itsmicrostructureandillustrationofthepossibilityofwalkingonit.........

I.8Illustrationofthemicrostructureofpaintandmayonnaise.....................

I.9Moderntechniquesallowonetoprobethestrainresponseofacolloidalpacking........

I.10Therelaxationtimeofpolydispersecolloidsdivergesonapproachingtheglasstransition...

I.11Hardcorepolyhedracanformallkindsofinterestingphases....................

I.12Playingwiththeinteractionsallowsonetomakeself-assemblystronglydirected........

I.14Microtubulesandmolecularmotorsareactivematterwithliquidcrystal–likeordering.....

1.1Liquidandgasphasesofatoms....................................

1.2Illustrationofcoarse-grainingandthescalesofhydrodynamicphenomena............

1.3Euler’sarticlefrom1757.........................................

1.4TheLagrangianandEuleriandescriptionsofafluidelement....................

1.5Illustrationofvarioustypesofflow..................................

1.6Illustrationofthevariouscomponentsofthestresstensor.....................

1.7Swimmingbacteriaasanexampleofanactivefluid.........................

1.8Behavioroflongpolymersinsimpleshearflow...........................

1.9OnsagerrelationsillustratedwiththePeltierandSeebeckeffects..................

1.10Illustrationofvariouswaystoanalyzealinearmodewithdampinginspaceortime......

1.11Taylor-Couetteflowanditsrichphasediagram...........................

1.12OsborneReynoldsinthelabprobingthetransitiontoturbulenceinpipeflow..........

1.13FlowpastacylinderatdifferentReynoldsnumbers.........................

1.14IllustrationofflowreversalatsmallReynoldsnumbers.......................

1.15IllustrationofthevariousflowregimesforincreasingReynoldsnumbers.............

1.16CloudformationpatternresultingfromtheKelvin-Helmholtzinstability.............

1.17Simulationsofthevorticitygeneratedbyadragonflywing.....................

1.18Sketchofathinlayerinthediscussionofthelubricationapproximation.............

1.19Entrainmentofairunderaliquiddroplet...............................

1.20Contactangle,wetting,andMarangoniflow.............................

1.21Waterdropletsonaplant’sleaf.....................................

1.22Coffeestainsduetoenhancedevaporationofthedropletattherim................

1.23Bubbleoscillationsinsoftmatter....................................

1.24AbouncingdropletduetoMarangoniflow..............................

1.27BasicsetupfortheRayleigh-TaylorandKelvin-Helmholtzstabilitycalculations.........

1.28SimulationsofafluidinterfaceexhibitingtheRayleigh-Taylorinstability.............

1.29Lubricationapproximationforflowbetweentwospheresapproachingeachother........

Chapter2

2.1Illustrationofthenaturaltendencyofanauxetictobend......................

2.2Bucklingpatternsinabilayersysteminwhichthesubstratelayerisinitiallyprestressed....

2.3Illustrationofthespontaneouscurvatureofabilayer........................

2.4Adriedapplegetswrinkled......................................

2.5Illustrationofthechangeofpositionofmaterialelementsofasolidunderstress.........

2.6Fluctuationsofagraphenesheetcausequiteabitofenergy....................

2.7StretchingofabarintheanalysisofthePoissonratio........................

2.8Cork,amaterialwithaPoissonratioofaboutzero..........................

2.9EvolutionofthePoissonratioofvariousrubberypolymerswithtime...............

2.10Dynamicmodulusofanultrasoftelastopolymergel.........................

2.11TheMaxwellmodelandtheKelvin-Voigtmodelfortime-dependentresponse..........

2.15Examplesofwrinklingsheetsduetocouplingofstretchingandbending.............

2.19ThesimilarityofthebucklingtransitionwiththeLandautheoryofphasetransitions......

2.22Theelastictorqueassociatedwithabentsheetorrod........................

2.23Illustrationofmicrotubules,thecellular’rails’ofmicromotors...................

2.25Auxeticandprogrammablesoftmatterstructures..........................

2.26Responseofametamaterialwithtwotypesofholesfordifferentprestrains............

2.27Differencesinforcesbetweenmoleculesandsmallparticles....................

2.28Manysoftmattersystemsconsistofparticleswithstrongrepulsiveforces............

2.30Illustrationofjammingbyincreasingthedensityofpolydispersedisks..............

2.31Variationoftheratioofelasticconstantsuponapproachingtheisostaticpointatjamming...

2.32Theevolutionofthedensityofstatesuponapproachingthejammingpoint...........

2.33Lowest-frequencyeigenmodesatandfarabovethejammingpoint................

2.34Evolutionoftheratio µ/K ofelasticnetworksuponpruningvarioustypesofbonds......

2.35Optimizationoftheshapeofmotifsinagranularpacking.....................

2.36TheBurgersvectorandtwobounddefectsonatriangularlattice..................

2.37Colloidalexperimentshowingthetransitionfromsolidtohexaticandliquidphasein2D...

2.38Agyroscopelatticewithavibrationaledgemode..........................

2.39Topologicalzero-energyedgemodesinamechanicalstructure...................

2.40Triangularandhoneycomblattices...................................

2.41Dislocationsanddisclinations.....................................

Chapter3

3.1IllustrationofaBrownianparticle...................................

3.2Sketchofwhitenoise..........................................

3.3Meansquaredisplacement (∆X (t)2) ofcolloidalparticlesofvarioussize...........

3.4Evolutionoftheprobabilitydistributioninphasespace.......................

3.5TitleandabstractoftheoriginalpaperofKramers..........................

3.6Thepotential U (X ) inthecaseoftheKramersproblemofescapeoverabarrier.........

3.7Illustrationofthetransitionprobabilitiesinthemasterequation..................

3.8Densitymatchinginacolloidalsystem................................

3.9ExtractionoftheforceonDNAfromthefluctuationsofthebeadattachedtoit..........

3.10ExperimentallowingustopullandtwistaDNAstrandwithamagneticparticle........

3.11Illustrationofthehand-over-handandinchwormmotionofBrownianmotors..........

3.12Stepsandfluctuationsofmolecularmotors..............................

3.13Variousmembraneshapefluctuations.................................

3.14Bucklingofacolloidalchainundercompression...........................

3.15Illustrationofthesetupofascatteringexperiment..........................

3.16Light-scatteringspectrumofwater...................................

3.17Interchangingtheorderoftheintegrals................................

3.18Fermiacceleration............................................

Chapter4

4.1Thetobaccomosaicvirus........................................

4.2Collageofcolloidalparticlesofvariousshapesandsizes......................

4.3DipolefluctuationsleadingtotheVanderWaalsinteraction....................

4.4Thedepletioninteractionillustrated..................................

4.5Attractionbetweentwocolloidsatafluidinterface.........................

4.6Chargescreeningofcolloids......................................

4.7TheDLVOinteractionbetweencolloids................................

4.8Stericrepulsionresultingfromgraftingcolloidswithpolymers..................

4.9Diffusion-limitedaggregationclusters.................................

4.10Schematicbehaviorofthescatteringintensity S(q) ofDLAclusters................

4.11Measuredscatteringintensity S(q) fromfractalaggregates.....................

4.12Colloidalparticleswiththeshapeofaroundedcube........................

4.13Acolloidalcrystalandaphotonicbandgapmaterialmadefromacolloidalcrystal.......

4.14Colloidalglassesasamodelsystem..................................

4.15Viscosityofapolydispersecolloidaldispersionasafunctionofvolumefraction.........

4.16Functionalcolloidalmotifs.......................................

4.17ColloidalparticlescoatedwithDNApatchestogivedirectionalbonding.............

4.18Theworkhorseofactivecolloids:TheJanusparticle.........................

4.19Akaleidoscopeofwaysofmakingandmanipulatingactivecolloids................

4.20Colloidaldispersionsascomplexfluids:Non-Newtonianrheologicalbehavior..........

4.21Snapshotofclusterformationincolloidrheology..........................

4.22Bifurcationbehavioroftheviscosityofabentonitesolution....................

4.23Scalingplotofthestressversusshearratenearthejammingpoint.................

4.24Anexampleofthefrictioncoefficientofgranularmediaasafunctionoftheshearrate.....

4.25Typicalinteractionpotentialbetweencolloids............................

4.26Twosemi-infiniteslabsattractingviatheVanderWaalsinteraction................

4.27TwospheresandthecalculationoftheDerjaguinapproximation.................

4.28Interactionbetweenlockandkeycolloids...............................

4.29Regularfractals:TheKochcurveandSierpinkigasket........................

4.30Thepercolationtransition........................................

4.31Coarse-grainingaone-dimensionalmodel..............................

4.32Self-similarityinthepercolationtransition..............................

4.33Renormalizationgroupfor2Dpercolation..............................

Chapter5

5.1Polyethyleneandpolystyrene......................................

5.2Illustrationofvitrimers,andself-healingofarubberysupramolecularpolymer.........

5.3Transandgaucheconformationsofpolyethylene..........................

5.4Illustrationofdifferentconformationsofashortpieceofapolymer................

5.5AFMpictureofDNAonasurfacewithapersistencelengthofabout50nm...........

5.6Theidealchainmodel..........................................

5.7Illustrationofrandomwalksandself-avoidingwalks........................

5.8Interactionofamonomerwiththeaveragenumberofmonomersinaballaroundit......

5.9TheFloryfreeenergyasafunctionofthepolymerradius

5.11TheorganizationoftheDNAmoleculeonvariouslengthscales..................

5.14SketchofDNAatlargepullingforce..................................

5.15Force-extensioncurveofDNAfittedwiththewormlikechainexpression.............

5.16Measuringtheforce-extensioncurveofoverstretchedDNA.....................

5.17Neutron-scatteringintensity S(q) fordeuteratedpolystyrene....................

5.18Illustrationofthediluteregimeandthecrossovertothesemi-diluteregime...........

5.19Thecrossoverlength ξφ andtheblobpictureinthesemi-diluteregime..............

5.20Neutron-scatteringdatafrompolystyreneatvariousconcentrationsabove

5.21Scalingplotoftheosmoticpressureofpolymersolutions......................

5.22Sketchofapolymerbrush.......................................

5.23SketchoftheFlory-Hugginsfreeenergy................................

5.24PhasediagramofdiblockcopolymersasobtainedfromFlory-Hugginsmean-fieldtheory...

5.25Phasediagramofdiblockcopolymerswithfluctuationeffectsincluded..............

5.26Biopolymernetworksandtheirresponse...............................

5.27Theforce-extensioncurveofabiopolymerinanetwork.......................

5.28Illustrationofpolymerstretchinginanetworkunderaffinestrain.................

5.29Differentialelasticmodulusofactinfilamentnetworks........................

5.30Illustrationofanathermalnetworkundershear...........................

5.31Illustrationofthereptationprocessofpolymerrelaxation.....................

5.32Illustrationofreptation.........................................

5.33Theviscosityasafunctionofdegreeofpolymerizationforseveralpolymermelts........

5.34Surprisingdemonstrationsofthenon-Newtonianrheologyofpolymers.............

5.35Illustrationofhoopstressesduetocurvedstreamlines.......................

5.36TheOldroyd-BandupperconvectedMaxwellmodelrepresentdumbbells............

5.37Examplesofviscoelasticflowinstabilities..............................

5.38Stressasafunctionofshearrateinviscoelasticflowdrivenbyarotatingdisk..........

5.39IllustrationofthecoordinatesanddistancesintheOdijklengthcalculation............

5.40Schematicillustrationofaserpentilechannelusedtostudyviscoelasticflowinstabilities....

5.41CriticalWeissenbergnumberforviscoelasticflowinserpentinechannels.............

5.42Polymermelttransformingintoacrosslinkedmelt..........................

Chapter6

6.1Thenematic,smectic,andcholestericliquidcrystalphases.....................

6.2Phasediagramofhardcorespherocylinders.............................

6.3Discoticmoleculesandliquidcrystalphases.............................

6.4IllustrationoftheliquidcrystalbluephaseII.............................

6.5Illustrationofthedirectorasacoarse-grainedorientationfield..................

6.6Illustrationofthemicroscopicoriginofthe

symmetryofthenematicphase......

6.7FormoftheLandau–deGennesfreeenergyneartheisotropic-nematictransition........

6.8Inverseofthelight-scatteringintensityof8CBandMBBAasafunctionoftemperature.....

6.9Splay,twist,andbenddistortionsofanematicliquidcrystal....................

6.10Thehomeotropicandhomogeneousboundaryconditionsofaliquidcrystal...........

6.11ThemagneticfieldFréedericksztransition..............................

6.12IllustrationofapixelofanLCD....................................

6.13Twonematicdisclinationswith s = 1

6.14Thetwohalf-integerdisclinationsand s

6.15Topologicalpointdefectsinnematics:Hedgehogsandboojums..................

6.16Howliquidcrystaldefectsshowupbetweencrossedpolarizers..................

6.17IllustrationoftherotationdirectionoftheSchlierenimageofdefects...............

6.18Schlierenimageofapairofsurfaceboojums.............................

6.19Polarwedge-shapedliquidcrystalmoleculesformingsplayedstripeddomains.........

6.20Illustrationoftheflexoelectriceffect..................................

6.21Elecronmicrographofthefdvirus...................................

6.22Liquidcrystaldropletswithboojumsorahedgehog.........................

6.23AJanusparticlecoupledtoanematicfield..............................

6.24Micellesandinversemicellesformedbylipidmolecules......................

6.25Themagiclipidmonoolein.......................................

6.26Lipidicmesophasesofvariousdimensionality............................

6.27Nematicorderanddefectsinepithelialcells.............................

6.28Illustrationofthescreeningofelasticconstantsbydefectpairs...................

6.29Renormalizationgroupflowsofthe2DCoulombgassystem....................

6.30Escapeofthedirectorinthethirddimension.............................

6.31Illustrationofacrystalline,acolumnar,andasmecticphase....................

Chapter7

7.1Sketchofaredbloodcell........................................

7.2Sketchofabilayermembrane......................................

7.3Thetworadiiofcurvatureofasurface.................................

7.4Illustrationofthegenusofaclosedsurface..............................

7.5BifurcationsandevolutionofmembraneshapesaccordingtotheHelfrichmodel........

7.6Theadenovirusandsalmonellaphagevirus.............................

7.7Alargeflattriangularnetwithadisclinationcanreleaseitsstrainbybuckling..........

7.8Theenergyofaflatelasticshellwithadisclinationandthatofacone...............

7.9Asphericityofvirusesasafunctionoftheirradius..........................

7.10Apieceofcrumpledpaper.......................................

7.11Crumplingtransitionofatetheredsurface..............................

7.12Compressionexperimentoncrumplingofpaper...........................

7.13Resultsofanumericalstudyofcrumpling..............................

7.14CurvatureandfacetsofweaklyandstronglycompactedMylarsheets...............

7.15KPZscalingofgrowinginterfacesinnematicelectroconvection..................

7.16ExperimentsandsimulationsofthepropagatingRayeighinstability................

7.17Sketchofawettingfront........................................

7.18ThederivationoftheEulerformula..................................

7.19Curvedspacecrystals..........................................

7.20Aphaseseparatedsystem........................................

Chapter8

8.1TopviewofBénard-Marangonicellsatthesurfaceofafluidheatedfrombelow.........

8.2Sketchoftheamplitudeconcept....................................

8.3Theflowdynamicsofavariable

8.5ThedispersionrelationoflinearmodesintheSwift-Hohenbergequation.............

8.6EvolutionoftheenergyinasimulationoftheSwift-Hohenbergequation.............

8.7Supercriticalandsubcriticalbifurcations...............................

8.8SketchofaRayleigh-Bénardcell....................................

8.9ThedispersionrelationoftheRayleigh-Bénardproblemwithslipboundaryconditions.....

8.10Rayleigh-Bénardpatternsevolvewithdistancefromthreshold...................

8.11RangeofexistenceofstablestaticconvectionpatternsinRayleigh-Bénardconvection......

8.12SummaryoftheTuringstabilitydiagramoftwocoupledreactiondiffusionequations......

8.13TuringpatternsobservedinchemicalreactorsandintheMinproteinsystem...........

8.14Thethreepossibleinstabilityscenariosofspatiallyextendedsystems...............

8.15Scalingofgrowthrateandinstabilitybandoffinitewavelengthinstabilities...........

8.16Sketchofthebandofperiodicsolutionsasafunctionof

8.17Sketchofthestabilityofphasewindingsolutionsabovethresholdinonedimension......

8.18Sketchof σ(q) forarotationallysymmetrictwo-dimensionalsystem...............

8.19Thestabilityballoonforstripepatternsaccordingtothelowestorderamplitudeequation...

8.20Illustrationoftheoriginofthephaseinstabilitiesofstripepatternsintwodimensions.....

8.21Variousregularpatternsandtheirdominantmodesnearthreshold................

8.22Thethreeunitvectorsusedtodescribehexagonalpatterns.....................

8.23HexagonalpatternobservedjustbelowthresholdinaRayleigh-Bénardexperiment.......

8.24Autocorrelationpatternsintheneuralresponse...........................

8.25Simulationoftheone-dimensionalKuramoto-Sivashinskyequation...............

8.26Chaoticdynamicsinone-dimensionalhydrothermalwaves....................

8.27Sourcesandsinksinaheatedwireexperiment...........................

8.28Illustrationofsourcesandsinksintravelingwavesystems.....................

8.29Illustrationofadomainwallsolution.................................

8.30AsimulationofthecomplexGinzburg-Landauequationintwodimensions...........

8.31ThestabilityballoonofvegetationpatternsinAfrica.........................

8.32ThenullclinesoftheTuringmodelwhichgiverisetoexcitablemediumbehavior........

8.33Timedependenceofthefieldsofanexcitabledynamicalsystem..................

8.34Apropagatingpulseinanexcitablemedium.............................

8.35ExampleofexcitablewavesintheBelousov-Zhabotinskyreaction.................

8.36Thesignalofthepropagationofanervepulse............................

8.37SymmetryofflowpatternsintheBoussinesqapproximation....................

Chapter9

9.1Agalleryofactivematter........................................

9.2Aflockofbirds..............................................

9.3Vicsekmodelsimulationsforvariousdensitiesandnoisestrengths................

9.4FlockingbehaviorobservedforQuinckerotationofcolloidalparticles...............

9.5TheeffectivepotentialintheToner-Tutheory.............................

9.6Numericalsimulationsofmotility-inducedphaseseparation....................

9.7Experimentalverificationofmotility-inducedphaseseparation..................

9.8Bacterialsuspensionsexhibitswarming,turbulence,andavanishingviscosity..........

9.9Runandtumblebehaviorofbacteria.................................

9.10Illustrationoftheroleofdefectsinproducingactiveturbulence..................

9.11Inducedflowfieldaround ± 1 2 defectsinanactivenematic.....................

9.12Threeexamplesofactivesolids.....................................

9.13Observationofstarfishembryoswhichself-organizeintolivingchiralcrystals..........

9.14Examplesofmetamaterialsinwhichoddelasticityplaysarole...................

9.15Aspringwithodd-elasticresponse..................................

9.16Layersofacolloidalchiralfluidexhibitinstabilities.........................

9.17Effectofnonreciprocalinteractionsonflockingmodelsandpatternformation..........

9.18Space-timeplotsofnonreciprocallycoupledSwift-Hohenbergmodels..............

9.19Perturbativephasediagramoftheexceptionaltransition......................

9.20Schematicbifurcationdiagramoftheexceptionaltransition....................

9.21Exceptionalpoints-inducedinstabilities................................

9.22Sketchofanactivegelcomposedofactinfilamentsandmyosinmotors..............

9.23Shapeofadividingcellcomparedtoanactivegelmodel......................

9.24Topologicaldefectsinaregenerated Hydra

9.25Myosinflowonthesurfaceofa

9.26Amachinelearningmodelanalysisoftissueflowin

9.27Sketchofavertexmodelforcelldynamics..............................

9.28TheVicsekmodelfornonmovingbirdsasanoisyspinmodel...................

9.29Exampleofanactiveflowdrivenbythedirectorfieldinanactivenematic............

9.30Simplifiedcelldivision.........................................

Chapter10

10.1Buildingblocksofdesignermatterfromthenanoscaletothemacroscale............

10.23Dprintingonthemacroscale.....................................

10.3Illustrationofathermalcloak.....................................

10.4Agranulararchitecture,anultra-lightweightmaterial,andanallostericnetwork.........

10.5Illustrationoftwodifferentlatticestructuresrelatedbyduality...................

10.6Anextremelystretchablehydrogel..................................

10.7Aself-foldingorigamimadewiththeaidofahydrogel.......................

10.8Digitalalchemy:Designofnovelcrystalstructure..........................

10.9ColloidalcrystalsmadefromDNA-coatedcolloids.........................

10.10Designprinciplesforself-assemblyofrigidstructuresmadeofeightparticles..........

10.14Illustrationoftheconceptofreturn-pointmemory..........................

10.15Memorybehaviorresultingfromcyclicdrivingofashearedparticlesystem...........

10.19IllustrationofpathreversalinviscousliquidforsmallReynoldsnumber.............

Preface

Thisbookgrewoutofourexperienceteachingintroductorycoursesonsoftmatterin LeidenandChicago.ThechallengeinLeidenwastodevelopacourseaimedatfirstyearmaster’sstudents,studentswhojusthavecompletedathree-yearbachelordegree inphysicsorarelatedfield.Theyhaveadiversebackgroundandwillchoosetheir specializationanddecidewhethertogointotheoreticalorexperimentalphysicsonly sometimeaftertakingthecourse.TheChicagocoursetargetsbeginninggraduate students,butwithsimilarlydiversebackgroundsandinterests.

Manycolleaguesweconsultedaboutteachingsoftmatterfromaphysicsperspective struggledwiththesamedilemmawefaced:howtodevelopacoursewhichintroduces someofthebasicconceptsdevelopedinthepreviouscentury,butwhichatthesame timegivesafeelforsomeoftheexcitingresearchquestionsthesedays,aswellasfor therevolutionizingnewopportunitiesofferedbymodernvisualizationtechniques anddigitalanalysis.Moreover,formanyofusthecharmofsoftmatterisitsdiversity, thefactthatitcannotsimplybetreatedonthebasisofasingleoverarchingtheoretical framework,andthatitpaystohaveanintuitiveunderstandingofmanydifferent approachesandmaterials.Howcanwebringacrossthenecessity,power,andfun ofbeingabletoshiftperspectivesandtobringknowledgefromvariousdisciplines tobearonaproblem?Wefoundourselvescombiningbitsandpiecesfromseveral classicalintroductionstothefieldandfrombooksfocusedonaparticularphaseof softmatter,excerptsfromliteratureonapplicationsandpresent-dayresearchtopics, andourownlecturenotes.

Thisbookreflectsourteachingapproachandphilosophy:itisintendedtobeessentiallythetypeofbookwewouldhavelikedtohaveavailableasabasisforthecourses wedeveloped.Inshort,wehavetriedtowriteasomewhatdifferentintroductory textbookonthebasicconceptsofsoftmatter.Itsaimistogiveadvancedundergraduateandbeginninggraduatestudentsanintroductoryoverviewofthevarioussoft matterphasesandtheirrheology,andtheconceptualframeworktoanalyzethem.We haveattemptedtochooseourapproachandtopicsinsuchawaythatstudentswho specializeinothersub-disciplineswillacquireagoodoverviewofthefield,andget familiarwithconceptsandtreatmentsthathavebroaderapplication.Moreover,as studentsandresearchersnowadaysaremotivatedmorethanevertopayattentionto possibleapplicationsoftheirinsightsandmethods,inbothscienceandtechnology, wepayattentiontothelargerangeofapplications.Forstudentswhocontinueinsoft matterresearch,thebookshouldbeasteppingstoneforfurtherspecialization,while forstudentswhosemainresearchfocusisinbiomatterorattheinterfaceofphysics withbiology,thisbookshouldgivethemthenecessarybackgroundtounderstand theapplicationofsoftmatterphysicsconceptsinbiology.Wehavemadeaneffortto includelinksbetweensoftmatterandbiomatterthroughoutthebook.

Adistinctivefeatureofourtreatment,especiallywhencomparedtomostotherintroductorysoftmatterphysicsbooks,isitsfocusonthepowerofphenomenology andthehydrodynamicapproach.Thebookreviewsthemainsoftmatterclassesand theirrheologywithembeddedexplanationsofkeyconceptsandmethods(scaling,

Landauapproach,bifurcations,correlationfunctions,renormalizationgroup,scatteringapproach,etc.)withoutassumingdetailedpreviousknowledgeofcontinuum mechanics.Wedoassumesomebackgroundinstatisticalphysicsandsomeelementaryknowledgeofphasetransitions,though.Quiteafewconceptsappearseveral timesindifferentchaptersandexamples,asthisdeepensthestudents’understandingandstimulatesthemtoexplorehowthevarioustopicsareinterrelated.Through this,wehopetodevelopstudents’intuitionandgivethemakindofintellectual ’agility’inreasoningtheirwaythroughcomplexsoftmatterphenomena.

Ourapproachistodevelopmanysuchembeddedconcepts’onthefly,’ratherthanin separateappendicesorboxes,mirroringhowweourselvesoftenpickupnewconcepts whiledoingresearch,orfromtalks.Thesameholdsforsomeofthemoderntopics wetouchononlybrieflywithashortparagraph,afigure,oranoteinthemargin. Werealizethat,asaresult,suchtopicsaretypicallynotdevelopedinasmuchdepth orassystematicallyastheywouldbewereseparatesectionsorappendixesdevoted tothem.Butourownstudentsappreciatethismoreinformalstyle,whichiscloser tohowscienceisactuallyoftendoneinpractice.Moreover,theyfinditstimulates themtorealizeandexploreconnectionsbetweentopicsthatinthebeginningoftheir studiesweretreatedasseparatesubjects.Wehavealsoexperiencedthatithelps topromotetheiragilityandtoovercometheirhesitancetoworkwithaconcept theyhavenotmasteredcompletely.Weroutinelygivepointerstoliteraturewhere interestedstudentscanfindmoreinformation.

Wesupportthisstyleandapproachwithourlayoutanduseofreferences.Wedevelop themainstorylineinthetextasmuchaspossibleandwithoutinterruptions,andwe reservenotesinthemargintopointoutconnectionsortodrawthestudent’sattentiontoimportantsideissues.Weviewthesemarginnotes,whichoftenalsocontain referencestorelevantpapersortomoredetailedtreatmentsinothertextbooks,as anintegralpartofourapproach.Numberedendnotesareusedforbackingupsome oftheassertionsinthetext,orfordrawingattentiontosubtletiesorconnectionsto otherworks.Theseendnotesareintendedforstudentswhoareeagertolearneven more;sometimestheyprovideanswerstosubtlequestionswhichmightemergefrom studyingthemaintext.Weimagineareaderskippingtheseendnoteswhenstudying atopicforthefirsttime.

Thephilosophysketchedaboveisalsoreflectedintheorganizationofthechapters. Theyalwaysstartwithafocusonintroducingandexplainingthebasicconcepts;we envisionalecturerwantingtotreatthesesectionsindetailifthebookisusedasthe basisforacourse.Towardtheend,mostchaptersshifttodescriptionsofinteresting examplesandapplications,whichstudentsshouldbeabletostudybythemselves. Thereare,ofcourse,ampleopportunitiesforlecturerstohighlightafewofthese topicsandexpandonthem,dependingonthefocusofthecourseandtheinterests ofthestudents.Butlecturersareadvisedtomakeaselectionhereandencouragethe studentstostudytheothermaterialbythemselvestoenhancetheirunderstanding ofthefieldanditsbreadth.Wehaveattemptedtoprovidesufficientreferencestothe literatureinalltheselatersections,whichcouldalsobeusedasabasisforstudent presentations.

Introducingwell-establishedconceptswhicharepartofatraditionalfieldorofthe softmattercanon,andconnectingthemwithpresent-daydevelopments,hasforcedus repeatedlytomaketoughchoicesaboutexamples.Wehavetriedtopickrepresentative

experimentsorresultsfromtopicswhicharelikelytocontinuetobeactivelyexplored inthecomingyears,andtoincludereferencestoreviewsthatwillgiveasuitableentry tothetopictostudentswhowouldliketoknowmore.Inevitably,theinterestsand knowledgeoftheauthorsintroduceanelementofbiasinthesechoices.

Wehavesplittheproblemswhichcomewitheverychapterasmuchaspossible intosmall,concretesteps.Here,too,wehavebeenledbyourexperiencewithundergraduatestudentsandthefeedbackwehavereceivedfromthem.Asmuchas possible,theproblemshavebeendesignedsothatifastudenthasdifficultywithone particularstep,theyshouldbeabletomoveontothenext.Thestep-by-stepformat oftheproblemsshouldalsomakethemparticularlysuitableforactivelearningand reverseclassroomsettings.Similarly,instructorscaneasilytransformtheseproblems intoadvancedlecturesbyintegratingmathematicaldetailsintothemorequalitative introductionsweprovideinthemaintext.Wehavesuccessfullyadoptedthisapproachourselveswhenteachingthematerialingraduateclasses.Wehopethatthe step-by-stepsolutionsavailableintheinstructormanualwillhelpotherinstructors achievethisgoal.Themoreadvancedproblemsaremarkedwithanasterisk,themost challengingoneswithtwoasterisks.

Studentsarealsoencouragedtodeepentheirunderstandingofthevarioustopics bysimulatingsimpleprocessesonacomputer.Inordertofacilitateupdatingand downloadingofcode,andtoincludelinkstorelevantothermaterial,wehavemade suggestionsforcodingproblemsavailableonthewebsite www.softmatterbook.online complementingthisbook.

Thetopicstotreatifthisbookisusedforacoursewillnaturallydependonthe backgroundandlevelofthestudents.ThechaptersinpartIofthebookhavebeen includedforstudentslikemostofourown,whohavenotyethadanintroduction tofluiddynamicsandelasticitytheory,andwhowouldlikeashortrefresheron fluctuations.Eventhoughtheintroductorypartsofthesechapterscouldbeskipped bysomestudents,themoreadvancedpartsconnecttheclassicalfieldswithmore moderndevelopmentsthatmaybeneweventosomeprofessors.Sowerecommend payingattentiontotheseextensions.PartIIcontainsthecorematerialofthebook; ofthiswesuggeststudyingatleastchapters4–6,andtimepermittingalsochapter 7.WhetherornotanyoftheadvancedtopicsofpartIIIareincludedwilldepend verymuchonthebackgroundandinterestsofthestudentsandthenumberofhours available.Theycanbeleftoutofanintroductorycoursewithoutharm.Thematerial inthesechapters(possiblysupplementedbyselectedreadingsfromearlierchapters orfromintroductorytextbooksondynamicalsystems)couldformthebasisofanadvancedgraduatecourseemphasizingnon-equilibriumaspectsofsoftmatterphysics. Wehadpositiveexperiencesteachingpartsofthisadvancedmaterialinsummer schoolsalsoattendedbypostdocsandcolleagues.WeendthebookinpartIVwitha briefperspectiveonnewfrontiersinsoftmatterresearch.Unlikethepreviouschapters,theoneinthispartismuchlessinthestyleofatextbook—itprimarilygives aglimpseofemergingnewdirections,mostlybywayofexamples.Theseexamples andcorrespondingpointerstotheliteratureprovideplentyofinspirationforstudents topickend-of-courseprojectsaimedatindependentlystudyingpapersandpresentingtheminactivelearningsessions.Theprojectscancomplementourproblemsas amoredynamicwayofgettingstudentsengagedandfacilitatingtheirtransitionto research.

Thisbookofcoursereflectsourownunderstandingofsoftmatter,aswellasour ownspecificinterestsandstyle.Bothhavebeenshapedbyourownteachersand byinteractionswithmanycolleaguesworldwidewhosharedtheirknowledgeand passionwithus.WvSwouldliketotakethisopportunitytoexpresshisindebtedness totwoformercolleaguesatBellLabs,JohnWeeksandthelatePierreHohenberg. VVwouldliketothankDavidNelsonforallowinghimtoseebeautyincondensed matterphysicsthroughhiseyes.ZZwouldliketothankSidNagel,MartinvanHecke, andMichaelBrennerfortheirlong-lastingmentorshipandcollaboration.Hopefully thisbookreflectshoweachofthem,inhisownway,setaninspiringexampleforour careers,forhowtoapproachphysics,andforwritingwithpassionandclarity.

Overtheyears,wehavehadtheprivilegeofinteractingandcollaboratingwithmany wonderfulcolleagueswhohavesharedtheirinsightswithus.Ourunderstanding ofthetopicstreatedinthisbookhasbenefitedinparticularfromdiscussionsand collaborationswithDanielAalberts,AlexanderAbanov,AndreaAlù,ArielAmir, DenisBartolo,KatiaBertoldi,JoséBico,DanielBonn,MarkBowick,ErezBraun, MichaelBrenner,CarolinaBrito,JasnaBrujic,ChristianeCaroli,MikeCates,Paul Chaikin,HuguesChaté,PatCladis,AdamCohen,ItaiCohen,CorentinCoulais, ChiaraDaraio,OlivierDauchot,BennyDavidovitch,JuanDePablo,MartinDepken, ZvonimirDogic,MarileenDogterom,UteEbert,WouterEllenbroek,NiktaFakhri, AlbertoFernandez-Nieves,DaanFrenkel,JoostFrenken,MichelFruchart,Margaret Gardel,LucaGiomi,PaulGoldbart,NigelGoldenfeld,RayGoldstein,RaminGolestanian,MingHan,SilkeHenkes,MartinHoward,DavidHuse,WilliamIrvine,HeinrichJaeger,RandyKamien,NathanKeim,KinneretKeren,DanielaKraft,Ludwik Leibler,StanLeibler,HenkLekkerkerker,DovLevine,PeterLittlewood,AndreaLiu, DetlefLohse,TeresaLopez-Leon,TomLubensky,AndyLucas,TonyMaggs,LakshminarayananMahadevan,VinnyManoharan,CristinaMarchetti,AlexanderMorozov, ArvindMurugan,SidNagel,DavidNelson,PeterPalffy-Muhoray,DebPanja,JiwoongPark,JaysonPaulose,JoeyPaulsen,DavidPine,WilsonPoon,PatrickOakes, SriramRamaswamy,PedroReis,OlivierRivoire,BenRogers,BenoitRomain,Chris Santangelo,SriSastri,MichaelSchindler,JimSethna,BorisShraiman,JaccoSnoeijer, EllákSomfai,AntonSouslov,FrancescoStellacci,KeesStorm,SebastianStreichan, ShashiThutupalli,BrianTighe,JohnToner,FedericoToschi,AriTurner,SuriVaikuntanathan,Jan-WillemvandeMeent,WillemvandeWater,MartinvanHecke,Hans vanLeeuwen,BrianVansaders,DaveWeitz,MaxWelling,TomWitten,andMathieuWyart.Wesuspectvirtuallyallofthemwillbeabletoidentifyparticularchoices, viewpoints,orwordingswhichtheyrecognizeasreflectingourinteractions—weowe youabigthanks!

Inaddition,WvSwouldliketothankLucaGiomiforgraciouslysharinghisnotes fromanearliersoftmattercoursewhenWvSstartedteachingthecoursewhich eventuallystimulatedhiswritingthisbook,andZhihongYouandLudwigHoffmann whoasteachingassistantsdevelopedseveralproblemsforthecourse;someofthese foundtheirwaytothisbook.Similarly,VVwouldliketothankVinzenzKoning, RichardGreen,TaliKhain,NoahMitchell,Colin,Scheibner,JonathanColenandLuca ScharrerforservingasteachingassistantsinthecourseshetaughtatLeidenand Chicagoandhelpinginpreparingproblemsets,solutions,andlecturenotes.Wethank LucaScharrerandEgeErenforpreparingtypesetsolutionsoftheproblemsforthe instructormanual.Finally,wewouldliketothankYaelAvni,ChaseBroedersz,Sujit Datta,JohnDevany,MarjoleinDijkstra,DaanFrenkel,MichelFruchart,TaliKhain,

DanielaKraft,HenkLekkerkerker,DetlefLohse,DavidMartin,AlexandreMorin, AlexanderMorozov,MichaelSchindler,DanielSeara,KeesStorm,SebastianStreichan,andMartinvanHecke,whoprovidedinputorfeedbackduringthewriting process,fortheirhelpandtheiradviceandAndrejMesarosforhisgeneroushelp, support,andadvicethroughoutthewholeprocess.

Wewouldalsoliketoexpressourgratitudetothegreatmanycolleagueswhowere kindenoughtoprovideuswithhigh-resolutionimagesorplotsfromtheirearlier work.Theirnamesaregiveninthecreditlistattheendofthebook.

Finally,wewouldliketothankseveralstaffmembersofPrincetonUniversityPress fortheirwarm,dedicated,andeminentsupport:IngridGnerlichforstimulatingus towritethisbook,andforadvisingandguidingusthroughtheapplication,writing, andreviewprocedure;WhitneyRauenhorstforherhelpandadviceonthefigures; NatalieBaanforoverseeingandcoordinatingtheproduction;DimitriKaretnikovfor invaluableadviceonfinalizingtheart;andcopyeditorsBhishamBherwaniandWill DeRooyformeticulouslygoingthroughthemanuscripttopreserveconsistencyof styleandpresentation,andensureuseofproperEnglish.

Youwillbeabletofindsupplementarymaterialandcodingproblemsforeachchapter onourbook’swebsite www.softmatterbook.online.Wewillalsokeepalistoferrataon thiswebsiteandwillbegratefultoreaderswhosendusanycommentsonthematerial andthewaywepresentit,orsuggestionsforadditionalcomputersimulations.You cancontactusviathiswebsite.

Leiden,Chicago,andParis

WimvanSaarloos,VincenzoVitelli,ZoranaZeravcic

September2023

Turn static files into dynamic content formats.

Create a flipbook