Discrete time signal processing: pearson new international edition [print replica] (ebook pdf) - Dow

Page 1


DiscreteTimeSignalProcessing:PearsonNew InternationalEdition[PrintReplica](EbookPDF)

https://ebookmass.com/product/discrete-time-signalprocessing-pearson-new-international-edition-print-replicaebook-pdf/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Critical Thinking: Pearson New International Edition: Tools for Taking Charge of Your Learning and Your Life [Print Replica] (Ebook PDF)

https://ebookmass.com/product/critical-thinking-pearson-newinternational-edition-tools-for-taking-charge-of-your-learning-andyour-life-print-replica-ebook-pdf/ ebookmass.com

Cellular Signal Processing: An Introduction to the Molecular Mechanisms of Signal Transduction, Second Edition 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/cellular-signal-processing-anintroduction-to-the-molecular-mechanisms-of-signal-transductionsecond-edition-2nd-edition-ebook-pdf/ ebookmass.com

Digital Signal Processing 4th Edition John G. Proakis

https://ebookmass.com/product/digital-signal-processing-4th-editionjohn-g-proakis/ ebookmass.com

Learning Scientific Programming with Python Hill

https://ebookmass.com/product/learning-scientific-programming-withpython-hill/ ebookmass.com

The Woman in the Library Sulari Gentill

https://ebookmass.com/product/the-woman-in-the-library-sularigentill-3/

ebookmass.com

Physics for Clinical Oncology Second Edition Amen Sibtain

https://ebookmass.com/product/physics-for-clinical-oncology-secondedition-amen-sibtain/

ebookmass.com

True Crime Story Joseph Knox

https://ebookmass.com/product/true-crime-story-joseph-knox/

ebookmass.com

Words of Her Own: Women Authors in Nineteenth-Century Bengal Maroona Murmu

https://ebookmass.com/product/words-of-her-own-women-authors-innineteenth-century-bengal-maroona-murmu/

ebookmass.com

General Chemistry 11th Edition, (Ebook PDF)

https://ebookmass.com/product/general-chemistry-11th-edition-ebookpdf/

ebookmass.com

The New Alpha: Join the Rising Movement of Influencers and Changemakers Who Are Redefining Leadership Danielle Harlan

https://ebookmass.com/product/the-new-alpha-join-the-rising-movementof-influencers-and-changemakers-who-are-redefining-leadershipdanielle-harlan/

ebookmass.com

Introduction

otherareasofapplication.Non-real-timeapplicationsarealsocommon.Thecompact discplayerandMP3playerareexamplesofasymmetricsystemsinwhichaninputsignal isprocessedonlyonce.Theinitialprocessingmayoccurinrealtime,slowerthanreal time,orevenfasterthanrealtime.Theprocessedformoftheinputisstored(onthe compactdiscorinasolidstatememory),andfinalprocessingforreconstructingthe audiosignaliscarriedoutinrealtimewhentheoutputisplayedbackforlistening.The compactdiscandMP3recordingandplaybacksystemsrelyonmanysignalprocessing concepts.

FinancialEngineeringrepresentsanotherrapidlyemergingfieldwhichincorporatesmanysignalprocessingconceptsandtechniques.Effectivemodeling,prediction andfilteringofeconomicdatacanresultinsignificantgainsineconomicperformance andstability.Portfolioinvestmentmanagers,forexample,arerelyingincreasinglyon usingsophisticatedsignalprocessingsinceevenaverysmallincreaseinsignalpredictabilityorsignal-to-noiseratio(SNR)canresultinsignificantgaininperformance.

Anotherimportantareaofsignalprocessingis signalinterpretation.Insuchcontexts,theobjectiveoftheprocessingistoobtainacharacterizationoftheinputsignal. Forexample,inaspeechrecognitionorunderstandingsystem,theobjectiveistointerprettheinputsignalorextractinformationfromit.Typically,suchasystemwill applydigitalpre-processing(filtering,parameterestimation,andsoon)followedbya patternrecognitionsystemtoproduceasymbolicrepresentation,suchasaphonemic transcriptionofthespeech.Thissymbolicoutputcan,inturn,betheinputtoasymbolicprocessingsystem,suchasarules-basedexpertsystem,toprovidethefinalsignal interpretation.

Stillanotherrelativelynewcategoryofsignalprocessinginvolvesthesymbolic manipulationofsignalprocessingexpressions.Thistypeofprocessingispotentially usefulinsignalprocessingworkstationsandforthecomputer-aideddesignofsignal processingsystems.Inthisclassofprocessing,signalsandsystemsarerepresentedand manipulatedasabstractdataobjects.Object-orientedprogramminglanguagesprovide aconvenientenvironmentformanipulatingsignals,systems,andsignalprocessingexpressionswithoutexplicitlyevaluatingthedatasequences.Thesophisticationofsystems designedtodosignalexpressionprocessingisdirectlyinfluencedbytheincorporation offundamentalsignalprocessingconcepts,theorems,andproperties,suchasthosethat formthebasisforthisbook.Forexample,asignalprocessingenvironmentthatincorporatesthepropertythatconvolutioninthetimedomaincorrespondstomultiplication inthefrequencydomaincanexploreavarietyofrearrangementsoffilteringstructures, includingthoseinvolvingthedirectuseofthediscreteFouriertransform(DFT)andthe FFTalgorithm.Similarly,environmentsthatincorporatetherelationshipbetweensamplingrateandaliasingcanmakeeffectiveuseofdecimationandinterpolationstrategies forfilterimplementation.Similarideasarecurrentlybeingexploredforimplementing signalprocessinginnetworkenvironments.Inthistypeofenvironment,datacanpotentiallybetaggedwithahigh-leveldescriptionoftheprocessingtobedone,andthe detailsoftheimplementationcanbebaseddynamicallyontheresourcesavailableon thenetwork.

Manyconceptsanddesigntechniquesarenowincorporatedintothestructure ofsophisticatedsoftwaresystemssuchasMATLAB,Simulink,Mathematica,andLabVIEW.Inmanycaseswherediscrete-timesignalsareacquiredandstoredincomputers, thesetoolsallowextremelysophisticatedsignalprocessingoperationstobeformed

Introduction frombasicfunctions.Insuchcases,itisnotgenerallynecessarytoknowthedetails oftheunderlyingalgorithmthatimplementsthecomputationofanoperationlikethe FFT,butneverthelessitisessentialtounderstandwhatiscomputedandhowitshould beinterpreted.Inotherwords,agoodunderstandingoftheconceptsconsideredinthis textisessentialforintelligentuseofthesignalprocessingsoftwaretoolsthatarenow widelyavailable.

Signalprocessingproblemsarenotconfined,ofcourse,toone-dimensionalsignals. Althoughtherearesomefundamentaldifferencesinthetheoriesforone-dimensional andmultidimensionalsignalprocessing,muchofthematerialthatwediscussinthis texthasadirectcounterpartinmultidimensionalsystems.Thetheoryofmultidimensionaldigitalsignalprocessingispresentedindetailinavarietyofreferencesincluding DudgeonandMersereau(1984),Lim(1989),andBracewell(1994).3 Manyimageprocessingapplicationsrequiretheuseoftwo-dimensionalsignalprocessingtechniques. Thisisthecaseinsuchareasasvideocoding,medicalimaging,enhancementandanalysisofaerialphotographs,analysisofsatelliteweatherphotos,andenhancementofvideo transmissionsfromlunaranddeep-spaceprobes.Applicationsofmultidimensionaldigitalsignalprocessingtoimageprocessingarediscussed,forexample,inMacovski(1983), Castleman(1996),Jain(1989),Bovic(ed.)(2005),Woods(2006),GonzalezandWoods (2007),andPratt(2007).Seismicdataanalysisasrequiredinoilexploration,earthquake measurement,andnucleartestmonitoringalsousesmultidimensionalsignalprocessingtechniques.Seismicapplicationsarediscussedin,forexample,RobinsonandTreitel (1980)andRobinsonandDurrani(1985).

Multidimensionalsignalprocessingisonlyoneofmanyadvancedandspecialized topicsthatbuildonsignal-processingfundamentals.Spectralanalysisbasedontheuse oftheDFTandtheuseofsignalmodelingisanotherparticularlyrichandimportant aspectofsignalprocessing.Highresolutionspectrumanalysismethodsalsoarebased onrepresentingthesignaltobeanalyzedastheresponseofadiscrete-timelineartimeinvariant(LTI)filtertoeitheranimpulseortowhitenoise.Spectralanalysisisachieved byestimatingtheparameters(e.g.,thedifferenceequationcoefficients)ofthesystem andthenevaluatingthemagnitudesquaredofthefrequencyresponseofthemodel filter.DetaileddiscussionsofspectrumanalysiscanbefoundinthetextsbyKay(1988), Marple(1987),Therrien(1992),Hayes(1996)andStoicaandMoses(2005).

Signalmodelingalsoplaysanimportantroleindatacompressionandcoding, andhereagain,thefundamentalsofdifferenceequationsprovidethebasisforunderstandingmanyofthesetechniques.Forexample,oneclassofsignalcodingtechniques, referredtoaslinearpredictivecoding(LPC),exploitsthenotionthatifasignalisthe responseofacertainclassofdiscrete-timefilters,thesignalvalueatanytimeindexisa linearfunctionof(andthuslinearlypredictablefrom)previousvalues.Consequently, efficientsignalrepresentationscanbeobtainedbyestimatingthesepredictionparametersandusingthemalongwiththepredictionerrortorepresentthesignal.Thesignal canthenberegeneratedwhenneededfromthemodelparameters.Thisclassofsignal

3AuthorsnamesanddatesareusedtorefertobooksandpaperslistedintheBibliographyattheend ofthischapter.

Introduction

codingtechniqueshasbeenparticularlyeffectiveinspeechcodingandisdescribedin considerabledetailinJayantandNoll(1984),MarkelandGray(1976),Rabinerand Schafer(1978)andQuatieri(2002).

Anotheradvancedtopicofconsiderableimportanceisadaptivesignalprocessing. Adaptivesystemsrepresentaparticularclassoftime-varyingand,insomesense,nonlinearsystemswithbroadapplicationandwithestablishedandeffectivetechniquesfor theirdesignandanalysis.Again,manyofthesetechniquesbuildfromthefundamentals ofdiscrete-timesignalprocessing.Detailsofadaptivesignalprocessingaregivenby WidrowandStearns(1985),Haykin(2002)andSayed(2008).

Theserepresentonlyafewofthemanyadvancedtopicsthatextendfromthe contentcoveredinthistext.Othersincludeadvancedandspecializedfilterdesignprocedures,avarietyofspecializedalgorithmsforevaluationoftheFouriertransform,specializedfilterstructures,andvariousadvancedmultiratesignalprocessingtechniques, includingwavelettransforms.(SeeBurrus,Gopinath,andGuo(1997),Vaidyanathan (1993)andVetterliandKovaˇcevi´c(1995)forintroductionstothesetopics.)

Ithasoftenbeensaidthatthepurposeofafundamentaltextbookshouldbeto uncover,ratherthancover,asubject.Wehavebeenguidedbythisphilosophy.Thereis arichvarietyofbothchallengingtheoryandcompellingapplicationstobeuncovered bythosewhodiligentlypreparethemselveswithastudyofthefundamentalsofDSP.

HISTORICPERSPECTIVE

Discrete-timesignalprocessinghasadvancedinunevenstepsovertime.Lookingback atthedevelopmentofthefieldofdiscrete-timesignalprocessingprovidesavaluable perspectiveonfundamentalsthatwillremaincentraltothefieldforalongtimeto come.Sincetheinventionofcalculusinthe17th century,scientistsandengineershave developedmodelstorepresentphysicalphenomenaintermsoffunctionsofcontinuous variablesanddifferentialequations.However,numerictechniqueshavebeenusedto solvetheseequationswhenanalyticalsolutionsarenotpossible.Indeed,Newtonused finite-differencemethodsthatarespecialcasesofsomeofthediscrete-timesystemsthat wepresentinthistext.Mathematiciansofthe18th century,suchasEuler,Bernoulli,and Lagrange,developedmethodsfornumericintegrationandinterpolationoffunctionsof acontinuousvariable.InterestinghistoricresearchbyHeideman,Johnson,andBurrus (1984)showedthatGaussdiscoveredthefundamentalprincipleoftheFFTasearlyas 1805—evenbeforethepublicationofFourier’streatiseonharmonicseriesrepresentationoffunctions.

Untiltheearly1950s,signalprocessingaswehavedefineditwastypicallycarried outwithanalogsystemsimplementedwithelectroniccircuitsorevenwithmechanical devices.Eventhoughdigitalcomputerswerebecomingavailableinbusinessenvironmentsandinscientificlaboratories,theywereexpensiveandhadrelativelylimited capabilities.Aboutthattime,theneedformoresophisticatedsignalprocessinginsome applicationareascreatedconsiderableinterestindiscrete-timesignalprocessing.One ofthefirstusesofdigitalcomputersinDSPwasingeophysicalexploration,whererelativelylowfrequencyseismicsignalscouldbedigitizedandrecordedonmagnetictape

Introduction forlaterprocessing.Thistypeofsignalprocessingcouldnotgenerallybedoneinreal time;minutesorevenhoursofcomputertimewereoftenrequiredtoprocessonly secondsofdata.Evenso,theflexibilityofthedigitalcomputerandthepotentialpayoffs madethisalternativeextremelyinviting.

Alsointhe1950s,theuseofdigitalcomputersinsignalprocessingaroseina differentway.Becauseoftheflexibilityofdigitalcomputers,itwasoftenusefultosimulateasignalprocessingsystemonadigitalcomputerbeforeimplementingitinanalog hardware.Inthisway,anewsignalprocessingalgorithmorsystemcouldbestudied inaflexibleexperimentalenvironmentbeforecommittingeconomicandengineering resourcestoconstructingit.TypicalexamplesofsuchsimulationswerethevocodersimulationscarriedoutatMassachusettsInstituteofTechnology(MIT)LincolnLaboratory andBellTelephoneLaboratories.Intheimplementationofananalogchannelvocoder, forexample,thefiltercharacteristicsaffectedtheperceivedqualityofthecodedspeech signalinwaysthatweredifficulttoquantifyobjectively.Throughcomputersimulations, thesefiltercharacteristicscouldbeadjustedandtheperceivedqualityofaspeechcoding systemevaluatedpriortoconstructionoftheanalogequipment.

Inalloftheseexamplesofsignalprocessingusingdigitalcomputers,thecomputer offeredtremendousadvantagesinflexibility.However,theprocessingcouldnotbedone inrealtime.Consequently,theprevalentattitudeuptothelate1960swasthatthedigitalcomputerwasbeingusedto approximate,or simulate,ananalogsignalprocessing system.Inkeepingwiththatstyle,earlyworkondigitalfilteringconcentratedonways inwhichafiltercouldbeprogrammedonadigitalcomputersothatwithA/Dconversionofthesignal,followedbydigitalfiltering,followedbyD/Aconversion,theoverall systemapproximatedagoodanalogfilter.Thenotionthatdigitalsystemsmight,infact, bepracticalfortheactualreal-timeimplementationofsignalprocessinginspeechcommunication,radarprocessing,oranyofavarietyofotherapplicationsseemed,evenat themostoptimistictimes,tobehighlyspeculative.Speed,cost,andsizewere,ofcourse, threeoftheimportantfactorsinfavoroftheuseofanalogcomponents.

Assignalswerebeingprocessedondigitalcomputers,researchershadanatural tendencytoexperimentwithincreasinglysophisticatedsignalprocessingalgorithms. Someofthesealgorithmsgrewoutoftheflexibilityofthedigitalcomputerandhadno apparentpracticalimplementationinanalogequipment.Thus,manyofthesealgorithms weretreatedasinteresting,butsomewhatimpractical,ideas.However,thedevelopment ofsuchsignalprocessingalgorithmsmadethenotionofall-digitalimplementationof signalprocessingsystemsevenmoretempting.Activeworkbeganontheinvestigation ofdigitalvocoders,digitalspectrumanalyzers,andotherall-digitalsystems,withthe hopethateventually,suchsystemswouldbecomepractical.

Theevolutionofanewpointofviewtowarddiscrete-timesignalprocessingwas furtheracceleratedbythedisclosurebyCooleyandTukey(1965)ofanefficientclass ofalgorithmsforcomputationofFouriertransformsknowncollectivelyastheFFT. TheFFTwassignificantforseveralreasons.Manysignalprocessingalgorithmsthat hadbeendevelopedondigitalcomputersrequiredprocessingtimesseveralordersof magnitudegreaterthanrealtime.Often,thiswasbecausespectrumanalysiswasan importantcomponentofthesignalprocessingandnoefficientmeanswereavailablefor implementingit.TheFFTreducedthecomputationtimeoftheFouriertransformby ordersofmagnitude,permittingtheimplementationofincreasinglysophisticatedsignal

Introduction

processingalgorithmswithprocessingtimesthatallowedinteractiveexperimentation withthesystem.Furthermore,withtherealizationthattheFFTalgorithmsmight,in fact,beimplementablewithspecial-purposedigitalhardware,manysignalprocessing algorithmsthatpreviouslyhadappearedtobeimpracticalbegantoappearfeasible.

AnotherimportantimplicationoftheFFTwasthatitwasaninherentlydiscretetimeconcept.ItwasdirectedtowardthecomputationoftheFouriertransformofa discrete-timesignalorsequenceandinvolvedasetofpropertiesandmathematics thatwasexactinthediscrete-timedomain—itwasnotsimplyanapproximationto acontinuous-timeFouriertransform.Thishadtheeffectofstimulatingareformulation ofmanysignalprocessingconceptsandalgorithmsintermsofdiscrete-timemathematics,andthesetechniquesthenformedanexactsetofrelationshipsinthediscrete-time domain.Followingthisshiftawayfromthenotionthatsignalprocessingonadigital computerwasmerelyanapproximationtoanalogsignalprocessingtechniques,there emergedthecurrentviewthatdiscrete-timesignalprocessingisanimportantfieldof investigationinitsownright.

Anothermajordevelopmentinthehistoryofdiscrete-timesignalprocessingoccurredinthefieldofmicroelectronics.Theinventionandsubsequentproliferationof themicroprocessorpavedthewayforlow-costimplementationsofdiscrete-timesignal processingsystems.Althoughthefirstmicroprocessorsweretooslowtoimplementmost discrete-timesystemsinrealtimeexceptatverylowsamplingrates,bythemid-1980s, integratedcircuittechnologyhadadvancedtoalevelthatpermittedtheimplementation ofveryfastfixed-pointandfloating-pointmicrocomputerswitharchitecturesspecially designedforimplementingdiscrete-timesignalprocessingalgorithms.Withthistechnologycame,forthefirsttime,thepossibilityofwidespreadapplicationofdiscrete-time signalprocessingtechniques.Therapidpaceofdevelopmentinmicroelectronicsalso significantlyimpactedthedevelopmentofsignalprocessingalgorithmsinotherways. Forexample,intheearlydaysofreal-timedigitalsignalprocessingdevices,memory wasrelativelycostlyandoneoftheimportantmetricsindevelopingsignalprocessing algorithmswastheefficientuseofmemory.Digitalmemoryisnowsoinexpensivethat manyalgorithmspurposelyincorporatemorememorythanisabsolutelyrequiredso thatthepowerrequirementsoftheprocessorarereduced.AnotherareainwhichtechnologylimitationsposedasignificantbarriertowidespreaddeploymentofDSPwasin conversionofsignalsfromanalogtodiscrete-time(digital)form.ThefirstwidelyavailableA/DandD/Aconverterswerestand-alonedevicescostingthousandsofdollars.By combiningdigitalsignalprocessingtheorywithmicroelectronictechnology,oversampledA/DandD/Aconverterscostingafewdollarsorlesshaveenabledamyriadof real-timeapplications.

Inasimilarway,minimizingthenumberofarithmeticoperations,suchasmultipliesorfloatingpointadditions,isnowlessessential,sincemulticoreprocessorsoften haveseveralmultipliersavailableanditbecomesincreasinglyimportanttoreducecommunicationbetweencores,evenifitthenrequiresmoremultiplications.Inamulticore environment,forexample,directcomputationoftheDFT(ortheuseoftheGoertzelalgorithm)ismore“efficient”thantheuseofanFFTalgorithmsince,althoughmanymore multiplicationsarerequired,communicationrequirementsaresignificantlyreducedbecausetheprocessingcanbemoreefficientlydistributedamongmultipleprocessorsor cores.Morebroadly,therestructuringofalgorithmsandthedevelopmentofnewones

Introduction

toexploittheopportunityformoreparallelanddistributedprocessingisbecominga significantnewdirectioninthedevelopmentofsignalprocessingalgorithms.

FUTUREPROMISE

Microelectronicsengineerscontinuetostriveforincreasedcircuitdensitiesandproductionyields,andasaresult,thecomplexityandsophisticationofmicroelectronicsystems continuallyincrease.Thecomplexity,speed,andcapabilityofDSPchipshavegrown exponentiallysincetheearly1980sandshownosignofslowingdown.Aswafer-scale integrationtechniquesbecomehighlydeveloped,verycomplexdiscrete-timesignal processingsystemswillbeimplementedwithlowcost,miniaturesize,andlowpower consumption.Furthermore,technologiessuchasmicroelectronicmechanicalsystems (MEMS)promisetoproducemanytypesoftinysensorswhoseoutputswillneedto beprocessedusingDSPtechniquesthatoperateondistributedarraysofsensorinputs. Consequently,theimportanceofdiscrete-timesignalprocessingwillcontinuetoincrease,andthefuturedevelopmentofthefieldpromisestobeevenmoredramaticthan thecourseofdevelopmentthatwehavejustdescribed.

Discrete-timesignalprocessingtechniqueshavealreadypromotedrevolutionary advancesinsomefieldsofapplication.Anotableexampleisintheareaoftelecommunications,wherediscrete-timesignalprocessingtechniques,microelectronictechnology, andfiberoptictransmissionhavecombinedtochangethenatureofcommunication systemsintrulyrevolutionaryways.Asimilarimpactcanbeexpectedinmanyother areas.Indeed,signalprocessinghasalwaysbeen,andwillalwaysbe,afieldthatthrives onnewapplications.Theneedsofanewfieldofapplicationcansometimesbefilled byknowledgeadaptedfromotherapplications,butfrequently,newapplicationneeds stimulatenewalgorithmsandnewhardwaresystemstoimplementthosealgorithms. Earlyon,applicationstoseismology,radar,andcommunicationprovidedthecontextfor developingmanyofthecoresignalprocessingtechniques.Certainly,signalprocessing willremainattheheartofapplicationsinnationaldefense,entertainment,communication,andmedicalcareanddiagnosis.Recently,wehaveseenapplicationsofsignal processingtechniquesinnewareasasdisparateasfinanceandDNAsequenceanalysis. Althoughitisdifficulttopredictwhereothernewapplicationswillarise,thereis nodoubtthattheywillbeobvioustothosewhoarepreparedtorecognizethem.The keytobeingreadytosolvenewsignalprocessingproblemsis,andhasalwaysbeen, athoroughgroundinginthefundamentalmathematicsofsignalsandsystemsandin theassociateddesignandprocessingalgorithms.Whilediscrete-timesignalprocessing isadynamic,steadilygrowingfield,itsfundamentalsarewellformulated,anditisextremelyvaluabletolearnthemwell.Ourgoalistouncoverthefundamentalsofthe fieldbyprovidingacoherenttreatmentofthetheoryofdiscrete-timelinearsystems, filtering,sampling,discrete-timeFourieranalysis,andsignalmodeling.Wehopetoprovidethereaderwiththeknowledgenecessaryforanappreciationofthewidescope ofapplicationsfordiscrete-timesignalprocessingandafoundationforcontributingto futuredevelopmentsinthisexcitingfield.

Introduction

BIBLIOGRAPHY

Bovic,A.,ed., HandbookofImageandVideoProcessing,2nded.,AcademicPress,Burlington, MA,2005.

Bracewell,R.N., Two-DimensionalImaging,PrenticeHall,NewYork,NY,1994.

Burrus,C.S.,Gopinath,R.A.,andGuo,H., IntroductiontoWaveletsandWaveletTransforms:A Primer,PrenticeHall,1997.

Castleman,K.R., DigitalImageProcessing,2nded.,PrenticeHall,UpperSaddleRiver,NJ,1996. Cooley,J.W.,andTukey,J.W.,“AnAlgorithmfortheMachineComputationofComplexFourier Series,” MathematicsofComputation,Vol.19,pp.297–301,Apr.1965.

Dudgeon,D.E.,andMersereau,R.M., Two-DimensionalDigitalSignalProcessing,PrenticeHall, EnglewoodCliffs,NJ,1984.

Gonzalez,R.C.,andWoods,R.E., DigitalImageProcessing,Wiley,2007. Hayes,M., StatisticalDigitalSignalProcessingandModeling,Wiley,NewYork,NY,1996. Haykin,S., AdaptiveFilterTheory,4thed.,PrenticeHall,2002.

Heideman,M.T.,Johnson,D.H.,andBurrus,C.S.,“GaussandtheHistoryoftheFastFourier Transform,” IEEEASSPMagazine,Vol.1,No.4,pp.14–21,Oct.1984.

Jain,A.K., FundamentalsofDigitalImageProcessing,PrenticeHall,EnglewoodCliffs,NJ,1989. Jayant,N.S.,andNoll,P., DigitalCodingofWaveforms,PrenticeHall,EnglewoodCliffs,NJ,1984. Kay,S.M., ModernSpectralEstimationTheoryandApplication,PrenticeHall,EnglewoodCliffs, NJ,1988.

Lim,J.S., Two-DimensionalDigitalSignalProcessing,PrenticeHall,EnglewoodCliffs,NJ,1989. Macovski,A., MedicalImageProcessing,PrenticeHall,EnglewoodCliffs,NJ,1983.

Markel,J.D.,andGray,A.H.,Jr., LinearPredictionofSpeech,Springer-Verlag,NewYork,NY, 1976.

Marple,S.L., DigitalSpectralAnalysiswithApplications,PrenticeHall,EnglewoodCliffs,NJ, 1987.

Pratt,W., DigitalImageProcessing,4thed.,Wiley,NewYork,NY,2007.

Quatieri,T.F., Discrete-TimeSpeechSignalProcessing:PrinciplesandPractice,PrenticeHall, EnglewoodCliffs,NJ,2002.

Rabiner,L.R.,andSchafer,R.W., DigitalProcessingofSpeechSignals,PrenticeHall,Englewood Cliffs,NJ,1978.

Robinson,E.A.,andDurrani,T.S., GeophysicalSignalProcessing,PrenticeHall,Englewood Cliffs,NJ,1985.

Robinson,E.A.,andTreitel,S., GeophysicalSignalAnalysis,PrenticeHall,EnglewoodCliffs,NJ, 1980.

Sayed,A., AdaptiveFilters,Wiley,Hoboken,NJ,2008.

Stoica,P.,andMoses,R., SpectralAnalysisofSignals,PearsonPrenticeHall,UpperSaddleRiver, NJ,2005.

Therrien,C.W., DiscreteRandomSignalsandStatisticalSignalProcessing,PrenticeHall,EnglewoodCliffs,NJ,1992.

Vaidyanathan,P.P., MultirateSystemsandFilterBanks,PrenticeHall,EnglewoodCliffs,NJ,1993.

Vetterli,M.,andKovaˇcevi´c,J., WaveletsandSubbandCoding,PrenticeHall,EnglewoodCliffs, NJ,1995.

Widrow,B.,andStearns,S.D., AdaptiveSignalProcessing,PrenticeHall,EnglewoodCliffs,NJ, 1985.

Woods,J.W., MultidimensionalSignal,Image,andVideoProcessingandCoding,AcademicPress, 2006.

This page intentionally left blank

Discrete-Time SignalsandSystems

0INTRODUCTION

Theterm signal isgenerallyappliedtosomethingthatconveysinformation.Signalsmay, forexample,conveyinformationaboutthestateorbehaviorofaphysicalsystem.As anotherclassofexamples,signalsaresynthesizedforthepurposeofcommunicating informationbetweenhumansorbetweenhumansandmachines.Althoughsignalscan berepresentedinmanyways,inallcases,theinformationiscontainedinsomepatternofvariations.Signalsarerepresentedmathematicallyasfunctionsofoneormore independentvariables.Forexample,aspeechsignalisrepresentedmathematicallyas afunctionoftime,andaphotographicimageisrepresentedasabrightnessfunctionof twospatialvariables.Acommonconventionistorefertotheindependentvariableof themathematicalrepresentationofasignalastime,althoughinspecificexamples,the independentvariablemaynotinfactcorrespondtotime.

Theindependentvariableinthemathematicalrepresentationofasignalmaybe eithercontinuousordiscrete. Continuous-timesignals aredefinedalongacontinuumof timeandarethusrepresentedbyacontinuousindependentvariable.Continuous-time signalsareoftenreferredtoas analogsignals. Discrete-timesignals aredefinedatdiscrete times,andthus,theindependentvariablehasdiscretevalues;thatis,discrete-timesignals arerepresentedassequencesofnumbers.Signalssuchasspeechorimagesmayhave eitheracontinuous-oradiscrete-variablerepresentation,andifcertainconditionshold, theserepresentationsareentirelyequivalent.Besidestheindependentvariablesbeing eithercontinuousordiscrete,thesignalamplitudemaybeeithercontinuousordiscrete. Digitalsignals arethoseforwhichbothtimeandamplitudearediscrete. FromChapter2of Discrete-TimeSignalProcessing,ThirdEdition,AlanV.Oppenheim,RonaldW.Schafer. Copyright © 2010byPearsonEducation,Inc.PublishedbyPearsonPrenticeHall.Allrightsreserved.

Discrete-TimeSignalsandSystems

Signal-processingsystemsmaybeclassifiedalongthesamelinesassignals.That is,continuous-timesystemsaresystemsforwhichboththeinputandtheoutputare continuous-timesignals,anddiscrete-timesystemsarethoseforwhichboththeinput andtheoutputarediscrete-timesignals.Similarly,adigitalsystemisasystemforwhich boththeinputandtheoutputaredigitalsignals.Digitalsignalprocessing,then,deals withthetransformationofsignalsthatarediscreteinbothamplitudeandtime.The principalfocusofthisbookisondiscrete-time—ratherthandigital—signalsandsystems. However,thetheoryofdiscrete-timesignalsandsystemsisalsoexceedinglyusefulfor digitalsignalsandsystems,particularlyifthesignalamplitudesarefinelyquantized.

Inthischapter,wepresentthebasicdefinitions,establishnotation,anddevelop andreviewthebasicconceptsassociatedwithdiscrete-timesignalsandsystems.The presentationofthismaterialassumesthatthereaderhashadpreviousexposuretosome ofthismaterial,perhapswithadifferentemphasisandnotation.Thus,thischapteris primarilyintendedtoprovideacommonfoundationformoreadvancedmaterial.

InSection1,wediscusstherepresentationofdiscrete-timesignalsassequences anddescribethebasicsequencessuchastheunitimpulse,theunitstep,andcomplexexponential,whichplayacentralroleincharacterizingdiscrete-timesystemsand formbuildingblocksformoregeneralsequences.InSection2,therepresentation,basic properties,andsimpleexamplesofdiscrete-timesystemsarepresented.Sections3and 4focusontheimportantclassoflineartime-invariant(LTI)systemsandtheirtimedomainrepresentationthroughtheconvolutionsum,withSection5consideringthe specificclassofLTIsystemsrepresentedbylinear,constant–coefficientdifferenceequations.Section6developsthefrequencydomainrepresentationofdiscrete-timesystems throughtheconceptofcomplexexponentialsaseigenfunctions,andSections7,8,and9 developandexploretheFouriertransformrepresentationofdiscrete-timesignalsasa linearcombinationofcomplexexponentials.Section10providesabriefintroduction todiscrete-timerandomsignals.

1DISCRETE-TIMESIGNALS

Discrete-timesignalsarerepresentedmathematicallyassequencesofnumbers. Asequenceofnumbers x,inwhichthe nth numberinthesequenceisdenoted x[n], 1 is formallywrittenas

x ={x[n]}, −∞ <n< ∞, (1) where n isaninteger.Inapracticalsetting,suchsequencescanoftenarisefromperiodic samplingofananalog(i.e.,continuous-time)signal xa (t).Inthatcase,thenumericvalue ofthe nth numberinthesequenceisequaltothevalueoftheanalogsignal, xa (t), at time nT :i.e.,

x[n]= xa (nT), −∞ <n< ∞ (2)

Thequantity T isthe samplingperiod, anditsreciprocalisthe samplingfrequency. Althoughsequencesdonotalwaysarisefromsamplinganalogwaveforms,itisconvenienttoreferto x[n] asthe“nth sample”ofthesequence.Also,although,strictly

1 Notethatweuse[]to enclosetheindependentvariableofdiscrete-variablefunctions,andweuse() toenclosetheindependentvariableofcontinuous-variablefunctions.

Discrete-TimeSignalsandSystems

speaking, x[n] denotesthe nth numberinthesequence,thenotationofEq.(1)isoftenunnecessarilycumbersome,anditisconvenientandunambiguoustoreferto“the sequence x[n]”whenwemeantheentiresequence,justaswereferredto“theanalog signal xa (t).”Wedepictdiscrete-timesignals(i.e.,sequences)graphically,asshownin Figure1.Althoughtheabscissaisdrawnasacontinuousline,itisimportanttorecognize that x[n] isdefinedonlyforintegervaluesof n.Itisnotcorrecttothinkof x[n] asbeing zerowhen n isnotaninteger; x[n] issimplyundefinedfornonintegervaluesof n.

n Figure1 Graphicrepresentationofa discrete-timesignal.

Asanexampleofasequenceobtainedbysampling,Figure2(a)showsasegment ofaspeechsignalcorrespondingtoacousticpressurevariationasafunctionoftime,and Figure2(b)presentsasequenceofsamplesofthespeechsignal.Althoughtheoriginal speechsignalisdefinedatallvaluesoftime t ,thesequencecontainsinformationabout thesignalonlyatdiscreteinstants.Thesamplingtheoremguaranteesthattheoriginal

32ms (a)

256samples (b)

Figure2 (a)Segmentofacontinuous-timespeechsignal xa (t ).(b)Sequenceofsamples x[n] = xa (nT )obtainedfromthesignalinpart(a)with T = 125 μs.

Discrete-TimeSignalsandSystems

signalcanbereconstructedasaccuratelyasdesiredfromacorrespondingsequenceof samplesifthesamplesaretakenfrequentlyenough.

Indiscussingthetheoryofdiscrete-timesignalsandsystems,severalbasicsequencesareofparticularimportance.ThesesequencesareshowninFigure3andwill bediscussednext.

The unitsamplesequence (Figure3a)isdefinedasthesequence

Theunitsamplesequenceplaysthesamerolefordiscrete-timesignalsandsystemsthat theunitimpulsefunction(Diracdeltafunction)doesforcontinuous-timesignalsand systems.Forconvenience,weoftenrefertotheunitsamplesequenceasadiscrete-time impulseorsimplyasanimpulse.Itisimportanttonotethatadiscrete-timeimpulse doesnotsufferfromthemathematiccomplicationsofthecontinuous-timeimpulse;its definitioninEq.(3)issimpleandprecise.

n Figure3 Somebasicsequences.The sequencesshownplayimportantroles intheanalysisandrepresentationof discrete-timesignalsandsystems.

Figure4 Exampleofasequencetobe representedasasumofscaled,delayed impulses.

Oneoftheimportantaspectsoftheimpulsesequenceisthatanarbitrarysequence canberepresentedasasumofscaled,delayedimpulses.Forexample,thesequence p[n] inFigure4canbeexpressedas

Moregenerally,anysequencecanbeexpressedas

WewillmakespecificuseofEq.(5)indiscussingtherepresentationofdiscrete-time linearsystems.

Theunitstepsequence(Figure3b)isdefinedas

Theunitstepisrelatedtotheunitimpulseby

thatis,thevalueoftheunitstepsequenceat(time)index n isequaltotheaccumulated sumofthevalueatindex n andallpreviousvaluesoftheimpulsesequence.Analternativerepresentationoftheunitstepintermsoftheimpulseisobtainedbyinterpreting theunitstepinFigure3(b)intermsofasumofdelayedimpulses,asinEq.(5).Inthis case,thenonzerovaluesareallunity,so

or

Asyetanotheralternative,theimpulsesequencecanbeexpressedasthefirstbackward differenceoftheunitstepsequence,i.e.,

Exponentialsequencesareanotherimportantclassofbasicsignals.Thegeneral formofanexponentialsequenceis x[n]= Aαn . (10)

If A and α arerealnumbers,thenthesequenceisreal.If 0 <α< 1 and A ispositive, thenthesequencevaluesarepositiveanddecreasewithincreasing n,asinFigure3(c).

Discrete-TimeSignalsandSystems

For 1 <α< 0,thesequencevaluesalternateinsignbutagaindecreaseinmagnitude withincreasing n.If |α| > 1,thenthesequencegrowsinmagnitudeas n increases.

Theexponentialsequence Aαn with α complexhasrealandimaginarypartsthat areexponentiallyweightedsinusoids.Specifically,if α =|α|ejω 0 and A =|A |ejφ ,the sequence Aαn canbeexpressedinanyofthefollowingways:

Thesequenceoscillateswithanexponentiallygrowingenvelopeif |α| > 1 orwithan exponentiallydecayingenvelopeif |α| < 1.(Asasimpleexample,considerthecase ω 0 = π .)

When |α|= 1,thesequencehastheform

[n]=|A |

thatis,therealandimaginarypartsof ejω 0 n varysinusoidallywith n.Byanalogywiththe continuous-timecase,thequantity ω 0 iscalledthe frequency ofthecomplexsinusoid orcomplexexponential,and φ iscalledthe phase.However,since n isadimensionless integer,thedimensionof ω 0 isradians.Ifwewishtomaintainacloseranalogywiththe continuous-timecase,wecanspecifytheunitsof ω 0 toberadianspersampleandthe unitsof n tobesamples.

Thefactthat n isalwaysanintegerinEq.(12)leadstosomeimportantdifferences betweenthepropertiesofdiscrete-timeandcontinuous-timecomplexexponentialsequencesandsinusoidalsequences.Consider,forexample,afrequency (ω 0 + 2π).Inthis case,

x[n]= Aej(ω

Generally,complexexponentialsequenceswithfrequencies (ω 0 + 2πr),where r isan integer,areindistinguishablefromoneanother.Anidenticalstatementholdsforsinusoidalsequences.Specifically,itiseasilyverifiedthat

x[n]= A cos[(ω 0 + 2πr)n + φ ] = A cos(ω 0 n + φ). (14)

Whendiscussingcomplexexponentialsignalsoftheform x[n]= Ae jω 0 n orrealsinusoidalsignalsoftheform x[n]= A cos(ω 0 n + φ),weneedonlyconsiderfrequenciesin anintervaloflength 2π .Typically,wewillchooseeither π<ω 0 ≤ π or 0 ≤ ω 0 < 2π

Anotherimportantdifferencebetweencontinuous-timeanddiscrete-timecomplexexponentialsandsinusoidsconcernstheirperiodicityin n.Inthecontinuous-time case,asinusoidalsignalandacomplexexponentialsignalarebothperiodicintimewith theperiodequalto 2π dividedbythefrequency.Inthediscrete-timecase,aperiodic sequenceisasequenceforwhich

x[n]= x[n + N ], forall n, (15)

Discrete-TimeSignalsandSystems

wheretheperiod N isnecessarilyaninteger.Ifthisconditionforperiodicityistested forthediscrete-timesinusoid,then

A cos(ω 0 n + φ) = A cos(ω 0 n + ω 0 N + φ), (16) whichrequiresthat

ω 0 N = 2πk, (17)

where k isaninteger.Asimilarstatementholdsforthecomplexexponentialsequence Cejω 0 n ;thatis,periodicitywithperiod N requiresthat

ejω 0 (n+N) = ejω 0 n , (18)

whichistrueonlyfor ω 0 N = 2πk ,asinEq.(17).Consequently,complexexponential andsinusoidalsequencesarenotnecessarilyperiodicin n withperiod (2π/ω 0 ) and, dependingonthevalueof ω 0 ,maynotbeperiodicatall.

Example1PeriodicandAperiodicDiscrete-TimeSinusoids

Considerthesignal x1 [n]= cos(πn/4).Thissignalhasaperiodof N = 8.Toshowthis, notethat x[n + 8]= cos(π(n + 8)/4) = cos(πn/4 + 2π) = cos(πn/4) = x[n], satisfying thedefinitionofadiscrete-timeperiodicsignal.Contrarytocontinuous-timesinusoids, increasingthevalueof ω 0 foradiscrete-timesinusoiddoesnotnecessarilydecrease theperiodofthesignal.Considerthediscrete-timesinusoid x2 [n]= cos(3πn/8),which hasahigherfrequencythan x1 [n].However, x2 [n] isnotperiodicwithperiod 8,since x2 [n + 8]= cos(3π(n + 8)/8) = cos(3πn/8 + 3π) =−x2 [n].Usinganargumentanalogoustotheonefor x1 [n], wecanshowthat x2 [n] hasaperiodof N = 16.Thus, increasingthevalueof ω 0 = 2π/8 to ω 0 = 3π/8 alsoincreasestheperiodofthesignal. Thisoccursbecausediscrete-timesignalsaredefinedonlyforintegerindices n.

Theintegerrestrictionon n resultsinsomesinusoidalsignalsnotbeingperiodic atall.Forexample,thereisnointeger N suchthatthesignal x3 [n]= cos(n) satisfies thecondition x3 [n + N ]= x3 [n] forall n.Theseandotherpropertiesofdiscrete-time sinusoidsthatruncountertotheircontinuous-timecounterpartsarecausedbythe limitationofthetimeindex n tointegersfordiscrete-timesignalsandsystems.

WhenwecombinetheconditionofEq.(17)withourpreviousobservationthat ω 0 and (ω 0 + 2πr) areindistinguishablefrequencies,itbecomesclearthatthereare N distinguishablefrequenciesforwhichthecorrespondingsequencesareperiodicwith period N .Onesetoffrequenciesis ωk = 2πk/N , k = 0, 1,...,N 1.Theseproperties ofcomplexexponentialandsinusoidalsequencesarebasictoboththetheoryandthe designofcomputationalalgorithmsfordiscrete-timeFourieranalysis.

Relatedtotheprecedingdiscussionisthefactthattheinterpretationofhigh andlowfrequenciesissomewhatdifferentforcontinuous-timeanddiscrete-timesinusoidalandcomplexexponentialsignals.Foracontinuous-timesinusoidalsignal x(t) = A cos( 0 t + φ),as 0 increases, x(t) oscillatesprogressivelymorerapidly.Forthe discrete-timesinusoidalsignal x[n]= A cos(ω 0 n + φ),as ω 0 increasesfrom ω 0 = 0 toward ω 0 = π , x[n] oscillatesprogressivelymorerapidly.However,as ω 0 increasesfrom ω 0 = π to ω 0 = 2π ,theoscillationsbecomeslower.ThisisillustratedinFigure5.In

(a) n 0=0or0=2

(b)

n 0=/8or0=15/8 0=/4or0=7/4

n

(c)

n 0=

(d)

Figure5 cos ω 0 n forseveraldifferentvaluesof ω 0 .As ω 0 increasesfromzero toward π (partsa–d),thesequenceoscillatesmorerapidly.As ω 0 increasesfrom π to2π (partsd–a),theoscillationsbecomeslower.

Discrete-TimeSignalsandSystems

fact,becauseoftheperiodicityin ω 0 ofsinusoidalandcomplexexponentialsequences, ω 0 = 2π isindistinguishablefrom ω 0 = 0,and,moregenerally,frequenciesaround ω 0 = 2π areindistinguishablefromfrequenciesaround ω 0 = 0.Asaconsequence,for sinusoidalandcomplexexponentialsignals,valuesof ω 0 inthevicinityof ω 0 = 2πk foranyintegervalueof k aretypicallyreferredtoaslowfrequencies(relativelyslow oscillations),whereasvaluesof ω 0 inthevicinityof ω 0 = (π + 2πk) foranyintegervalue of k aretypicallyreferredtoashighfrequencies(relativelyrapidoscillations).

2DISCRETE-TIMESYSTEMS

Adiscrete-timesystemisdefinedmathematicallyasatransformationoroperatorthat mapsaninputsequencewithvalues x[n] intoanoutputsequencewithvalues y [n].This canbedenotedas y [n]= T {x[n]} (19)

andisindicatedpictoriallyinFigure6.Equation(19)representsaruleorformulafor computingtheoutputsequencevaluesfromtheinputsequencevalues.Itshouldbe emphasizedthatthevalueoftheoutputsequenceateachvalueoftheindex n may dependoninputsamples x[n] forallvaluesof n,i.e., y attime n candependonallor partoftheentiresequence x.Thefollowingexamplesillustratesomesimpleanduseful systems.

Figure6 Representationofa discrete-timesystem,i.e.,a transformationthatmapsaninput sequence x [n ]intoauniqueoutput sequence y [n ].

Example2TheIdealDelaySystem

Theidealdelaysystemisdefinedbytheequation

(20) where nd isafixedpositiveintegerrepresentingthedelayofthesystem.Inotherwords, theidealdelaysystemshiftstheinputsequencetotherightby nd samplestoformthe output.If,inEq.(20), nd isafixednegativeinteger,thenthesystemwouldshiftthe inputtotheleftby |nd | samples,correspondingtoatimeadvance.

InthesystemofExample2,onlyonesampleoftheinputsequenceisinvolvedin determiningacertainoutputsample.Inthefollowingexample,thisisnotthecase.

Example3MovingAverage

Thegeneralmoving-averagesystemisdefinedbytheequation

Thissystemcomputesthe nth sampleoftheoutputsequenceastheaverageof (M 1 + M 2 + 1) samplesoftheinputsequencearoundthe nth sample.Figure7showsaninput sequenceplottedasafunctionofadummyindex k andthesamples(soliddots)involved inthecomputationoftheoutputsample y [n] for n = 7, M 1 = 0,and M 2 = 5.Theoutputsample y [7] isequaltoone-sixthofthesumofallthesamplesbetweenthevertical dottedlines.Tocompute y [8],bothdottedlineswouldmoveonesampletotheright.

Figure7 Sequencevaluesinvolvedincomputingamovingaveragewith M1 = 0 and M2 = 5.

Classesofsystemsaredefinedbyplacingconstraintsonthepropertiesofthe transformation T {·}.Doingsooftenleadstoverygeneralmathematicalrepresentations,aswewillsee.Ofparticularimportancearethesystemconstraintsandproperties, discussedinSections2.1–2.5.

2.1MemorylessSystems

Asystemisreferredtoasmemorylessiftheoutput y [n] ateveryvalueof n depends onlyontheinput x[n] atthesamevalueof n

Example4AMemorylessSystem

Anexampleofamemorylesssystemisasystemforwhich x[n] and y [n] arerelatedby y [n]= (x[n])2 , foreachvalueof n. (22)

Discrete-TimeSignalsandSystems

ThesysteminExample2isnotmemorylessunless nd = 0; inparticular,that systemisreferredtoashaving“memory”whether nd ispositive(atimedelay)or negative(atimeadvance).ThemovingaveragesysteminExample3isnotmemoryless unless M 1 = M 2 = 0.

2.2LinearSystems

Theclassoflinearsystemsisdefinedbytheprincipleofsuperposition.If y

[

] and y 2 [n] aretheresponsesofasystemwhen x1 [

and x2 [

] aretherespectiveinputs,thenthe systemislinearifandonlyif

and

where a isanarbitraryconstant.Thefirstpropertyisthe additivityproperty,andthe secondthe homogeneity or scalingproperty.Thesetwopropertiestogethercomprise theprincipleofsuperposition,statedas

forarbitraryconstants a and b.Thisequationcanbegeneralizedtothesuperposition ofmanyinputs.Specifically,if

thentheoutputofalinearsystemwillbe

where yk [n] isthesystemresponsetotheinput xk [n]

Byusingthedefinitionoftheprincipleofsuperposition,itiseasilyshownthatthe systemsofExamples2and3arelinearsystems.(SeeProblem39.)Anexampleofa nonlinearsystemisthesysteminExample4.

Example5TheAccumulatorSystem

Thesystemdefinedbytheinput–outputequation

iscalledtheaccumulatorsystem,sincetheoutputattime n istheaccumulationor sumofthepresentandallpreviousinputsamples.Theaccumulatorsystemisalinear system.Sincethismaynotbeintuitivelyobvious,itisausefulexercisetogothrough thestepsofmoreformallyshowingthis.Webeginbydefiningtwoarbitraryinputs x1 [n] and x2 [n] andtheircorrespondingoutputs

Discrete-TimeSignalsandSystems

Whentheinputis x3 [n]= ax1 [n]+ bx2 [n],thesuperpositionprinciplerequiresthe output y3 [n]= ay 1 [n]+ by 2 [n] forallpossiblechoicesof a and b.Wecanshowthisby startingfromEq.(26):

Thus,theaccumulatorsystemofEq.(26)satisfiesthesuperpositionprincipleforall inputsandisthereforelinear.

Example6ANonlinearSystem

Considerthesystemdefinedby w[n]= log10 (|x[n]|) (33)

Thissystemisnotlinear.Toprovethis,weonlyneedtofindonecounterexample— thatis,onesetofinputsandoutputswhichdemonstratesthatthesystemviolates thesuperpositionprinciple,Eq.(24).Theinputs x1 [n]= 1 and x2 [n]= 10 area counterexample.However,theoutputfor x1 [n]+ x2 [n]= 11 is log 10 (1 + 10) = log 10 (11) = log10 (1) + log10 (10) = 1

Also,theoutputforthefirstsignalis w1 [n]= 0,whereasforthesecond, w2 [n]= 1.The scalingpropertyoflinearsystemsrequiresthat,since x2 [n]= 10x1 [n],ifthesystemis linear,itmustbetruethat w2 [n]= 10w1 [n].SincethisisnotsoforEq.(33)forthis setofinputsandoutputs,thesystemis not linear.

2.3Time-InvariantSystems

Atime-invariantsystem(oftenreferredtoequivalentlyasashift-invariantsystem)is asystemforwhichatimeshiftordelayoftheinputsequencecausesacorresponding shiftintheoutputsequence.Specifically,supposethatasystemtransformstheinput sequencewithvalues x[n] intotheoutputsequencewithvalues y [n].Then,thesystem issaidtobetimeinvariantif,forall n0 , theinputsequencewithvalues x1 [n]= x[n n0 ] producestheoutputsequencewithvalues y 1 [n]= y [n n0 ]

Asinthecaseoflinearity,provingthatasystemistimeinvariantrequiresageneral proofmakingnospecificassumptionsabouttheinputsignals.Ontheotherhand,proving non-timeinvarianceonlyrequiresacounterexampletotimeinvariance.Allofthe systemsinExamples2–6aretimeinvariant.Thestyleofprooffortimeinvarianceis illustratedinExamples7and8.

Discrete-TimeSignalsandSystems

Example7TheAccumulatorasaTime-InvariantSystem

ConsidertheaccumulatorfromExample5.Wedefine x1 [n]= x[n n0 ].Toshowtime invariance,wesolveforboth y [n n0 ] and y 1 [n] andcomparethemtoseewhether theyareequal.First,

Next,wefind

Substitutingthechangeofvariables k 1 = k n0 intothesummationgives

Sincetheindex k inEq.(34)andtheindex k 1 inEq.(37)aredummyindicesof summation,andcanhaveanylabel,Eqs.(34)and(37)areequalandtherefore y 1 [n]= y [n n0 ].Theaccumulatorisatime-invariantsystem.

Thefollowingexampleillustratesasystemthatisnottimeinvariant.

Example8TheCompressorSystem

Thesystemdefinedbytherelation y [n]= x[Mn], −∞ <n< ∞, (38) with M apositiveinteger,iscalledacompressor.Specifically,itdiscards (M 1) samplesoutof M ;i.e.,itcreatestheoutputsequencebyselectingevery M th sample. Thissystemisnottimeinvariant.Wecanshowthatitisnotbyconsideringtheresponse y 1 [n] totheinput x1 [n]= x[n n0 ].Forthesystemtobetimeinvariant,theoutputof thesystemwhentheinputis x1 [n] mustbeequalto y [n n0 ].Theoutput y 1 [n] that resultsfromtheinput x1 [n] canbedirectlycomputedfromEq.(38)tobe

y 1 [n]= x1 [Mn]= x[Mn n0 ] (39)

Delayingtheoutput y [n] by n0 samplesyields

y [n n0 ]= x[M(n n0 )] (40)

Comparingthesetwooutputs,weseethat y [n n0 ] isnotequalto y 1 [n] forall M and n0 ,andtherefore,thesystemisnottimeinvariant. Itisalsopossibletoprovethatasystemisnottimeinvariantbyfindingasingle counterexamplethatviolatesthetime-invarianceproperty.Forinstance,acounterexampleforthecompressoristhecasewhen M = 2, x[n]= δ[n],and x1 [n]= δ[n 1].

Forthischoiceofinputsand M , y [n]= δ[n],but y 1 [n]= 0;thus,itisclearthat y 1 [n] = y [n 1] forthissystem.

2.4Causality

Asystemiscausalif,foreverychoiceof n0 , theoutputsequencevalueattheindex n = n0 dependsonlyontheinputsequencevaluesfor n ≤ n0 .Thisimpliesthatif x1 [n]= x2 [n] for n ≤ n0 ,then y 1 [n]= y 2 [n] for n ≤ n0 .Thatis,thesystemis nonanticipative.The systemofExample2iscausalfor nd ≥ 0 andisnoncausalfor nd < 0.Thesystemof Example3iscausalif M 1 ≥ 0 and M 2 ≥ 0;otherwiseitisnoncausal.Thesystemof Example4iscausal,asistheaccumulatorofExample5andthenonlinearsystemin Example6.However,thesystemofExample8isnoncausalif M> 1,since y [1]= x[M ]. Anothernoncausalsystemisgiveninthefollowingexample.

Example9TheForwardandBackwardDifferenceSystems

Thesystemdefinedbytherelationship

y [n]= x[n + 1]− x[n] (41) isreferredtoasthe forwarddifferencesystem.Thissystemisnotcausal,sincethe currentvalueoftheoutputdependsonafuturevalueoftheinput.Theviolationof causalitycanbedemonstratedbyconsideringthetwoinputs x 1 [n]= δ[n 1] and x2 [n]= 0 andtheircorrespondingoutputs y 1 [n]= δ[n]− δ[n 1] and y 2 [n]= 0 forall n.Notethat x1 [n]= x2 [n] for n ≤ 0,sothedefinitionofcausalityrequires that y 1 [n]= y 2 [n] for n ≤ 0,whichisclearlynotthecasefor n = 0.Thus,bythis counterexample,wehaveshownthatthesystemisnotcausal. The backwarddifferencesystem, definedas

y [n]= x[n]− x[n 1], (42) hasanoutputthatdependsonlyonthepresentandpastvaluesoftheinput.Because y [n0 ] dependsonlyon x[n0 ] and x[n0 1],thesystemiscausalbydefinition.

2.5Stability

Anumberofsomewhatdifferentdefinitionsarecommonlyusedforstabilityofasystem. Throughoutthistext,wespecificallyusebounded-inputbounded-outputstability.

Asystemisstableinthebounded-input,bounded-output(BIBO)senseifand onlyifeveryboundedinputsequenceproducesaboundedoutputsequence.Theinput x[n] isboundedifthereexistsafixedpositivefinitevalue B x suchthat

(43)

Stabilityrequiresthat,foreveryboundedinput,thereexistsafixedpositivefinitevalue B y suchthat

Itisimportanttoemphasizethatthepropertieswehavedefinedinthissectionare propertiesof systems, notoftheinputstoasystem.Thatis,wemaybeabletofindinputs forwhichthepropertieshold,buttheexistenceofthepropertyforsomeinputsdoes notmeanthatthesystemhastheproperty.Forthesystemtohavetheproperty,itmust holdfor all inputs.Forexample,anunstablesystemmayhavesomeboundedinputs forwhichtheoutputisbounded,butforthesystemtohavethepropertyofstability,it

Discrete-TimeSignalsandSystems

mustbetruethatfor all boundedinputs,theoutputisbounded.Ifwecanfindjustone inputforwhichthesystempropertydoesnothold,thenwehaveshownthatthesystem does not havethatproperty.Thefollowingexampleillustratesthetestingofstabilityfor severalofthesystemsthatwehavedefined.

Example10TestingforStabilityorInstability

ThesystemofExample4isstable.Toseethis,assumethattheinput x[n] isbounded suchthat |x[n]|≤ B x forall n.Then |y [n]|=|x[n]|2 ≤ B 2 x .Thus,wecanchoose B y = B 2 x andprovethat y [n] isbounded.

Likewise,wecanseethatthesystemdefinedinExample6isunstable,since y [n]= log10 (|x[n]|) =−∞ foranyvaluesofthetimeindex n atwhich x[n]= 0, even thoughtheoutputwillbeboundedforanyinputsamplesthatarenotequaltozero. Theaccumulator,asdefinedinExample5byEq.(26),isalsonotstable.For example,considerthecasewhen x[n]= u[n],whichisclearlyboundedby B x = 1.For thisinput,theoutputoftheaccumulatoris

Thereisnofinitechoicefor B y suchthat (n + 1) ≤ B y < ∞ forall n;thus,thesystem isunstable.

Usingsimilararguments,itcanbeshownthatthesystemsinExamples2,3,8, and9areallstable.

3LTISYSTEMS

Asincontinuoustime,aparticularlyimportantclassofdiscrete-timesystemsconsistsof thosethatarebothlinearandtimeinvariant.Thesetwopropertiesincombinationlead toespeciallyconvenientrepresentationsforsuchsystems.Mostimportant,thisclass ofsystemshassignificantsignal-processingapplications.Theclassoflinearsystemsis definedbytheprincipleofsuperpositioninEq.(24).Ifthelinearitypropertyiscombinedwiththerepresentationofageneralsequenceasalinearcombinationofdelayed impulsesasinEq.(5),itfollowsthatalinearsystemcanbecompletelycharacterized byitsimpulseresponse.Specifically,let hk [n] betheresponseofthesystemtotheinput δ[n k ],animpulseoccurringat n = k .Then,usingEq.(5)torepresenttheinput,it followsthat

andtheprincipleofsuperpositioninEq.(24),wecanwrite

Discrete-TimeSignalsandSystems

AccordingtoEq.(48),thesystemresponsetoanyinputcanbeexpressedintermsofthe responsesofthesystemtothesequences δ[n k ].Ifonlylinearityisimposed,then hk [n] willdependonboth n and k ,inwhichcasethecomputationalusefulnessofEq.(48)is somewhatlimited.Weobtainamoreusefulresultifweimposetheadditionalconstraint oftimeinvariance.

Thepropertyoftimeinvarianceimpliesthatif h[n] istheresponseto δ[n],then theresponseto δ[n k ] is h[n k ].Withthisadditionalconstraint,Eq.(48)becomes

AsaconsequenceofEq.(49),anLTIsystemiscompletelycharacterizedbyitsimpulse response h[n] inthesensethat,giventhesequences x[n] and h[n] forall n,itispossible touseEq.(49)tocomputeeachsampleoftheoutputsequence y [n] Equation(49)isreferredtoasthe convolutionsum,andwerepresentthisbythe operatornotation

Theoperationofdiscrete-timeconvolutiontakestwosequences x[n] and h[n] andproducesathirdsequence y [n].Equation(49)expresseseachsampleoftheoutputsequence intermsofallofthesamplesoftheinputandimpulseresponsesequences.

ThenotationofEq.(50)fortheoperationofconvolutionasshorthandforEq.(49) isconvenientandcompactbutneedstobeusedwithcaution.Thebasicdefinitionof theconvolutionoftwosequencesisembodiedinEq.(49)andanyuseoftheshorthand forminEq.(50)shouldalwaysbereferredbacktoEq.(49).Forexample,consider y [n n0 ].FromEq.(49)weseethat

orinshorthandnotation

Substituting (n n0 ) for n inEq.(49)leadstothecorrectresultandconclusion,but blindlytryingthesamesubstitutioninEq.(50)doesnot.Infact, x[n n0 ]∗ h[n n0 ] resultsin y [n 2n0 ]

ThederivationofEq.(49)suggeststheinterpretationthattheinputsampleat n = k ,representedas x[k ]δ[n k ],istransformedbythesystemintoanoutputsequence x[k ]h[n k ],for −∞ <n< ∞, andthat,foreach k ,thesesequencesaresuperimposed (summed)toformtheoveralloutputsequence.ThisinterpretationisillustratedinFigure8,whichshowsanimpulseresponse,asimpleinputsequencehavingthreenonzero samples,theindividualoutputsduetoeachsample,andthecompositeoutputduetoall

Figure8 RepresentationoftheoutputofanLTIsystemasthesuperpositionof responsestoindividualsamplesoftheinput.

Turn static files into dynamic content formats.

Create a flipbook