Covariant physics - from classical mechanics to general relativity and beyond 1st edition moataz h.

Page 1


https://ebookmass.com/product/covariant-physics-from-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Special relativity, electrodynamics, and general relativity : from Newton to Einstein Second Edition Kogut

https://ebookmass.com/product/special-relativity-electrodynamics-andgeneral-relativity-from-newton-to-einstein-second-edition-kogut/

ebookmass.com

Introducing General Relativity Mark Hindmarsh

https://ebookmass.com/product/introducing-general-relativity-markhindmarsh/

ebookmass.com

General relativity : a concise introduction Carlip

https://ebookmass.com/product/general-relativity-a-conciseintroduction-carlip/

ebookmass.com

Book Markets in Mediterranean Europe and Latin America: Institutions and Strategies (15th-18th Centuries) 1st Edition Montserrat Cachero

https://ebookmass.com/product/book-markets-in-mediterranean-europeand-latin-america-institutions-and-strategies-15th-18th-centuries-1stedition-montserrat-cachero/ ebookmass.com

Border Ecology: Art and Environmental Crisis at the Margins Ila Nicole Sheren

https://ebookmass.com/product/border-ecology-art-and-environmentalcrisis-at-the-margins-ila-nicole-sheren/

ebookmass.com

Pucking Lethal: An MM Age Gap Hockey & Mafia Romance (Deadly Puck Daddies Book 2) Zack Wish

https://ebookmass.com/product/pucking-lethal-an-mm-age-gap-hockeymafia-romance-deadly-puck-daddies-book-2-zack-wish/

ebookmass.com

All Children Read: Teaching for Literacy in Today’s Diverse Classrooms (What’s New in Literacy) 5th Edition, (Ebook PDF)

https://ebookmass.com/product/all-children-read-teaching-for-literacyin-todays-diverse-classrooms-whats-new-in-literacy-5th-edition-ebookpdf/ ebookmass.com

978-0133405538 Engineering Economics: Financial Decision Making for Engineers (6th Edition)

https://ebookmass.com/product/978-0133405538-engineering-economicsfinancial-decision-making-for-engineers-6th-edition/

ebookmass.com

The Unfinished Nation: A Concise History of the American People 10th Edition Alan Brinkley

https://ebookmass.com/product/the-unfinished-nation-a-concise-historyof-the-american-people-10th-edition-alan-brinkley/

ebookmass.com

Early Stage Valuation: A Fair Value Perspective 1st Edition Antonella Puca

https://ebookmass.com/product/early-stage-valuation-a-fair-valueperspective-1st-edition-antonella-puca/

ebookmass.com

CovariantPhysics

CovariantPhysics

FromClassicalMechanicsto GeneralRelativityandBeyond

MoatazH.Emam

StateUniversityofNewYorkCollegeatCortland

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries c MoatazH.Emam2021

Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2020951689

ISBN978–0–19–886489–9(hbk.)

ISBN978–0–19–886500–1(pbk.)

DOI:10.1093/oso/9780198864899.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

ToMiriam,Maya,andMourad

Preface

Thisis not “yetanotherbookonthegeneraltheoryofrelativity.”Whilethetheorydidinspire,andindeedplaysamajorrolein,ourdiscussion,itcanbethought ofasonlyonepartofagreaterwhole.Initiallydevelopedasatheoryofgravity,it wasslowlyrealizedthatgeneralrelativityhadadeepermeaningthanjustthat.It teachesus,amongotherthings,acompletelynewunderstandingofspaceandtime, togetherrenamed spacetime:asinglefabricwithitsownparticularsetofsymmetriesandproperties.WhilewelearnthatthefamiliarEuclideangeometry1 thatwe havealllearned(andloved?)inschoolnolongerapplies,wealsodiscoverthatits mostfundamentalsymmetriesarenotlost,butrather“upgraded”tonewanddeeper ones;leadingtoa“spacetime”that’salotmoredynamicandflexiblethantheone welearnedaboutfromEuclid,Galileo,2 orNewton.3 Abyproductofthisdynamical flexibility,prominentingeneralrelativity,isthephenomenonthatwecall“gravity;” butitis only abyproduct.Itisactuallypossible,atleastinprinciple,togothrough anentirecourseongeneralrelativitywithoutmentioningtheword“gravity”once,insteadjustfocusingonitsformalstructureandthesymmetriesitinspires!Clearlysuch achoicewouldnotbeaveryproductiveone,asitmeansthatwewouldbemissingout onwhatisundoubtedlythemostimportantapplicationofthetheory;nevertheless, it is possible.Thetheoryitselfistheculminationoftheeffortsofmanyphysicists andmathematicians,mostnotablyAlbertEinstein,4 HermannMinkowski,5 Hendrik Lorentz,6 HenriPoincar´e,7 DavidHilbert,8 andothers.Einstein,ofcourse,isresponsibleforthemorerevolutionaryideasinthetheory.Todayitisconsideredhisgreatest contributiontophysics,aswellaspossiblythemostamazingsingularachievementby ahumanbeinginhistory.9

1EuclidofAlexandriawasaGreekmathematicianwholivedaroundthethirdcenturyBCE.His book Elements isconsideredthefoundationaltextofmoderngeometryintwo-andthree-dimensional flatspace.Hisaxioms,theorems,andlemmasconstitutethefamiliargeometrytaughttodaytohigh schoolstudents.Theterm“Euclidean,”coinedinhishonor,signifiesflatspace,asopposedto“nonEuclidean,”orcurvedspaces.

2GalileoGalilei:Italianastronomer,physicist,engineer,philosopher,andmathematician(1564–1642).

3SirIsaacNewton:Englishmathematician,physicist,astronomer,theologian,andauthor,requiring perhapsnointroduction(1642–1726).

4Germanphysicist(1879–1955).

5Germanmathematician(1864–1909).

6Dutchphysicist(1853–1928).

7Frenchmathematicianandtheoreticalphysicist(1854–1912).

8Germanmathematician(1862–1943).

9CharlesDarwin’stheoryofnaturalselectionmightbeaclosecontender.

viii Preface

Oneofthemostfundamentalcharacteristicsofthisnewunderstandingofspace andtimethathasarisenfrom,but,onecanargue,hasbecomeevenmoreimportant than,thetheoryofrelativity,iswhatmathematicianssometimescall diffeomorphisminvariance,which,asfarasweareconcerned,canbethoughtofassimplythe“invarianceofthelawsofphysicsbetweencoordinatesystems,”alsoknown as coordinatecovariance,orjust covariance.Thisidea,whichwillbeourmain focusformostofthisbook,liesatthedeepestfoundationsofphysicsandiscertainlytrueinthespecialtheoryofrelativity(specialcovariance),thegeneraltheory(generalcovariance),andevenordinarynon-relativisticphysics,i.e.theusual Euclidean/Galilean/Newtonianworldview(classicalcovariance).Whatitmeansis this:Theuseofanytypeofcoordinatesystemdoes not affectthephysicaloutcome ofanygivenproblem.Aspecificphysicsformulaappliedtosomeproblemshouldgive exactly thesamephysicalanswerswhetheronehasusedCartesiancoordinatesorany othertypeofcoordinatesystem(andtheyarelegion).Thisshouldbeintuitivelytrue eventothebeginner,becausecoordinatesystemsareahumanchoiceandnature shouldnot,andindeeddoesnot,careaboutourchoicesorconventions.Ontheother hand,thewaytheformula looks inCartesiancoordinatesissignificantlydifferentfrom thewayitlooksinothercoordinates.Soanimportantquestiontoaskisthis:Howcan onewritethelawsofphysicsinasingleformthatistruein any coordinatesystem? Inotherwords,inaformthatiscoordinate covariant,yetiseasyenoughtouseonce achoiceofcoordinateshasbeenmade?Inthisbookwewillapproachourstudyof spaceandtimefromtheperspectiveofcovariance;assuch,itisperhapsimportantto understandwhatwemeanbythis,eventhisearlyinthereading.Let’sthenclarify further:ConsiderNewton’ssecondlawasanexample.Itisusuallyfirstencountered inintroductorycoursesinthefollowingform:

= ma, (0.1)

where F isthevectorrepresentingthenetsumofallexternalforcesactingonamass m andresultinginanacceleration a 10 Writteninthisform,eqn(0.1)iscorrectin anycoordinatesystem,i.e.inasenseitis already covariant.Buttoactuallycalculate numericalresultsonestillneedstomakeaspecificchoiceofcoordinateswhichwill necessarilysplittheequationintoitsconstituentcomponentsandhaveaformthat ishighlydependentonthecoordinatesystemused.Forexample,intwo-dimensional Cartesiancoordinates(x,y),Newton’slawreducestothefollowingsetofequations:

x = max Fy = may, (0.2)

where(Fx,Fy)and(ax,ay)aretheCartesiancomponentsoftheforceandacceleration respectively.Withtheknowledgethataccelerationisthesecondderivativeofthe positionwecanwrite

10Wewillmostlydenotevectorsbyboldfacetypefont,exceptwhenthereisapossibilityof confusion.Insuchcaseswewilluseanarrowoverthesymboltodenoteavector;forexample, F

F
F

Preface

orinamorecompactform

whereanoverdotisthestandardnotationforaderivativewithrespecttotime(˙x = dx dt , x = d2 x dt2 ,andsoon).Thisshouldbefamiliareventothereaderwhohasonlyhad anintroductoryphysicscourse,butnowconsiderwritingtheequivalentequationsin polarcoordinates(ρ,ϕ).Wefindthattheyare not:

ρ = mρ

ϕ = mϕ. Wrong! (0.5)

Inotherwords,onedoesnotsimplyreplace x → ρ or y → ϕ andexpecttogetthe rightanswer.(Infact,itisclearthatthesecondequationin(0.5)doesnotevenhave thecorrectunits.)Thecorrectrelationshipsareactually

Thetwosetsofeqns(0.4)and(0.6)arenotidenticalinform,as(0.4)iswiththe (wrong)eqns(0.5).Specifically,thereare“extra”termsandmultiplicativefactorsin (0.6),anditisnotimmediatelyobviouswherethesecamefromorwhetherthereisa patternthatiscommontothem.Itis,however,truethatapplyingeitheroneofthese choicestothesameproblemwilldescribethesamephysicalbehaviorandgivethesame physicalresults.Butwheredidtheextraquantitiescomefrom?Mathematically,they arisefromtherelationshipsthatrelatepolarcoordinatestoCartesiancoordinates,i.e. x = ρ cos ϕ and y = ρ sin ϕ,ascanbeeasilyderivedfromFig.[1.3b].Alloneneeds todoistousecalculustofindhow˙x and˙ ρ (forexample)arerelated,andsoon.In principleoneneedstorederivetheNewtonianequationsofmotioneachandeverytime onemakesaspecificchoiceofacoordinatesystem.Thisisindeedthewayitisusually doneinphysicsclasses.However,whatifthecoordinatesystemis not definedahead oftime?Whatifitdependsonthecurvatureofspaceandtimethatisnot apriori known?Whatifthecoordinatesystem itself arisesasthesolutionoftheproblem understudy?Canonerewrite(0.1)oranyotherlawofphysicsinsuchawaythatit remainscoordinateinvariantandgivesthecorrectsetofequationsfor any coordinate system,whetheritwasknownfromthestartorstilltobederived?Thisistheproblem ofcoordinateinvarianceinphysics,orcovarianceasitismorecommonlyreferredto.

x Preface

Learninghowtodoallofthisisausefulthing,whetheroneisgoingtostudyrelativityornot,becauseitprovidesthestudentwitharecipefordealingwithanychoice ofcoordinatesysteminanyphysicsproblem,whethersuchachoiceisoneofthemore commonones,likepolarcoordinatesintwodimensionsorcylindricalandspherical coordinatesinthree,orlesscommon,suchasparaboliccoordinatesorellipticcoordinates.Inshort,itprovidesthephysicist(orengineer)withapowerfulmathematical toolapplicabletoavarietyofsituations.Italsoactsasaneasy(-ish)introductionto thesubjectof tensor mathematics,rarelydiscussedinanundergraduatesetting,yet encounteredinalmosteverybranchofphysics.Whilethese“tensors”areparticularly usefulinarelativisticsetting,theycanalsobefoundinnon-relativisticmechanicsand inelectrodynamics,andknowledgeoftheirpropertiesandruleswouldbeparticularly usefulforthestudentwishingtodelvedeeperintothesetopics,oratleasthopesfor abetterunderstandingthanisnormallydeliveredtoundergraduates.11 Wewilltouch uponallofthis,andbythetimewearedonewewillhaveageneralunderstandingof (almost)alloffundamental(non-quantum)physicsinacovariantsettingandarbitrary spacetimebackgrounds.Weconcludethebookwiththreechaptersfocusingontopics rarely,ifever,foundinsimilartreatments.Theseare:classicalfields,differentialforms, andmodifiedtheoriesofgravity.Thesechaptersareparticularlygearedtowardsthe studentsinterestedinreadingmodernresearchpapers.Theyshouldprovidejustabit ofextrapreparationaswellaspossiblywhetthereader’sappetiteformore.

Anotetoinstructors:

Thisbookiswrittenfromaminimalist’sperspective.BynostretchoftheimaginationamIclaimingthatthediscussionshereareexhaustiveorcomplete.Infact,I imaginethatmostmathematicianswouldbeparticularlyappalledbythelackofrigor throughout,andmostphysicistswillpointoutthatmanyinterestingapplicationsand discussionscommonlyfoundinsimilarmonographsaremissing.Thisisallquiteintentional.Theintendedaudienceofthisbookarethoseundergraduatestudentswho mayhaveonlyhadintroductorymechanicsandelectromagnetismatthelevelofSerway[1],forinstance,aswellaselementarycalculusuptoandincludingmultivariable calculus.Whilethemathematicalbackgroundgetsabitmoreintenseinsomeplaces, itismyhopethatstudentswithonlythatmuchpreparationcanmanagethemajorityofthebook.Asthestudentsprogressintheirstudiesandreachmoreadvanced coursesinmechanicsandelectrodynamics,onehopesthatthisbook,orthememory thereof,wouldprovideabackgroundtyingallthevariousdisciplinestogetherinone continuousthread.Thethemeofcovariancepermeatesallofphysics,andyetisrarely discussedinanundergraduatesetting.Ihavetriedtomakethebookasself-contained aspossible,suchthatastudentreadingitontheirownwouldmanagemostofitwith aslittlehelpaspossible.

11IttrulyhurtswheninteachinganundergraduateclassIfindmyselfforcedtosaysomethinglike “Thisiscalledtheso-and-sotensor,butunfortunatelywehavenotimeinthisclasstoexplainwhat that really means.”

Preface xi

Onealsohopesthatthisbookcanprovidetheminimummathematicaltraining neededbyundergraduatestudentswishingtodoresearchincertainareasoftheoreticalphysics.Infact,theideaofthebook,aswellasthelevelofdetailandsequence oftopics,hasarisenfrommyyearsofsupervisingundergraduateresearch.Withgraduationdatespreset,onewouldlikeone’sstudentstostarttheirresearchexperience asearlyaspossibleintheircollegeyears,andgettofinishwithinthetimetheyhave available.InmyundergraduatetheoreticalphysicsresearchprogramIhaveusually designedmystudents’learningexperienceinsuchawaythattheywouldbeableto gettotheresearchpartasfastaspossible,amassingtheneededmathematicaltrainingintheshortestpossibleperiodoftime.Inmanycases,Ihaveinstructedthemto focusoncertaintopicswhileskippingothers,becauseofmypreconceivedknowledge ofthenatureoftheresearchproblemthatIwilleventuallyposetothem.Forexample,astudentwhoseresearchwillbecalculatinggeodesicorbitsofcertainspacetime backgroundsneednotwastetheirinitialstudysessionsonunderstandingthedetailsof howthesespacetimeswerederivedinthefirstplace;ratheracursoryknowledgewould beacceptable.Ifundergraduateresearchistheinstructor’sintentioninassigningthis booktotheirstudents,thenitisadvisabletoplantheirreadingaheadoftime.Of course,astheyworkontheirprojectstheymaygobackandstudyinmoredetail thosesectionsthattheyhaveinitiallyonlyskimmedover.Ihavetriedtomakethis bookexhaustiveenoughforthesepurposes,althoughdependingonwhattheresearch mentorhasinmind,otherbooksand/ornotescanbesupplemented.

Ontheexercisesinthebook:

Ihavetriedtoincludeasmanyexercisesforpracticeand/orhomeworkassignmentsas Icouldwithoutoverwhelmingthereader.Manyoftheexercisesinthebookarechosen notonlybecausetheyprovidepracticeonthetopicswediscuss,butalsobecausethey includesomeadditionalmaterialoftheirown.Forexample,someoftheexercises requirethereadertoteachthemselvescomputationaltechniquesnotdiscussedinthe textorreadonatopicthatwedidn’tincludeindetail.Somemayevenbelongenough tocountasafinalprojectorsomethingsimilar,e.g.Exercise 6.49,orExercises 7.26 and 7.27 combined.Theseincreaseinfrequency,aswellasintensity,aswegettothe finalchapters.Awordofwarning,however:Pleasebeawarethatsomeoftheexercises list many differentwaysofpractice;somany,infact,thatthestudentneednotdo all.Forexample,anexercisemaysay“dosuchandsuchforthefollowingcases”and list 10 differentcases;e.g.Exercise 2.22 whichinturnisreferredtomultipletimesin subsequentexercises.Thestudentreallyneed not doallofthelistedcases;onlyenough tofeeltheyhavereachedacertaindegreeofcomfortwiththetechniques.Likewise,if thisbookisusedinaformalcourse,theinstructorshouldchoosesomeofthecases forhomeworkassignments,orevenintroducetheirown.Manyexercisesdependon previousones,however.Forexample,Exercise 2.23 needstheresultsofExercise 2.22, soifthereaderchoosestodo,saythree,ofthecasesin 2.22,thentheywouldonlybe abletodothesamethreecasesin 2.23,andsoon.

xii Preface

Someoftheexercisesassignedalreadyhavesolutionsavailableinvariousplaces aroundtheinternet.Thisisunavoidable.However,itisunderstoodthatitisinyour bestinteresttoworkouttheexercisesyourself, then checkagainsttheavailablesolutions.Itisalsotruethattherearefreelyavailablesoftwarepackagesthatwouldsolve manyoftheexercisesinthisbookforyou.Thisisthecaseformostmathematical topicsinthisdayandage.Iactually encourage thereadertofindanddownloadthese packages,orbetteryetlearntodesignandwriteyourown.Youcandosofromscratch usinganyprogramminglanguageorfromwithinoneofthecommerciallyavailable symbolicmanipulationsoftwarepackages.Inotherwords,youshouldtreatthedigital computerasatoolforlearning, not asawayofavoidingwork.Thechoiceofwhich exercisestodobyhandandwhichtodousingthecomputerismostlylefttothereader ortheirinstructors,evenifnotspecificallystated.Forexample,oncetheinstructoris satisfiedthatthestudentsareabletocalculateaspecificquantitythatusuallytakes hourstofindbyhand,saythecomponentsofaparticularlylargetensor,thenthey mightjustallowthestudentstousesoftwarepackagesfortheremainderofthecourse.

Acknowledgements

Itisverydifficult,ifnotdownrightimpossible,togivecredittoeverysingleperson thatIwouldliketo.ForIbelievethatanydirecthelpIhavehadinwritingthisbookis nomoreimportantthantheindirectpositiveeffectmanypeoplehavehadonmylifein general;withoutwhichIwouldnothavebecomethepersonwhoisabletowritesuch abookinthefirstplace.Assuch,IbegforgivenesstoanyonethatIwon’tmention andassurethemthatIappreciatethemnoless.Tobegin,Imustacknowledgemy parents’love,encouragement,andsupport.Thesearethefoundationsuponwhichwe allgrowandadvance.Restinpeacemomanddad;Ihopeyouareasproudofmeas Iamproudtobeyourson.Secondly,IacknowledgethesupportIhavereceivedfrom myfamilyandclosefriends;youaretoomanytomention,butyouwereallsupportive andunderstandingofmyeffortsinwritingthisbook.Iprobablywouldhaveendedup nowherewithoutyou.ThirdlyImustacknowledgemystudentsoveratleastthepast fifteenyears,inboththeUnitedStatesandEgypt.Ihaveusedthenotesonwhich thisbookisbasedtoteachthemthematerial,andtheyhavealwayshonoredmewith valuablefeedbackandcomments.Iwouldalsoliketothankthecolleagues,teachers, andfriendswhohavehadanimmediateimpactonthisbook,whetherviadiscussions wehavehad,supportandencouragement(sometimessuchalongtimeago),ordirect feedback.Theseare,innoparticularorder:

• Dr.MarkPetersonofMt.HolyokeCollege,MA:Youallowedmetooffermyvery firstclassonthegeneraltheoryofrelativity.ThenotesIdevelopedforthatcourse weretheearliestversionofthisbook.Ourdiscussionsaboutteachingmethods havehadalastingeffectonmeasateacherandasanauthor.Yourencouragement andfaithinmyabilitieshavestayedwithmesincethen.

• Dr.AhmedAlaaEldinAbouelsaoodofCairoUniversity,Egypt:Nowwherewould Ihaveendedwithoutyouradviceandencouragement?Youtookachanceona youngmanwhocametoyouwithnothingotherthanapassionforphysics,and yourgamblepaidoff(Ihope).Notonlydidyouallowmetoabsorbfromyouas muchknowledgeasIpossiblycouldhaveatthetime,youwerealsotheonewho providedtheinitialguidancewhich,quiteliterally,startedtherestofmylife.

• Dr.DavidKastoroftheUniversityofMassachusettsatAmherst,MA:Asmy PhDadvisoryoudidmuchmorethansuperviseme.Youallowedmetopickyour brainsinmanytopicsintheoreticalphysicsandpatientlylistenedtomeasI describedhowIunderstoodthings,evenifmyideassoundedsimpleormundane. Thesethoughts,whichyouencouraged,haveslowlydevelopedandmatured,and becamemajorcontributionstothiswork.Morerecently,thanksfortakingthe timetoreadthemanuscriptandcomingupwithusefulcommentsaswellas suggestionsfornewsections.Iamparticularlygratefultoyouforsuggestingthe subtitleofthebook.

• Dr.EricEdlundoftheStateUniversityofNewYorkCollegeatCortland,NY: Thanksforthetimeyoudedicatedtoreadingthemanuscriptandprovidingexcellentsuggestionsandcomments.

xiv Acknowledgements

• Mr.TariqSaeedoftheUniversityofMansoura,Egypt:Thanksforproviding valuableinputfromastudentperspective.Yoursuggestionsonsections §3.3, §4.7,andotherswereparticularlyuseful.Ialsotrulyappreciatedyourtakingthe timetocheckmanyofthecalculationsinthisbook.

• EngMuhammadEl-Nashash’ee,andEngAkramMasoud:Thankyoufortaking thetimetoreadthemanuscriptandprovidingvaluablefeedbackandsuggestions.

• MycousinanddearfriendBrigadierGeneralEngOmarFarouk:Manythanksfor thebigpushyougavemeatatimeIdesperatelyneededone.

• Last,butcertainlynotleast,mydearfriendMr.AhmedAbuali:Iwillalwaysbe gratefulforyourvaluableinput,help,aswellasmanyhoursofdiscussion.

5GeneralCovariance

5.1WhatisSpacetimeCurvature?

5.3TheNewtonianLimit:TheMetricofWeakGravity

5.4TheMetricOutsideaSphericalMass

5.5TheMetricInsideaSphericalMass

5.6AreasandVolumesinCurvedSpaces

5.7Non-RotatingBlackHoles

5.8CosmologicalSpacetimes

6PhysicsinCurvedSpacetime

6.1GenerallyCovariantMechanics

7.2CalculusonManifolds

7.4TheVacuumEinsteinEquations

7.5TheStressEnergyMomentumTensor

7.6TheEinsteinFieldEquations

7.7Einstein’sGreatestBlunder

8.1ThePrincipleofLeastAction

8.2ClassicalFieldTheory

8.3TheStressTensorfromtheAction

8.4GeneralRelativisticActions

8.5TheGeodesicEquationOneMoreTime

8.6SomeMoreSpacetimes

9.1AnEasy-GoingIntro

9.2MoreGenerally...

9.3HodgeDuality

9.4Maxwell’sTheoryandDifferentialForms

9.5Stokes’Theorem

9.6Cartan’sFormalism

f (R)Theory

WiththeexceptionofFig.[5.12]and[8.7],allthefiguresareoriginalbytheauthor.

Softwareused:“WolframMathematica R 11.3,”and“Inkscape R 0.92.”

CoordinateSystemsandVectors

Geometryhastwogreattreasures:oneistheTheoremofPythagoras;theother,thedivision ofalineintoextremeandmeanratio.Thefirstwemaycomparetoameasureofgold;the secondwemaynameapreciousjewel.

Introduction

Coordinatecovarianceisdefinedastheinvarianceofthelawsofphysicsunderchange ofcoordinatesystems,whethertheydifferfromeachotherbytranslation,rotation,or both.Inthischapterwebeginbyintroducingthevarioustwo-andthree-dimensional coordinatesystemsusuallyusedinproblemsofphysicsandengineering.Someofthese shouldbequitefamiliartothereader,whileothersmaybecompletelynew.Wespecificallyhighlighttheconceptof“lineelement,”alsoknownasthe“metric,”asadefining principleofcoordinatesystemsaswellasaunifyingthemeamongstthem.Thisshould allowforasmoothertransitionintophysicslater.Inprinciple,allthatanexperienced physicistneedsinordertofigureoutwhattypeofcovarianceisatplayinagiven situationisknowledgeofthemetric.Henceintroducingtheconceptearlyonmakes senseandallowsustimetogetusedtoitbeforethingsgetmoreinteresting.Next wewillturntodefiningthebasicsofvectormathematicsanddiscussingtheirformulationinanewlanguagesimplyknownasthe“index”or“component”notation.1 Thisnotationbyitselfconnectsvectorstothecoordinatesystemstheyaredefinedin andhighlightstheircovariance.Furthermore,thenotationprovidesthemajorityof themathematicalmaterialthatweneedtocollectinoursearchforafullycovariant formulationofphysics,relativisticornot.Infact,Iclaimthatthefirsttwochapters bythemselves constituteatleast80percentofthemathematicsneededtostudy both theoriesofrelativity.Asthereaderwillsee,noneofthismathematicsistoofarbeyond ordinaryalgebraandabitofmultivariablecalculus.

1Alsosometimesreferredtoasthe“tensornotation;”however,thisissomewhatmisleading,sowe willavoidusingittoomuch.

1.1CoordinateSystems

Forthepurposesofmanyscienceandengineeringapplications,themostcommonly usedsystemofcoordinatesisthe Cartesian, 2 alsoknownas box or rectangular coordinates.Bytheirverynature,Cartesiancoordinatesemphasizetheintuitiveconceptsofwidth,depth,andheight.Itisusuallythecoordinatesystemofchoicefor Euclidean geometry;i.e.theordinarygeometryweallstudiedinschool.Itis,however,only one choiceamongmany,aswewillsee.Euclideangeometrydescribesflat space,whereparallellinesstayparallelandtheanglesofatrianglesumuptoexactly 180◦.Ifonehappenstobeinterestedincurvedor non-Euclidean geometries,like cartographersdoinggeometryonthesurfaceofthesphericalglobe,thennotonlydo Cartesiancoordinatesstopmakingsense,buttheyactuallybecomeimpossibletodefine,exceptapproximatelyonaverysmallscale.Toclarifythis,considerthesurfaceof planetEarthasanexample,assumedaperfectsphere;onecandrawstraightlinesin agridonthefloorinaroomorinthestreetwithouttrouble,butifyouwanttodraw longer“straight”linesbetweencities,countries,orevencontinents,youfindthatyou cannotdosoandareforcedtoworkwithcircles,likethoseoflatitudeorlongitude.In asense,then,mostcurvedsurfacesofinterestareapproximatelyflatonsmallscales; onesaystheyare locally flat,asopposedto globally so.

(a)Aright-handedcoordinatesystem. (b)Aleft-handedcoordinatesystem.

Fig.1.1:Cartesiancoordinates.

Traditionally,weusethesymbols x, y,and z todenotethethreeCartesianaxes inthree-dimensionalspace,orderedintheso-called“right-handed”system,asshown inFig.[1.1a].Theright-handednessconventionisparticularlyusefulinphysics,as itisthebasisofvariousmathematicaloperationssuchasvectorcrossproducts.For comparisonaleft-handedsystemisshown,butwewillnotbeusingthat.Generally,

2InventedintheseventeenthcenturybytheFrenchphilosopherandmathematicianRen´eDescartes (1596-1650),whosenameinLatinizedformisCartesius.

CoordinateSystems 3

coordinatesystemsaredefinedviathegeometricshapestheyseemtotrace.Soin thecaseofCartesiancoordinates,surfacesofconstant x, y,and z areinfiniteflat planesasshowninFig.[1.2],hencethealternativetitle“boxcoordinates.”Nowthe conventionalchoiceoftheletters x, y,and z todenotetheCartesianaxesisvery familiartomostpeople;however,amoreusefulnotation,andonethatwemightas wellstartusingrightaway,employs indices todenotethedifferentaxes.So x becomes x1 (i.e.the first axis), y,beingthesecondaxis,becomes x2,and z → x3,where thereaderiswarned not toconfuseindiceswithpowers,so x2 isnot x squared, butissimplypronounced“extwo”andsimilarlyfor“exone”and“exthree.”Ifwe wishtodenoteexponentiation,thenwecansimplyuseparentheses;forexample,the squareof“exthree”is x3 2 = x3 × x3 = z2.Ifthereisapossibilityofconfusion, wecantemporarilygobacktotheold(x,y,z)system,dependingonthecontext. This“numbering”system,alsoknownasthe indexnotation orthe component notation,isamuchmorepowerfulchoicethantheconventionaloneforavarietyof reasons,aswewillsee.

Fig.1.2:TheCartesiangrid:planesofconstant x, y,and z.

Thenextmostcommonlyusedsystemofcoordinatesinthreedimensionsis cylindricalcoordinates (whichbecome polarcoordinates inthe x–y plane),alsoknown as cylindricalpolarcoordinates.Theyaredenotedby(ρ,ϕ,z)andarerelatedto theCartesiancoordinatesvia

CoordinateSystemsandVectors

andtheirinverse

asiseasytoconfirmbyinspectingFig.[1.3].Cylindricalcoordinatesareaparticularly usefulchoiceinphysicswhentheproblemunderstudyhascylindricalsymmetry,i.e. studiesasituationwithcylindricalshapesorareasonableapproximationthereof. Thenamecomesfromthefactthatsurfacesofconstant ρ describeinfinitecylinders spanningtheentire z direction.Surfacesofconstant z areofcoursestillinfiniteplanes, andsoaresurfacesofconstant ϕ (Fig.[1.4]).

(a)Cylindricalpolarcoordinates. (b)Planarpolarcoordinates.

Fig.1.3:Two-andthree-dimensionalcylindricalpolarcoordinates.

Animportantdifferencebetweenthecylindrical(aswellastwo-dimensionalpolar) andCartesiancoordinatesystemsisthatthecylindricalsystemdoes not coverallof three-dimensionalspace.Whatthismeansisthatwhileanypointinspacecanbe describedbyaspecificsetofnumbersinCartesiancoordinates x1,x2,x3 ,inthe cylindricalcoordinatesystemthereisasinglepoint,outoftheinfinityofpointsin space,that cannot bedescribedbyauniquesetofthethreenumbers(ρ,ϕ,z).This isthepointlocatedexactlyattheoriginofcoordinates,whichweusuallydenoteby O.Whilethecoordinatesof O intheCartesiansystemaresimply(0, 0, 0),inthe cylindricalsystemonly ρ =0and z =0canbedefinedbut ϕ remainsambiguous, because any valuecanbeusedforit.Inotherwords,thereisnouniquesetofthree

CoordinateSystems 5

numbersdescribingthelocationof O;thesetofnumbers(ρ =0,ϕ =0◦,z =0)does implytheorigin,butsodothesets(ρ =0,ϕ =10◦,z =0),(ρ =0,ϕ =20◦,z =0), (ρ =0,ϕ =312 56◦,z =0),andsoon.Thereisaninfinitenumberofpossibilities,all describingasinglepoint!Thisphenomenonisa defect inthecoordinatesystemitself andcannotberemedied;thesystemsimplyfailsatthatspecificpoint.Onethensays thatwhileCartesiancoordinates cover, map,or chart allthree-dimensionalspace, cylindricalpolarcoordinatesdonot;exactlyonepointdefiesdefinition.Coordinate systemsinthisregardcanbethoughtofasagridcoveringthree-dimensionalspace; theCartesiangridormapisinfinite,smooth,andcomplete,whilethepolaronehas a“hole”initlocatedat O.Ifonethenwishestodoaproblemthatstudiesthepoint attheoriginusingsucha“defective”coordinatesystem,onehasnochoicebutto shiftthecoordinatesystemitselfsuchthatthepointinquestionnolongercoincides withtheorigin.Thereissimplynootherway.Thisissuealsofurtheremphasizesthat spatialpointsandcoordinatemapsare not thesamething;anobviousissue,perhaps, butonethatissometimesconfusedinthemindsofbeginners.

Fig.1.4:Thecylindricalcoordinatesgrid:cylindersofconstant ρ andplanesofconstant z and ϕ

Theremainingmostcommonlyusedsystemofcoordinatesinthree-dimensional spaceisthe sphericalcoordinatesystem,particularlyusefulinphysicswhenproblemsexhibitsphericalsymmetry.AsshowninFig.[1.5],wedefinethenumbers(r,θ,ϕ). TheyarerelatedtotheCartesiancoordinatesasfollows:

CoordinateSystemsandVectors

Fig.1.5:Sphericalcoordinates.

Itisalsopossibletodefinetransformationrelationsbetweencylindricalcoordinates andsphericalcoordinates.Theseare:

Notethatthesphericalcoordinatesystemalsosuffersfromthesamedefectwe notedforcylindricalcoordinates.Onceagain,thepointattheorigincannotbespecified bythreeuniquenumbers:only r =0canbeused,while both θ and ϕ areambiguous. Asbefore,theonlywaytodealwiththisincalculationsistoavoidaddressingthe originaltogetherorjustshiftthecoordinatesystem.Nowthedefiningpropertyof sphericalcoordinatesisthatsurfacesofconstant r describespheres,concentricatthe origin,whilesurfacesofconstant θ and ϕ defineconesandflatsurfacesrespectively, asshowninFig[1.6].

Asnoted,coordinatesystemsaredefinedbasedongeometricshapes:flatplanes forCartesian,cylindersforcylindrical(orcirclesforpolar),andspheresforspherical. Wenoteherethattheseare not theonlyoptions;othershapescanalsobeusedto

CoordinateSystems 7

(a)Spheresofconstant r andconesofconstant θ insphericalcoordinates.

(b)Thecompletesphericalcoordinatesgrid.

Fig.1.6:Sphericalcoordinates.

definecoordinatesystems.Forexample,considertheso-called ellipticcylindrical coordinates (u,v,z),wheresurfacesofconstant u defineconcentricellipticcylinders andsurfacesofconstant v arehyperbolas,asshowninFig.[1.7].Theyarerelatedto theCartesiancoordinatesvia

x 1 = a cosh u cos v

x 2 = a sinh u sin v

x 3 = z, (1.6) where a isanarbitraryconstant.

Therearecoordinatesystemsbasedontheparabolicshape,suchas parabolic cylindricalcoordinates,asshowninFig.[1.8]:

Afinalexampleisthe paraboliccoordinates,asshowninFig.[1.9]:

x 1 = uv cos θ

x 2 = uv sin θ x 3 = 1 2 u 2 v 2 (1.8)

Turn static files into dynamic content formats.

Create a flipbook