Current developments in biotechnology and bioengineering. biological treatment of industrial effluen

Page 1


https://ebookmass.com/product/current-developments-inbiotechnology-and-bioengineering-biological-treatment-of-

Edition Carlo Di Lauro

https://ebookmass.com/product/rotational-structure-in-molecularinfrared-spectra-2nd-edition-carlo-di-lauro/

ebookmass.com

ListofContributors

A.Asghar UniversityofMalaya,KualaLumpur,Malaysia

N.Balagurusamy UniversidadAutónomadeCoahuila,Torreón,Coahuila,Mexico

E.R.Bandala UniversidaddeLasAméricasPuebla,Cholula,Puebla,Mexico

A.Buthiyappan UniversityofMalaya,KualaLumpur,Malaysia

P.Champagne Queen’sUniversity,Kingston,ON,Canada

C.-C.Chen ChungChouUniversityofScienceandTechnology,Changhwa,Taiwan

W.M.A.W.Daud UniversityofMalaya,KualaLumpur,Malaysia

A.Daverey DoonUniversity,Dehradun,India

C.Fu CentreforWaterResearch,NationalUniversityofSingapore,Singapore

V.Gadhamshetty SouthDakotaSchoolofMinesandTechnology,RapidCity,SD, UnitedStates

M.GarcíaLozano UniversidadAutónomadeCoahuila,Torreón,Coahuila,Mexico

B.D.Gebrewold UNESCO-IHEInstituteforWaterEducation,Delft,TheNetherlands

B.Giri UniversityofHawai’iatManoa,Honolulu,HI,UnitedStates

J.-D.Gu TheUniversityofHongKong,HongKong,China

W.Guo UniversityofTechnologySydney,Sydney,NSW,Australia

F.I.Hai UniversityofWollongong,Wollongong,NSW,Australia

B.S.Herath WesternSydneyUniversity,Penrith,NSW,Australia

M.Howell Queen’sUniversity,Kingston,ON,Canada

S.Hu AdvancedWaterManagementCentre,TheUniversityofQueensland,Brisbane, Australia

G.Kastl WesternSydneyUniversity,Penrith,NSW,Australia

S.K.Khanal UniversityofHawai’iatManoa,Honolulu,HI,UnitedStates

M.Kumar IndianInstituteofTechnologyMadras,Chennai,India

C.-H.Lay FengChiaUniversity,Taichung,Taiwan

D.-J.Lee NationalTaiwanUniversity,Taipei,Taiwan;NationalTaiwanUniversityof ScienceandTechnology,Taipei,Taiwan

C.-Y.Lin FengChiaUniversity,Taichung,Taiwan

J.-G.Lin NationalChiaoTungUniversity,Hsinchu,Taiwan

J.C.Liu NationalTaiwanUniversityofScienceandTechnology,Taipei,Taiwan

L.Liu Queen’sUniversity,Kingston,ON,Canada

S.L.Low CentreforWaterResearch,NationalUniversityofSingapore,Singapore

Y.Lu AdvancedWaterManagementCentre,TheUniversityofQueensland,Brisbane, Australia

L.E.MontañezHernandez UniversidadAutónomadeCoahuila,Torreón, Coahuila,Mexico

P.Mullai AnnamalaiUniversity,TamilNadu,India

H.Y.Ng CentreforWaterResearch,NationalUniversityofSingapore,Singapore

K.K.Ng CentreforWaterResearch,NationalUniversityofSingapore,Singapore

L.D.Nghiem UniversityofWollongong,Wollongong,NSW,Australia

H.H.Ngo UniversityofTechnologySydney,Sydney,NSW,Australia

S.Nitayavardhana ChiangMaiUniversity,ChiangMai,Thailand

R.OropezaNavarro UniversidadNacionalAutnomadeMéxico,Cuernavaca, Morelos,Mexico

K.Pakshirajan IndianInstituteofTechnologyGuwahati,Guwahati,Assam,India

Y.PeñaGarcia UniversidadAutónomadeCoahuila,Torreón,Coahuila,Mexico

W.E.Price UniversityofWollongong,Wollongong,NSW,Australia

G.Qiu NationalUniversityofSingapore,Singapore

A.A.A.Raman UniversityofMalaya,KualaLumpur,Malaysia

M.E.RaynalGutierrez UniversidaddeLasAméricasPuebla,Cholula,Puebla, Mexico

E.R.Rene UNESCO-IHEInstituteforWaterEducation,Delft,TheNetherlands

J.L.Sanchez-Salas UniversidaddeLasAméricasPuebla,Cholula,Puebla,Mexico

A.Sathasivan WesternSydneyUniversity,Penrith,NSW,Australia

S.T.M.L.D.Senevirathna CharlesSturtUniversity,Bathurst,NSW,Australia

X.Shi CentreforWaterResearch,NationalUniversityofSingapore,Singapore

K.-Y.Show ZhejiangJunengCo.Ltd.,Tongxiang,China

Y.Song ChineseResearchAcademyofEnvironmentalSciences,Beijing,PRChina

D.S.SrinivasaRaghavan NationalUniversityofSingapore,Singapore

S.Su CommonwealthScientificandIndustrialResearchOrganisation(CSIRO), Pullenvale,Queensland,Australia

M.M.TejasNamboodiri IndianInstituteofTechnologyGuwahati,Guwahati, Assam,India

R.Thiruvenkatachari CommonwealthScientificandIndustrialResearch Organisation(CSIRO),Pullenvale,Queensland,Australia

Y.-P.Ting NationalUniversityofSingapore,Singapore

T.P.TramVo UniversityofTechnologySydney,Sydney,NSW,Australia

J.Virkutyte EnvironmentalConsultant,Cincinnati,OH,UnitedStates

S.Vishali SRMUniversity,TamilNadu,India

R.Wickham UniversityofWollongong,Wollongong,NSW,Australia

M.K.Yogeswari VivekanandhaCollegeofArtsandSciencesforWomen, TamilNadu,India

AbouttheEditors

Duu-JongLee

ProfessorDuu-JongLeeiscurrentlyaLife-TimeSpecially AppointedProfessorofNationalTaiwanUniversity(NTU) andchairprofessorandvicepresidentoftheNational TaiwanUniversityofScienceandTechnology.Heobtained hisbachelor(1984)andPh.D.(1989)degreesbothatthe ChemicalEngineeringDepartment,NTU.ProfessorLeehas astrongresearchinterestintheareasofindustrialwastewatertreatment,biomasstoenergy,andenvironmental management,especiallyinmicroscaletransportandreactionprocessesinbiomassmatrix.Since1989,hehas completedseveralprojectssuccessfullyanddeveloped variousprocesseswithfull-scaleapplications.Hisresearch hascreditedhimwithmorethan1000publicationsand communications.ThecitationsinSCOPUSonProfessorLee’sworkhaveexceeded 14,000withanhindexof57.ProfessorLeeistherecipientofmanynationalandinternationalawardsandfellowships.HewasalsothepresidentoftheTaiwanInstituteof ChemicalEngineers,with3500membersinTaiwanandoverseas.

VeeriahJegatheesan

ProfessorVeeriahJegatheesan(Jega)receivedhisPh.D.in WaterEngineeringandhas20yearsofexperienceinwater research.HehasworkedasaconsultantatSydneyWater Corporationandhascollaboratedwithseveralotherwater authoritiesinAustralia.Currentlyheisattachedtothe SchoolofEngineeringattheRoyalMelbourneInstituteof Technology,Australia.Hisresearchfocusesonsustainable catchmentmanagementthroughtheapplicationofnovel treatmentprocesses,resourcerecovery,andmathematical modeling.Hehascoeditedfourbooksandwasamanagingguesteditorfor15special issuesinpeer-reviewedjournalsandhaspublished90journalarticles.HeistheChief Editorofabookseriesentitled AppliedEnvironmentalScienceandEngineeringfora SustainableFuture publishedbySpringer.Heisanassociateeditorforthe Journalof WaterSustainability andaneditorialboardmemberofanumberofjournals.Hiscore

Award,GovernmentofCuba;UNESCOProfessor;RamanResearchFellowshipAward, CSIR;GBF,Germany,andCNRS,Francefellowships;YoungScientistAward;andothers. HewaschairmanoftheInternationalSocietyofFood,AgricultureandEnvironment, Finland(Food&Health)during2003 04.HeistheFounderPresidentoftheBiotech ResearchSociety,India(www.brsi.in);InternationalCoordinatoroftheInternational ForumonIndustrialBioprocesses,France(www.ifibiop.org);chairmanofthe InternationalSocietyforEnergy,Environment&Sustainability(www.isees.org);andvice presidentoftheAllIndiaBiotechAssociation(www.aibaonline.com).ProfessorPandey iseditor-in-chiefof BioresourceTechnology, HonoraryExecutiveAdvisorofthe Journalof WaterSustainability and JournalofEnergyandEnvironmentalSustainability, subject editorofthe ProceedingsoftheNationalAcademyofSciences(India), andeditorialboard memberofseveralinternationalandIndianjournals,andalsoamemberofseveral nationalandinternationalcommittees.

AerobicTreatmentofEffluents FromTextileIndustry

P.Mullai1, *,M.K.Yogeswari2,S.Vishali 3 , M.M.TejasNamboodiri4,B.D.Gebrewold5,E.R.Rene5, K.Pakshirajan4

1 ANNAMALAIUNIVERSITY,TAMILNADU,INDIA; 2 VIVEKANANDHACOLLEGEOFARTSAND SCIENCESFORWOMEN,TAMILNADU,INDIA; 3 SRMUNIVERSITY,TAMILNADU,INDIA; 4 INDIANINSTITUTEOFTECHNOLOGY GUWAHATI,GUWAHATI,ASSAM,INDIA; 5 UNESCO-IHE INSTITUTEFORWATEREDUCATION,DELFT,THENETHERLANDS

1.1Introduction

Rapidindustrializationofthedevelopingworldhascontributedtounsustainable pollutionlevels [1,2].Inthepastfewdecades,anincreaseinthedemandfortextile productshasledtoasteepriseinwaterpollution [3,4].Textileeffluentistaggedasthe mostpollutingasitconsumesalargequantityofwaterandchemicalsfortheprocessing offabricsthroughouttheworldandinturntheseindustriesgeneratepollutionbydiscardingthewastes [5 7].Similarly,increasingfinancialconstraintspavethewayfor dischargeofuntreatedeffluentsintotheenvironment [8].Globally,280,000tonsofdyeis dischargedintotextileindustrywastewatereveryyear [9,10].

Althoughtheuseoftextiledyesisimportant,itcausesseriousenvironmentalproblems.Textilewastewatercontainsamixtureofinorganicandorganiccompounds,which arecomplexinnature [11].AccordingtoarecentreportfromChina,eachyearabout 70billiontonsofwastewaterfromthetextileanddyeingindustryisgeneratedandneeds adequatetreatmentbeforeultimatedischargeintotheenvironment.Surprisingly,about 10 15%ofthedyesusedinthedyeingprocessdonotfixwiththetextilefibersand, therefore,theyarecarriedbythewastewaterintheiroriginalformsandconcentrations [12].Themajorpollutantspresentintextilewastewaterarerecalcitrantorganics,residues ofreactivedyes,aerosols,levelingagents,acids,alkalis,amines,heavymetals,chlorophenol,chlorine,halogencarriers,formaldehyde,biocides,andsofteners [13 16].

Table1.1 presentsthemajorpollutantsandchemicaltypespresentintextilewastewater andtheirmainprocessesoforigin.Accordingly,thevariousunitprocesses,suchassizing, desizing,bleaching,mercerizing,dyeing,andprinting,generatehighlevelsofbiochemical

*CorrespondingAuthor.

FIGURE1.1 Representativechemicalstructuresofvariousdyesusedinthetextileindustry.(A)Natural,(B)basic, (C)direct,(D)mordant,(E)vat,(F)reactive,(G)disperse,and(H)sulfur.

1.2.4VatDyes

Vatdyesarenaturallywaterinsoluble.Tomakethemsolubleandtofixwithfabrics,they arereducedwithalkalisalts.Furtheroxidationtendstorestoretheirinsolublenature. Withouttheadditionofmordant,thesedyesareusedtocolorcotton,linen,andrayon, whereaswiththeadditionofmordant,theyareusedtocolorwool,nylon,polyesters,and acrylics.

1.2.5ReactiveDyes

Reactivedyeswereinitiallyusedforcellulose-basedfibers.Occasionally,heattreatment isrequiredforthesereactivedyesforgeneratingvariousshades.Oncethedyeingprocess iscompleted,thefabricsarewashedusingsoaptotakeawayeveryunfixeddye. Applicationsincludedyeingwoolmaterials,silkfibers,andnylonblends.

1.2.6DisperseDyes

Dispersedyesareinsolubleinwaterandmarketedintheformofpowderorpaste. Traditionally,dispersedyeswerepreparedtodyecellulosematerials.Thesedays,they areemployedtodyeacrylicandnylonfibers.

1.2.7SulfurDyes

Theinsolublenatureofsulfurdyesismadesolublebytreatingthemwithsodaand sodiumsalts.Usually,treatmentathightemperatureandtheadditionofsaltsare requiredtoimpartcolortothefabrics.Oncethedyeingprocessiscompleted,the unfixedsaltsanddyesareremoved.Thesedyesaremainlyemployedtoimpartcolorto cottonandlinenmaterials.

1.3MainProcessesInvolvedintheTextileIndustry

Thefourmainstagesoftextileprocessinginvolveyarnproduction,fabricproduction, wetprocessing,andgarmentmanufacturing [31].Yarnfabricationistheprocessin whichtheconversionofrawfiberintoyarnorthreadoccurs.Thesecondstep,fabric production,involvesweaving,knitting,andtufting.Thenextstepiswetprocessing, whichincludespretreatment,dyeing,printing,andfinishing.Inthisprocess,thesizing elementsaredetachedfromthegrayfabricbytreatingthemwithacidsorenzymes.The scouringprocessisdonetoremoveimpuritiessuchasoils,waxymaterials,andfatty acids,amongothers,seeninthefabric,underalkalineconditions,highpressure,and hightemperature.Bleachingisperformedtowhitenthefabricsandyarnsusing bleachingagentslikehypochloriteandhydrogenperoxide.Duringthemercerizing process,thefabricsoryarnsaretreatedwithasodiumhydroxide(cold)solution,which increasesthetensilepotency,gleam,anddyeuptakebymakingthefabricswell.The dyeingprocessiscarriedouttogiveafinishedtexturetothefabricbydiffusion.

1.4AerobicProcessestoTreatTextileIndustryEf fluents

Aerobictreatmentsystemsarehigh-rateoxidizersofsolubleorganicandnitrogenous compounds.Commerciallyavailableaerobictreatmentreactorspromotetheremovalof color,suspendedsolids,andpathogensandthereductionofCOD,BOD,andother

1. Temperature

2. pH

3. Food-to-microorganism(F/M)ratio

4. Hydraulicretentiontime(HRT)

5. Nutrientavailability

6. Aeration/oxygentransferrate

7. Hydraulicandorganicloadingrates

Temperature:Therateofbiologicaloxidationisafunctionoftemperature.Various microbialspecieshaveoptimaltemperaturesforsurvivalandcellsynthesis:psychrophilic(12 18 C),mesophilic(25 40 C),andthermophilic(55 65 C).

pH:TheinfluentpHhasasignificanteffectontextileindustrywastewatertreatment [37].Byaddingasuitableacid/base,itispossibletotreattextilewastewatersoverawide pHrange.However,theoptimumpHformicrobialgrowthisbetween6.0and7.5.Itis commonlyviewedthat,ataslightlyalkalinepH,thebacterialgrowthisprime.Similarly, ithasalsobeenshownthatthealgalandfungalgrowthisstimulatedinslightlyacidic wastewater.TheresponsetopHislargelyduetochangesintheacidicenvironment causedbyenzymaticactivity.

F/Mratio:TheF/Mratioindicatesthecorrespondencebetweentheamountofsubstrate,bioavailableorganiccompounds,chargedintotheaerationchambereachdayand theamountofmicroorganismsaccommodatedwithintheaerationchamber.The physicochemicalpropertiesofthesubstrate(food)aswellasthetypeofbiocatalyst, whetherpureormixed,stronglydeterminetheoverallefficiencyofthetreatmentprocess.TheF/MratioisexplainedintermsofmassofBODpermassofmicrobesinthe treatmentunitperdayofoperation.Thislife-sustainingparameterhasasignificant influenceonthemicrobialpopulationanditsactivity.Asuddendisturbanceinthe organicloadingrate(OLR)affectsthemicrobialpopulation.

HRT:Theaveragetimespentbythesolublecompoundpresentinwastewaterwithin thebioreactorisknownastheHRT.Itisaratiobetweenthevolumeoftheaerationtank andtheinfluentflowrate.Textilewastewatershavebeensuccessfullytreatedusingan activatedsludgeprocessatHRTsvaryingbetween18and36h [38,39].

Nutrientavailability:Nutrients,suchasNandP,enhancethegrowthofmicroorganismsintheaerobicreactor,whichincreasesthetreatmentefficiency.Nutrienttype dependsonthenatureofthemicroorganismadopted,namely,bacteria,fungi,yeasts, etc.Theoptimumnutrientrequirementforthemaximumdecolorizationoftextile effluentisthemajorconcern.Theeffectsofthepresenceandabsenceofnutrientson textileindustrywastewatertreatmentusing Trametesversicolor werereportedbyMullai andVishali [40].

Aeration/oxygentransferrate:Aerationistheprocessbywhichairismixedwithor circulatedthroughthetextilewastewater.Thetheoreticalrequirementofoxygenforthe aerationprocessdependsuponthetotalmicroorganismspresentforoxidizingthewaste. ItcanbeevaluatedbasedonBODcontent,ammonia-nitrogenoxidized,oxidized

nitrogendenitrified,andthedissolvedoxygen(DO)requiredformicrobialgrowth.Large quantitiesofoxygenmustbeprovidedtomaintainaerobicconditions [33].Inaconventionalwastewatertreatmentplant,anaerobictreatmentsystemisdesignedto maximizethecontactinterface(surfacearea)betweenthegasandtheliquidphases,to escalatetheopportunityforoxygentransfer.

Hydraulicandorganicloadingrates:Bothhydraulicandorganicloadingratesform thebasisforanaerobicbioreactorspecification [33].TheOLRindicatestheavailabilityof thefood(incomingcolloidalandsolubleBOD)comparedtotheavailabilityofthemicrobialpopulationtoassimilatethefood(F/Mratio).Thequalityofthetreatedtextile effluentwillbehighiftherearemoremicrobesthanfood,andthereverseisalso possible.

1.5MechanismofAerobicTreatmentofTextileEf

fluent

Biologicaldegradationorbioremediationisthekeyareaofinterestfortreatmentof variouspollutantsandeffluentwastes.Variousmicrobialstrainsareselectedand acclimatizedtogrowandmetabolizeinthepresenceoftoxiceffluentssuchthattheycan transformthepollutantstolessharmfulby-products.Apartfrombeingenvironmentally friendlyandcost-effective,theydonotconsumelargevolumesofwatercomparedwith variousphysicochemicalmethodsinvolvedintreatingtheseeffluents.Majormechanismsbywhichtextilewastewatercanbetreatedusingmicroorganismcanbeclassified intobiosorptionandenzymaticdegradation.Awidevarietyofmicroorganisms,both fungiandbacteria,havebeenisolatedwiththeabilitytodegradedifferentclassesofdyes commonlyusedinthetextileindustry.Someoftheseinclude Aspergillus, Bacillus, Enterococcus, Pichia, Pseudomonas, Shewanella,and Staphylococcus [41 45].

1.5.1Biosorption

Microorganismsareknowntoeffectivelyremovesolubletoxicorganicandinorganic substancesbyapassiveprocess,commonlyknownasbiosorption.Biosorptiontakes placebecauseofthepresenceofvariousfunctionalgroupsonthemicrobialsurface. Biosorptionleadstosequestrationofdyesormetalsfromsolutionby(1)complexation, (2)chelation,(3)precipitation,and(4)ionicinteractions.Azodyes,whicharemajor contributorstothecolorofthetextileeffluent,areremovedbybiosorptionparticularly byfungiandyeasts.Thecellwallofamicrobeisconsideredtobetheprimarysiteof biosorption.Inthecaseofbiosorptionbyyeasts,peptidoglycansorproteinspresenton thecellwalloractivegroupssuchaspolysaccharides,lipids,andaminoacids [46 48] playavitalrole.BiosorptiondependsuponthesolutionpH,temperature,initialdye concentration,anddosage. Saccharomycescerevisiae showedmaximumsorptionatpH 6.0 [49].Adeadbiomassof Aspergillusniger hasbeeneffectivelyutilizedasabiosorbent forwhichtheoptimumpHwasfoundtobe5.0 [50].Agriculturalresidueshavealsobeen usedasbiosorbentsfortreatingwastewater.Wheatstraw [51],corncob,andbarleyhusk

electronfromthedyeandtransferringittoO2 (viamediators),andsubsequentlythedye breaksdown.Laccasescanactuponawiderangeofsubstratesand,therefore,canbe usedforthetreatmentofwastewatersthatcontainvariousazodyes [64 66]

1.5.2.3Peroxidases

Ligninperoxidasesareheme-containingoxidoreductasesandareknownforthedegradationofvariousaromaticcompoundslikephenylsandsyntheticdyes [59].Chivukula andRenganathan [67] proposedamechanismofazodyedegradationbyligninperoxidases,inwhicharadicalisproducedatthecarboninvolvedintheazolinkage( N]N ) owingtotheoxidationofthephenolgroupbyligninperoxidase.Thisisfollowedbythe attackofawatermoleculeonthephenolgroup,releasingphenyldiazine,whichis subsequentlyoxidizedtogenerateN2 [68].Ligninperoxidasesfromthewhiterotfungus Phanerochaetechrysosporium arereportedtodegradeavarietyofazodyes [69].

1.6BiocatalystsforTextileWastewaterTreatment

1.6.1Algae

Algaehavethreedifferentmechanismsfordecolorizationorassimilationofthecolored compounds.Thechromophoresareutilized(1)fortheproductionofalgalbiomass, carbondioxide,andwater;(2)fortransformationofthecoloredcompoundstouncoloredones;and(3)foradsorptionofthedyeonthealgalbiomass. Chlorella and Oscillatoria havebeenreportedtodegradeazodyestoaromaticaminestosimple compoundsandsubsequentlytoCO2 [70].Theyhavebeenshowntodegradeover30 differentdyes [71].Severalresearchershavereportedthepotentialofvariousalgalstrains totreattextilewastewaterowingtotheirabilitytodegradetheazobonds [72,73].Algae canbegrownsymbioticallywithaerobicmicrobessuchthatthealgaewouldprovideO2 totheseaerobes,whichcanutilizethearomaticaminesreleasedbythedegradationof thechromophoresordyes [74]. Scenedesmusbijugatus showed68%decolorizationofazo dyesafter6daysofincubation [75].Khataeeetal. [76] reported83.5%decolorizationof BasicRed46byagreenmacroalgabelongingto Enteromorpha sp.within5hofbatch incubationat25 C.

1.6.2Bacteria

Bacteriahavebeenpreferredoverfungiforthetreatmentoftextilewastewatersasthe ratesofdecolorizationandmineralizationofthedyespresentintheeffluentsarehigher. Inadditiontothismajoradvantage,theuseofbacteriafortreatmentleadstolesssludge generationandtheprocessiscost-effectiveaswell.Speciesbelongingtothegenera Pseudomonas, Bacillus, Aeromonas,and Proteus aresomeoftheextensivelystudied bacteriaforthedegradationofdyesandothertoxiceffluents [77,78] Pseudomonas aeruginosa hasbeenreportedtodecolorizeacommercialtextiledye,NavitanFastBlue

SSR,underaerobicconditions [79].Kolekaretal. [80] reportedadecreaseinCODand colorofamixtureofdyesbyusing Shewanella strainKMK6.ReductionsinCODand colorby66.7%and96.9%,respectively,wereobservedwhen Bacillus MK-8strainwas usedintheformofgranules [81]. Table1.3 presentsthebacterialdegradationofvarious dyesunderdifferentprocessconditions.

Bacterialdecolorizationbypureculture sisrapid,butleadstotheformationof toxicintermediateslikearomaticamines [82].Mixedcultureshavebeenshowntobe moreefficientinthedegradationofwastew atersanddyesowingtothesynergistic metabolismofthemicrobespresentthatcanutilizetoxicintermediatestoform nontoxicby-products [83].Amicrobialconsortiumof Bacillus , Sphingobacterium,and Pseudomonas wasreportedtodecolorizetextilewastewaterrapidlycomparedtothe purecultures [84]

1.6.3Fungi

Fungihavebeenfoundtobeveryeffectiveinthedecolorizationanddegradationof textilewastewatersbecauseofthepresenceofvariousnonselectiveenzymesystems, whichcanactuponawiderangeofsubstrates,enablingthemtosurviveunderharsh conditions [85].Thesecretionoflaccase,ligninperoxidases,andmanganeseperoxidase helpsthemindegradingtherecalcitrantcomponentsofthewastewater [86].Whiterot fungi,inparticular,havebeenfoundveryeffectiveinthedegradationofvariousdyesand otherxenobiotics [87].Amaraletal. [88] andAssadietal. [89] reported92%and98%, respectively,decolorizationofarawtextileeffluentby T.versicolor.Theapplicationof whiterotfungiintheeffluenttreatmentislimitedbythelonggrowthcycle,whichin turnrequiresprolongedhydraulicretentiontimes.Theneedfornitrogen-limitingconditionsandpreservingthedominanceoffungalculturesinthereactorsystemisthe majorchallengethatpreventstheuseoffungiforfull-scaleapplications [58,90].Amixed fungalcultureof Pleurotusostreatus and Coriolusversicolor reducedtheCODandBOD ofwastewateralongwithachievingitsdecolorization [91]. Table1.4 liststhevarious fungalstrainsthathavebeenappliedfortreatmentoftextilewastewateranddegradation ofvariousdyes.

1.6.4Yeasts

Interestintextilewastewatertreatmentusingyeastsisduetotheabilityoftheyeast biomasstoabsorbandaccumulatetoxicchromophoresaswellastodegradetheminto simplercompounds.Deadbiomassofyeasthasbeenutilizedasabiosorbentforthe biosorptionofdyesasdiscussedinaprevioussection.Yeastsalsopossessanenzyme systemthatcandegradedyespresentinthetextilewastewater.Peroxidases,reductases, andlaccasesaresomeoftheenzymesystemspresentinyeastthattakepartinthedye degradationprocess. Candidakrusei, Trichosporonbeigelii, Galactomycesgeotrichum, S.cerevisiae,etc.,havebeenwellreportedforthebiodegradationofdyes [92 94].

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Current developments in biotechnology and bioengineering. biological treatment of industrial effluen by Education Libraries - Issuu